
Is Data Migration Evil in the NVM File System?

Jungwook Han, Hongsu Byun, Hyungjoon Kwon, Sungyong Park and Youngjae Kim
Department of Computer Science and Engineering, Sogang University

Seoul, South Korea

{immerhjw, byhs, hishine6, parksy, youkim}@sogang.ac.kr

Abstract—The NVM file system often exhibits unstable I/O
performance in a NUMA server environment due to frequent
remote memory accesses when threads and data are exclusively
placed on different NUMA nodes. Further, multiple threads may
use all of the available bandwidth of the Integrated Memory
Controller (iMC), causing an iMC bottleneck. NThread partly
addresses the problems above by maximizing local memory
accesses via migrating threads to data resident CPU node.
However, NThread cannot benefit in cases when iMC is over-
loaded. Therefore, we propose Dragonfly, an approach that
migrates data to the memory module of the CPU node where
the thread is located when iMC is overloaded. The proposed
approach inherently balances the load among iMCs, thus offering
a fair load-balancing among iMCs. Specifically, Dragonfly
implements a Migration Trigger Policy (MTP) to migrate data
between CPU nodes on an opportunistic basis, minimizing the
performance overhead caused by unnecessary data migration.
We implement and evaluate NThread and Dragonfly in the
NOVA file system deployed on an Intel Optane DC PM server
for different application scenarios via Filebench workloads. The
evaluation confirms that Dragonfly outperforms on an average
3.26× higher throughput than NThread.

I. INTRODUCTION

The Intel Optane DC Persistent Memory (DCPM) server is

a Non-Uniform Memory Access (NUMA) system with two

CPU sockets and multiple non-volatile Optane DC Memory

modules [1, 2]. Figure 1 illustrates the architecture of a

NUMA-based Intel Optane DC PM server. The Optane DC

Memory module is connected directly to the memory bus

line and shares an integrated Memory Controller (iMC) with

the DRAM. In the NUMA system, memory access can be

classified into local memory access and remote memory access

depending on the location of the threads and data [3, 4, 5].

According to the performance measurement of the DCPM

server, remote access latency is about twice as large as local

access latency due to the QPI link latency between CPU

nodes [1, 6, 7, 8].

Several Non-Volatile Memory (NVM) file systems such as

NOVA [9], Aerie [10], and SplitFS [11], Assise [12], and

Strata [13] have been studied in the past few years. NOVA [9]

is a state-of-the-art scalable log-structured NVM file system

for manycore servers that ensures the consistency of data and

metadata in the event of failures. NOVA implements per-inode

logging for metadata and uses per-core data structures such

as inode table, journaling space, and memory allocator and

improves performance by supporting concurrent I/Os. NOVA

achieves scalability for single file multiple write I/O patterns

Y. Kim is the corresponding author.

Fig. 1. An overview of NUMA-based Intel Optane DC PM server [1].

by adopting range lock instead of mutex lock on inode [14].

Similarly, in NUMA environments, NOVA increased scala-

bility by adopting a NUMA-aware per-core data structure.

However, NOVA suffers from unstable I/O response times

due to local and remote memory accesses in the NUMA

system [15].

To address the aforementioned problems of NVM file sys-

tem such as NOVA in the NUMA system, NThread [16]

proposed to migrate I/O threads to the CPU nodes where

the data is located. NThread uses an algorithm based on

the iMC’s load of the target node to which threads are

migrated and determines whether or not to migrate them. If the

target node’s iMC is overloaded, NThread stops migrating

threads. NThread uses the memory bandwidth history of the

target node and predicts its load on the iMC. Based on this

prediction, NThread precisely migrates the running thread

to the target node only as long as its iMC is not overloaded.

However, under such a target node’s iMC overload situation,

even though the running threads are not migrated to the target

node, they still need to access data remotely through the

overloaded iMC. NThread fails to balance the load on iMCs,

resulting in overloaded iMC of the target node.

