
Is Data Migration Evil in the NVM File System?
Jungwook Han, Hongsu Byun, Hyungjoon Kwon, Sungyong Park and Youngjae Kim

Department of Computer Science and Engineering, Sogang University
Seoul, South Korea

{immerhjw, byhs, hishine6, parksy, youkim}@sogang.ac.kr

Abstract—The NVM file system often exhibits unstable I/O
performance in a NUMA server environment due to frequent
remote memory accesses when threads and data are exclusively
placed on different NUMA nodes. Further, multiple threads may
use all of the available bandwidth of the Integrated Memory
Controller (iMC), causing an iMC bottleneck. NThread partly
addresses the problems above by maximizing local memory
accesses via migrating threads to data resident CPU node.
However, NThread cannot benefit in cases when iMC is over-
loaded. Therefore, we propose Dragonfly, an approach that
migrates data to the memory module of the CPU node where
the thread is located when iMC is overloaded. The proposed
approach inherently balances the load among iMCs, thus offering
a fair load-balancing among iMCs. Specifically, Dragonfly
implements a Migration Trigger Policy (MTP) to migrate data
between CPU nodes on an opportunistic basis, minimizing the
performance overhead caused by unnecessary data migration.
We implement and evaluate NThread and Dragonfly in the
NOVA file system deployed on an Intel Optane DC PM server
for different application scenarios via Filebench workloads. The
evaluation confirms that Dragonfly outperforms on an average
3.26× higher throughput than NThread.

I. INTRODUCTION

The Intel Optane DC Persistent Memory (DCPM) server is
a Non-Uniform Memory Access (NUMA) system with two
CPU sockets and multiple non-volatile Optane DC Memory
modules [1, 2]. Figure 1 illustrates the architecture of a
NUMA-based Intel Optane DC PM server. The Optane DC
Memory module is connected directly to the memory bus
line and shares an integrated Memory Controller (iMC) with
the DRAM. In the NUMA system, memory access can be
classified into local memory access and remote memory access
depending on the location of the threads and data [3, 4, 5].
According to the performance measurement of the DCPM
server, remote access latency is about twice as large as local
access latency due to the QPI link latency between CPU
nodes [1, 6, 7, 8].

Several Non-Volatile Memory (NVM) file systems such as
NOVA [9], Aerie [10], and SplitFS [11], Assise [12], and
Strata [13] have been studied in the past few years. NOVA [9]
is a state-of-the-art scalable log-structured NVM file system
for manycore servers that ensures the consistency of data and
metadata in the event of failures. NOVA implements per-inode
logging for metadata and uses per-core data structures such
as inode table, journaling space, and memory allocator and
improves performance by supporting concurrent I/Os. NOVA
achieves scalability for single file multiple write I/O patterns

Y. Kim is the corresponding author.

Fig. 1. An overview of NUMA-based Intel Optane DC PM server [1].

by adopting range lock instead of mutex lock on inode [14].
Similarly, in NUMA environments, NOVA increased scala-
bility by adopting a NUMA-aware per-core data structure.
However, NOVA suffers from unstable I/O response times
due to local and remote memory accesses in the NUMA
system [15].

To address the aforementioned problems of NVM file sys-
tem such as NOVA in the NUMA system, NThread [16]
proposed to migrate I/O threads to the CPU nodes where
the data is located. NThread uses an algorithm based on
the iMC’s load of the target node to which threads are
migrated and determines whether or not to migrate them. If the
target node’s iMC is overloaded, NThread stops migrating
threads. NThread uses the memory bandwidth history of the
target node and predicts its load on the iMC. Based on this
prediction, NThread precisely migrates the running thread
to the target node only as long as its iMC is not overloaded.
However, under such a target node’s iMC overload situation,
even though the running threads are not migrated to the target
node, they still need to access data remotely through the
overloaded iMC. NThread fails to balance the load on iMCs,
resulting in overloaded iMC of the target node.

In such scenarios, NThread has the following problems:

• First, NThread must continue remote access because if
the target node’s iMC is overloaded, it will not migrate
the thread location to where the data resides. This causes
an increase in access latency as much as QPI link latency
every time a thread accesses data [16].
• Second, the overloaded iMC is shared by threads running

on the local CPU and the remote CPU. Therefore, there
is performance interference between them, increasing their
access latency.

