Dragonfly : Is Data Migration Evil in the NVM File System?

<u>Jungwook Han</u>, Hongsu Byun, Hyungjoon Kwon, Sungyong Park and Youngjae Kim

AMGCC`21 Sep 27, 2021

Department of Computer Science and Engineering Sogang University, Seoul South Korea

□ Introduction

- Background & Motivation
- Design of **Dragonfly**
- Evaluation

Introduction : Non-Volatile Memory

- Non-Volatile Memory
 - Low latency
 - High bandwidth
 - Persistent
 - Byte-addressable

Background : Thread Migration[MSST`20]

[MSST`20]J. Wang, D. Jiang, and J. Xiong, "NUMA-Aware Thread Migration for High Performance NVMM File Systems," in Proceedings of the 36th International Conference on Massive Storage Systems and Technology, MSST '20, 2020.

1 If there is *iMC overload* in target node,

Nthread *does not migrate thread* and leaves it for *remote access*

Motivation : Experiment

"To compare the performance *with and without iMC overload*"

※ Normal : Case where the iMC is *not overloaded*.

If **iMC** is overloaded, both the throughput of remote access and local access drops.

② As a result, if *iMC is overloaded* in optane server, it has *a fatal effect* on performance.

If **iMC is overloaded**, both the throughput of remote access and local access **drops**. As **the ratio of remote access** increases, the overall throughput **severely** decreases.

 If there is *iMC overload* in target node, Nthread *does not migrate thread* and leaves it for *remote access*

② As a result, if *iMC is overloaded* in optane server, it has *a fatal effect* on performance.

11

Motivation : Data Migration Solve The Problems

Motivation : Data Migration Solve The Problems

Motivation : Data Migration Solve The Problems

BUT! Data Migration Overhead Exists!

Design of Dragonfly : Overview

- Dragonfly is a *Data Migration Module* in NVM filesystem
- Implemented on NOVA, which is NVM filesystem
- Uses Request Queue as a core data structure
- Migrates Data through MTP, Migration Triggering Policy

J. Xu and S. Swanson, "NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories," in Proceedings of the USENIX Conference on File and Storage Technologies, FAST '16, 2016.

Design of Dragonfly : Request Queue

22

Evaluation

Testbed	CPU	Intel(R) Xeon(R) Platinum 8280M v2 2.70GHz CPU Nodes (#): 2, Cores per Node (#): 28				
	Memory	DRAMs per Node (#): 6, DDR4, 64 GB * 12 (=768GB)				
	PM	Intel Optane DC Persistent Memory				
		PMs per Node (#): 6, 128 GB * 12 (=1.5TB)				
	OS	Linux kernel 5.1.0				

Configurations (Synthetic Workloads generated via Filebench Benchmark)

	Heavy Case			Light Case			Read:
Application	Size	File	Thr	Size	File	Thr	Write
	(KB)	(#)	(#)	(KB)	(#)	(#)	Ratio
Webserver	160	10K	14	16	10K	7	10:1
Webproxy	160	100K	14	64	10K	7	5:1
Videoserver	2GB	50	28	1GB	50	14	RO
Fileserver	128	10k	14	128	1K	7	1:2

Evaluation : Webserver (Heavy) app.

The **best efficiency** was shown at *6* seconds for **Webserver (Heavy)**. The longer the runtime, the greater the **benefit from local access**.

Evaluation

Dragonfly works well1) For read-intensive workload2) When there is iMC overload in target node

Conclusion

We proposed Dragonfly, data migration module in NOVA filesystem

- 1. Introduce "MTP', a model-based migration policy to maximize the benefit of data migration
- 2. Dragonfly maximize the *local access* and *distribute the load* of iMC.
- 3. As a result, Dragonfly showed an average 3.26× and a maximum of 7.1× higher performance of

the *read-intensive workload* than NThread in the situation where the *iMC was overloaded*.

Data migration with a well-defined policy is effective in NVM filesystem.

Thank you

Q & A

Jungwook Han

Sogang University Seoul, Republic of Korea <immerhjw@gmail.com>