In such scenarios, NThread has the following problems:

• First, NThread must continue remote access because if

the target node’s iMC is overloaded, it will not migrate

the thread location to where the data resides. This causes

an increase in access latency as much as QPI link latency

every time a thread accesses data [16].

• Second, the overloaded iMC is shared by threads running

on the local CPU and the remote CPU. Therefore, there

is performance interference between them, increasing their

access latency.

To solve the aforementioned limitations of NThread, we

propose Dragonfly, which opportunistically migrates data

when the iMC of the target node to which a thread is migrated

26

2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)

978-1-6654-4393-7/21/$31.00 ©2021 IEEE
DOI 10.1109/ACSOS-C52956.2021.00024

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
on

om
ic

 C
om

pu
tin

g
an

d
Se

lf-
O

rg
an

izi
ng

 S
ys

te
m

s C
om

pa
ni

on
 (A

CS
O

S-
C)

 |
 9

78
-1

-6
65

4-
43

93
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AC
SO

S-
C5

29
56

.2
02

1.
00

02
4

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

is overloaded. Also, to minimize performance degradation and

excessive write amplification problems due to indiscriminate

data migration, Dragonfly employs a model-based Migra-

tion Trigger Policy (MTP). For evaluations, we implemented

NThread and Dragonfly with the NOVA file system and

evaluated them on an DCPM server running Linux v5.1.0

using Filebench workloads for various application scenarios.

In our evaluations, NThread showed a 1.5×, 1.2×, and

7.1× increase in I/O throughput on Webserver, Webproxy, and

Videoserver workloads compared to NThread respectively.

II. BACKGROUND AND MOTIVATION

This section describes the Intel Optane DC PM Server

architecture and presents our research motivation.

A. Intel Optane DC PM Server

The Optane DC Memory provides persistence, low access

latency and high bandwidth comparable to DRAM. Figure 1

shows the architecture of the NUMA-based Intel Optane DC

PM server. The server is composed of two CPU nodes,

connected to each other via QPI links. Optane DC Memory

is connected to the memory bus and exchanges data through

iMC, like DRAM. Optane DC Memory has an XP-Controller

in which there is a 16KB XP-buffer to improve read and write

performance.

In the NUMA system, the remote access latency is greater

than the local access latency because the QPI bandwidth

between NUMA Nodes 0 and 1 is lower than the memory

bus bandwidth. Also, iMC and XP-buffer can be overloaded

when many threads access data from different NUMA nodes,

which dramatically reduces the memory access speed of each

thread. Figure 1 describes the remote access path and local

access path. Remote access path shows that the thread running

on Node0 accesses the file located in Node1 through QPI and

the iMC and XPBuffer in Node1.

B. Motivation

As we discussed in Section I, there are two limitations to

NThread in the NUMA system when the iMC is overhead.

To illustrate these problems, we conducted the following

experiments. We ran two Webserver (Light) applications on the

NUMA server described in Table I in Section IV and measured

the I/O throughput of each application. Before the experi-

ments, files used by the application are fixed in the Optane

DC Memory of Node0. We ran one application on Node0 and

another one on Node1 Each application in this experiment is

called Webserver (Node0) and Webserver (Node1). A detailed

description of the Webserver (Light) application is presented

in Table II in Section IV.

Since the files used by the application are fixed in the

Optane DC Memory of Node0, Webserver (Node0) reads files

locally, while Webserver (Node1) reads them remotely. We

measured the throughput of Webserver (Node0) and Webserver

(Node1) in situations where the iMC of Optane DC Memory in

Node0 is not overloaded (Normal) and overloaded (iMC con-

gested). To simulate a situation where the iMC is overloaded,

Fig. 2. Application throughput running on each node with and without
overloaded iMC.

we ran three more dummy Webserver (Light) applications

and fixed their files in the Optane DC Memory of Node0. In

addition, to consider what is causing the overload of the iMC,

we considered the case where three web server applications

are run on Node0 (Case A) and the case where they are run

on Node1 (Case B).

Figure 2 shows the throughput of each application – Web-

server (Node0) and Webserver (Node1) for normal and iMC

congested cases. In the case of Normal, the throughput of

Webserver (Node0) and Webserver (Node1) are 972K IOPS

and 778K IOPS respectively. On the other hand, where the

iMC is overloaded, in case A, the throughput of Webserver

(Node0) and Webserver (Node1) decreased by 24.8% and

3.3%, respectively, compared to Normal. In Case B, the

throughput of Webserver (Node0) and Webserver (Node1)

decreased by 35.3% and 27%, respectively, compared to

Normal. Overall, no matter what overloaded the iMC, both

Webserver (Node0) and Webserver (Node1) suffered signif-

icant performance degradation. When the overload of iMC

occurs in Node0, Webserver (Node0) has severe performance

degradation compared to Webserver (Node1).

In summary, the performance degradation of each applica-

tion caused by iMC overload cannot be avoided by NThread
if the data location is fixed. That is, NThread cannot solve the

iMC overloading problem because it does not change the data

location. In this paper, we propose a data migration technique,

that distributes the overloaded iMC’s load to another node’s

iMC and maximizes the local access of the application by

reducing remote access.

III. DESIGN AND IMPLEMENTATION

This section describes the overview of Dragonfly, the

implementation of Dragonfly in the NOVA file system, and

the model-based migration policy.

A. Overview of Dragonfly

Dragonfly is a software module that performs data mi-

gration between NUMA nodes in NOVA. Dragonfly works

in concert with NThread. If the iMC of the target to which

the thread is to be migrated is overloaded, NThread does

not attempt to migrate the thread. However, Dragonfly
executes data migration, thus converting remote access to local

access. Figure 3 shows the difference between NThread and

Dragonfly. Figure 3(a) is the operation flow of NThread

27

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. State transition diagram of operation flow for NThread and
Dragonfly.

and Figure 3(b) depicts that when the target iMC is not over-

loaded during remote access, the operation flow is the same

as that of NThread, but otherwise follows Dragonfly.

Dragonfly internally maintains a request queue that man-

ages information about the files requested for data migration.

Dragonfly inserts the file information of a thread that has

failed to migrate due to the overload of the target node’s

iMC into the request queue. This request queue is period-

ically emptied. Data migration also runs in the background

to minimize performance interference with foreground I/O.

When executing each data migration, Dragonfly determines

whether to migrate by calculating the migration opportunity

cost according to the MTP. In addition, parameter settings such

as Twindow and Tm used in the MTP algorithm are described

in detail in Section III-C. Ultimately, Dragonfly lowers

the load on the overloaded iMC by migrating data instead

of thread migration. Also, after data migration, threads access

the data locally.

B. NOVA File System with Dragonfly

NOVA is a log-structure-based file system for NVM. NOVA

has its own log for each file (inode) and log pages in 4KB units

are connected and managed in a linked list form. In addition,

NOVA stores meta data (64B) in the log and the actual data

is stored in a data page (4KB). Data pages are linked to the

log entry. In order to quickly access the data page of a file

through a log entry, a radix tree for the file is maintained in

DRAM.

Figure 4 depicts the NOVA file system architecture and

how Dragonfly migrates data from Node0 to Node1 in the

NOVA. Algorithm 1 describes the data migration process in the

NOVA in detail. When migration starts, the migration state of

the current file is allocated through an atomic operation (2, 18),

and a new Inode is created in the dst Node through the super

block (3). Copy the actual data page to dst Node through the

whileloop and create write log entry for the data page and

map write log entry to the corresponding data pages(4 12).

The write log entries and radix tree of the migrated file are

reconstructed based on the migrated data pages (13, 14). In

the process of mapping filp (file pointer) to the newly created

Inode (16), a lock is acquired with a spinlock to prevent any

thread from accessing the file (15, 17). By resetting the valid

Fig. 4. Overview of NOVA file system and file migration from Node 0 to 1.

bit of the old file in the src Node, the pages are returned and

can be reused when a new file is allocated later (19). After

changing filp, the application will be possible to access the

new file created in the dst Node locally.

Moreover, in order to enable file access even during data

migration, a shared lock (rw semaphore) is used for the file

structure. Files are migrated through the MTP, a policy that

determines how many files and what files to migrate. A

detailed description of the MTP is given in Section III-C.

C. Migration Trigger Policy

Performance gain can be expected by changing remote

access to local access through data migration. However, if

migration is performed without an appropriate policy, per-

formance degradation and write amplification problems may

occur [7, 8]. MTP was designed to maximize the performance

gains from migration by solving the aforementioned problems.

MTP checks the request queue at each time window and

decides to migrate each file based on the model. Dragonfly
can be triggered by system call with MTP at the user level,

or can be performed by itself with MTP at the kernel level.

Algorithm 1 Migration Algorithm

1: procedure MIGRATE(filp, src, dst) � migrate file
2: atomic set(Inode state, MIG)
3: build new Inode in dst Node
4: while numblock > 0 do � migrate data pages
5: read write entry log in src Node
6: read according data pages in src Node
7: allocate new free list in dst Node
8: copied = memcpy mcsafe(dst, src, pagesize)
9: initialize write log entry for new data pages

10: append write log entry
11: numblock -= copied
12: end while
13: update Inode tail
14: rebuild radix tree � for new write log entry
15: spin lock(f lock) � critical section
16: Set filp to new Inode
17: spin unlock(f lock)
18: atomic set(Inode state, DONE)
19: Invalidate old Inode
20: return filesize
21: end procedure

28

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Throughput by interval before, during, and after migration of data
over time.

Currently, Dragonfly is implemented only in the former,

and the latter will be implemented in future work.

Problem Formulation: MTP is a mathematical model-

based data migration decision maker. Figure 5 describes the

I/O throughput for each time section before, during, and after

migrating data over time in one time window Twindow.

To describe the mathematical model, the following notations

are defined. Let Tr be the time section where only remote

access occurs in time window Twindow, Tm be the section

where local access gradually increases during migration, and

Tl be the section where local access occurs for all files after

migration ends. That is, Twindow is the sum of Tr, Tm, and

Tl as follows:

Twindow = Tr + Tm + Tl (1)

Local access throughput and remote access throughput are

denoted as THl and THr, respectively, and the migration

overhead value is denoted as Om. Here, Om is the total amount

of I/O data loss due to migration overhead during Twindow, and

the unit is byte. In Figure 5, THl and THr denote throughputs

for each time section respectively.

In the case of migration, the throughput for a specific time

t (0 < t < Tm) during Tm is equal to Equation (2).

1

Tm
{(Tm − t)× THr + t× THl} (2)

According to Equation (2), as time t passes, the remote

access ratio decreases and the local access ratio increases. So

total throughput at a specific time t increases.

From Equation (2), the total amount of data served during

Tm is Equation (3) and the total amount of data served during

Twindow is Equation (4).

∫ Tm

0

{THr +
THl − THr

Tm
× t}dt−Om (3)

THr×Tr+

∫ Tm

0

{THr+
THl − THr

Tm
×t}dt−Om+THl×Tl

(4)

On the other hand, if data migration is not applied, all

files in the request queue are remotely accessed, and the total

amount of work for Twindow is equal to Equation (5).

THr × Twindow (5)

MTP compares Equation (4) and Equation (5) in each

Twindow. As seen in Equation (6), migration is triggered only

when Equation (4) is greater than Equation (5). From Equation

(6), the following Equation (7) is derived.

∫ Tm

0

{THr +
THl − THr

Tm
× t}dt−Om + THl × Tl

> THr × (Tm + Tl)

(6)

Tl > K − Tm

2
, (K =

Om

THl − THr
) (7)

In addition, Tr in Equation (7) does not act as a variable.

Also, the remote access time Tr is almost zero because there is

no significant overhead in the process of calculating the actual

policy.

Twindow ≈ Tm + Tl, (∵ (1), Tr ≈ 0) (8)

As a result, the following Equation (9) is derived.

Tm < 2× (Twindow −K) (9)

From Equation (9), we have the following analysis:

• First, when the application is running, K is set for the system

dependent constants, THl, THr, and Om. From Equation

(9), Twindow should be larger than K.

• Second, according to Equation (9) Tm must be smaller than

2×(Twindow−K) to get throughput gain by data migration.

In other words, if Tm is smaller than the threshold in

Twindow, it means that Tl is relatively greater by the

expression (8). Increasing Tl leads to throughput gain by

local access.

IV. EVALUATION

This section describes the experimental setup and analyzes

the evaluation results of Dragonfly for various realistic

workloads.

A. Experimental Setup

Testbed Setup: We implemented Dragonfly in NOVA

and evaluated on a real Intel Optane DC PM server running

Linux kernel v5.1.0. The Intel Optane DC PM server has two

28 core NUMA Nodes, and each NUMA Node has 6 Optane

DC modules. The sever specifications are shown in Table I.

Workloads and Application Scenarios: We performed

the experiments using four workload applications (Web-

server, Webproxy, Videoserver, and Fileserver) generated via

Filebench [17]. Each application workload details are listed

in Table II. Further, to clearly demonstrate the iMC overload

29

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Performance analysis of Dragonfly. Runtime of (a)-(c) is 60 seconds.

TABLE I
SPECIFICATIONS OF INTEL OPTANE DC PM SERVER.

CPU Intel(R) Xeon(R) Platinum 8280M v2 2.70GHz
CPU Nodes (#): 2, Cores per Node (#): 28

Memory DRAMs per Node (#): 6, DDR4, 64 GB * 12 (=768GB)
PM Intel Optane DC Persistent Memory

PMs per Node (#): 6, 128 GB * 12 (=1.5TB)
OS Linux kernel 5.1.0

TABLE II
FILEBENCH WORKLOAD CHARACTERISTICS. RO DENOTES READ ONLY.

Heavy Case Light Case Read:
Application Size File Thr Size File Thr Write

(KB) (#) (#) (KB) (#) (#) Ratio
Webserver 160 10K 14 16 10K 7 10:1
Webproxy 160 100K 14 64 10K 7 5:1

Videoserver 2GB 50 28 1GB 50 14 RO
Fileserver 128 10k 14 128 1K 7 1:2

cases, we present two cases for each application workloads,

i.e., Heavy and light.

Also, in NThread, both iMC load and CPU utilization of

the target node were considered during thread migration, but

in current scope of work, only iMC overload scenario was

considered. Because, when I/O size is greater than 4KB, iMC

overload has a higher impact on system throughput than CPU

utilization. In our experiment, 16KB was set as the minimum

I/O size. At 16KB, iMC overload was dominant rather than

CPU utilization.

To simulate the situation of multiple applications running

on a single server, we executed all four applications on the

server for each application scenario of Webserver, Webproxy,

and Fileserver workloads. For the Videoserver application

scenario, only two applications run on the server. In this

experiment, Note that, for this experiment, the location of the

file significantly impacts the application performance.

Initial Data Placement: Files were initially fixed in the

Optane DC Memory of Node0 before application execution.

The reason for pre-allocating the initial data to one node

is to simulate the effect of data migration. When multiple

applications are executed, they are executed in either Node0

or Node1 to perform both local or remote memory access.

We compare the Dragonfly with the following variants:

• Baseline: Vanilla NOVA

• NThread: NOVA performing thread migration

• NThread + Dragonfly: NOVA performing data migra-

tion in addition to thread migration

In Dragonfly, data migration between NUMA nodes is

performed on a per-application basis. When applying MTP, the

user-level application monitors the migration triggering values

inside the kernel periodically and triggers data migration via

a system call.

B. Results

We experimented with two cases (Heavy, Light) for each

application scenario. In each experiment, Twindow in MTP is

set to 6 seconds. We discuss how to set an optimal Twindow

in MTP in detail later. Figure 6(a) is a case where the iMC of

Node0 is overloaded. When the iMC is overloaded, NThread
no longer proceeds with thread migration. Thus, there is no

difference in throughput between baseline and NThread.

However, Dragonfly migrates files that are being remotely

accessed and distributes the iMC’s load of Node0 to Node1,

allowing all threads to perform local read I/O. As a result,

Dragonfly shows a performance improvement of 1.5× in a

Webserver application scenario, 1.2× in Webproxy, and 7.1×
in Videoserver compared to NThread. On the other hand, in

the case of the Fileserver application scenario where the write

ratio is relatively high, local writes and reads are performed

dependent on the location of the thread. So, all of baseline,

NThread, and Dragonfly show similar results.

Figure 6(b) is a situation where there is no iMC overload in

the iMC of Node0. Therefore, Dragonfly does not migrate

data so its performance is similar to NThread. Overall, the

throughput of NThread and Dragonfly increases 28.9%

compared to baseline.

The effectiveness of MTP is determined by the value of

Twindow. The optimal value for Twindow varies depending on

the application. We describe below how to find the optimal

Twindow value for a Webserver (Heavy) application. First we

find the value of K in Equation 7. This value is obtained

by THl, THr, and Om. THl is the application throughput

when all files of this application are accessed locally. On the

other hand, THl is the application throughput when remotely

accessing all files of this application. In our experiment,

these values were measured to be 20.7 GB/s and 13.5 GB/s,

respectively. Next, we find the time (Tm) it takes to migrate

all the files of this application from remote memory to local

memory. In our experiment, this value was measured to be

3.5 seconds. Then we get the calculated values of THl ×
Tm and THr × Tm respectively. And the difference between

30

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

these two calculated values is Om. In our experiment, Om

was calculated as 30.6 GB. So we can compute the value of

K using THl, THr, and Om. In our experiment, the value of

K is 4.25. Finally, we can confirm that there is a performance

gain by setting the value of Twindow to 6 seconds based on

Equation 9.

Figure 6(c) shows the measurement result of the application

throughput by changing the value of Twindow for the Web-

server (Heavy) application. From the figure, we see that the

highest throughput is when the Twindow is 6 seconds. We

also observe that if the Twindow is larger than 6 seconds,

the performance decreases due to the lower migration trigger

frequency. This means that files are accumulated in the request

queue, but not triggered. On the other hand, if Twindow is

smaller than 6 seconds, the performance decreases because the

amount of time to benefit from local access after migration is

reduced. In the red region, the migration overhead is greater

than the benefit from local access gain through migration, so

the throughput is even lower than the dotted red line, indicating

the only remote access throughput without migration.

Finally, we used Webserver (Heavy) application and mea-

sured the application throughput by increasing its overall

execution time to see the performance change according to

the execution time of each application time. Figure 6(d)

shows the performance of Dragonfly and NThread. We

observed that NThread has no performance difference as

runtime changes. Whereas, Dragonfly throughput increases

as runtime increases. The reason is that the longer the runtime,

the longer the time to benefit from local access.

V. CONCLUSION

In this paper, we found that NThread does not migrate

threads if the integrated memory controller (iMC) of the

CPU node to which the threads are migrated is overloaded,

but rather, there is a performance benefit to migrating data

to the location of the threads. To this end, we propose

Dragonfly, a data migration technique for the NVM file

system. Dragonfly goes beyond the limits of thread mi-

gration and maximizes local access through data migration.

This data migration entails the effect of distributing the load

of the overloaded iMC among the iMCs. Also, Dragonfly
precisely decides whether to migrate data using a model-based

data migration trigger policy (MTP) and minimizes perfor-

mance overhead caused by reckless data migration in the file

system. We implemented both NThread and Dragonfly in

NOVA and evaluated them in an Intel Optane DC PM server

running Linux kernel v5.1.0. As a representative experimental

result, Dragonfly showed a 7.1× higher throughput than

NThread in the Filebench’s Videoserver application scenario.

VI. ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments

that have improved the paper. This work was supported by

the Institute of Information & Communications Technology

Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (No. 2014-3-00035, Research on High

Performance and Scalable Manycore Operating System).

REFERENCES

[1] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory,” in Proceedings of the USENIX Conference on File and Storage
Technologies, FAST ’20, 2020.

[2] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. Oh, and Y. Kim, “Per-
sistent memory object storage and indexing for scientific computing,”
in 2020 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC), pp. 1–9, 2020.

[3] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory Place-
ment on NUMA Systems: Asymmetry Matters,” in Proceedings of the
USENIX Annual Technical Conference, ATC ’15, 2015.

[4] J. W. Kim, J.-H. Kim, A. Khan, Y. Kim, and S. Park, “Zonfs: A storage
class memory file system with memory zone partitioning on linux,” in
Foundations and Applications of Self* Systems (FAS* W), 2017 IEEE
2nd International Workshops on, pp. 277–282, IEEE, 2017.

[5] T. Kim, A. Khan, Y. Kim, P. Kasu, S. Atchley, and B. B. Fraguela,
“Numa-aware thread scheduling for big data transfers over terabits
network infrastructure,” Sci. Program., vol. 2018, Jan. 2018.

[6] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and C. R. Das, “D-
Factor: A Quantitative Model of Application Slow-down in Multi-
Resource Shared Systems,” in Proceedings of the ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, 2012.

[7] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang, “HiNUMA:
NUMA-Aware Data Placement and Migration in Hybrid Memory Sys-
tems,” in Proceedings of the IEEE 37th International Conference on
Computer Design, ICCD ’19, pp. 367–375, 2019.

[8] S. Yu, S. Park, and W. Baek, “Design and Implementation of Bandwidth-
Aware Memory Placement and Migration Policies for Heterogeneous
Memory Systems,” in Proceedings of the International Conference on
Supercomputing, ICS ’17, 2017.

[9] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories,” in Proceedings of the USENIX
Conference on File and Storage Technologies, FAST ’16, 2016.

[10] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible File-system Interfaces to Storage-class
Memory,” in Proceedings of the 9th European Conference on Computer
Systems (EuroSys), pp. 14:1–14:14, 2014.

[11] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “SplitFS: Reducing Software Overhead in File Systems for
Persistent Memory,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, pp. 494–508, 2019.

[12] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon, S. Peter,
W. Reda, H. N. Schuh, and E. Witchel, “Assise: Performance and
Availability via Client-local NVM in a Distributed File System,” in
Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’20, pp. 1011–1027, Nov. 2020.

[13] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A Cross Media File System,” in Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, p. 460–477,
2017.

[14] J.-H. Kim, J. Kim, S. Park, and Y. Kim, “pNOVA: Optimizing Shared
File I/O Operations of NVM File System on Manycore Servers,”
in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’19, 2019.

[15] J.-H. Kim, Y. Kim, S. Jamil, C.-G. Lee, and S. Park, “Parallelizing
Shared File I/O Operations of NVM File System for Manycore Servers,”
IEEE Access, vol. 9, pp. 24570–24585, 2021.

[16] J. Wang, D. Jiang, and J. Xiong, “NUMA-Aware Thread Migration for
High Performance NVMM File Systems,” in Proceedings of the 36th
International Conference on Massive Storage Systems and Technology,
MSST ’20, 2020.

[17] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework
for file system benchmarking,” ;login: The USENIX Magazine, vol. 41,
pp. 6–12, March 2016.

31

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:57:08 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T18:20:42-0400
	Preflight Ticket Signature