To solve the aforementioned limitations of NThread, we
propose Dragonfly, which opportunistically migrates data
when the iMC of the target node to which a thread is migrated



is overloaded. Also, to minimize performance degradation and
excessive write amplification problems due to indiscriminate
data migration, Dragonfly employs a model-based Migra-
tion Trigger Policy (MTP). For evaluations, we implemented
NThread and Dragonfly with the NOVA file system and
evaluated them on an DCPM server running Linux v5.1.0
using Filebench workloads for various application scenarios.
In our evaluations, NThread showed a 1.5×, 1.2×, and
7.1× increase in I/O throughput on Webserver, Webproxy, and
Videoserver workloads compared to NThread respectively.

II. BACKGROUND AND MOTIVATION

This section describes the Intel Optane DC PM Server
architecture and presents our research motivation.

A. Intel Optane DC PM Server

The Optane DC Memory provides persistence, low access
latency and high bandwidth comparable to DRAM. Figure 1
shows the architecture of the NUMA-based Intel Optane DC
PM server. The server is composed of two CPU nodes,
connected to each other via QPI links. Optane DC Memory
is connected to the memory bus and exchanges data through
iMC, like DRAM. Optane DC Memory has an XP-Controller
in which there is a 16KB XP-buffer to improve read and write
performance.

In the NUMA system, the remote access latency is greater
than the local access latency because the QPI bandwidth
between NUMA Nodes 0 and 1 is lower than the memory
bus bandwidth. Also, iMC and XP-buffer can be overloaded
when many threads access data from different NUMA nodes,
which dramatically reduces the memory access speed of each
thread. Figure 1 describes the remote access path and local
access path. Remote access path shows that the thread running
on Node0 accesses the file located in Node1 through QPI and
the iMC and XPBuffer in Node1.

B. Motivation

As we discussed in Section I, there are two limitations to
NThread in the NUMA system when the iMC is overhead.
To illustrate these problems, we conducted the following
experiments. We ran two Webserver (Light) applications on the
NUMA server described in Table I in Section IV and measured
the I/O throughput of each application. Before the experi-
ments, files used by the application are fixed in the Optane
DC Memory of Node0. We ran one application on Node0 and
another one on Node1 Each application in this experiment is
called Webserver (Node0) and Webserver (Node1). A detailed
description of the Webserver (Light) application is presented
in Table II in Section IV.

Since the files used by the application are fixed in the
Optane DC Memory of Node0, Webserver (Node0) reads files
locally, while Webserver (Node1) reads them remotely. We
measured the throughput of Webserver (Node0) and Webserver
(Node1) in situations where the iMC of Optane DC Memory in
Node0 is not overloaded (Normal) and overloaded (iMC con-
gested). To simulate a situation where the iMC is overloaded,

iMC	congested

	
	Webserver	(Node1)

Webserver	(Node0)

Normal
0

2

4

6

8

10

Case	A Case	B

IO
PS

	(	
x1
05
)

Fig. 2. Application throughput running on each node with and without
overloaded iMC.

we ran three more dummy Webserver (Light) applications
and fixed their files in the Optane DC Memory of Node0. In
addition, to consider what is causing the overload of the iMC,
we considered the case where three web server applications
are run on Node0 (Case A) and the case where they are run
on Node1 (Case B).

Figure 2 shows the throughput of each application – Web-
server (Node0) and Webserver (Node1) for normal and iMC
congested cases. In the case of Normal, the throughput of
Webserver (Node0) and Webserver (Node1) are 972K IOPS
and 778K IOPS respectively. On the other hand, where the
iMC is overloaded, in case A, the throughput of Webserver
(Node0) and Webserver (Node1) decreased by 24.8% and
3.3%, respectively, compared to Normal. In Case B, the
throughput of Webserver (Node0) and Webserver (Node1)
decreased by 35.3% and 27%, respectively, compared to
Normal. Overall, no matter what overloaded the iMC, both
Webserver (Node0) and Webserver (Node1) suffered signif-
icant performance degradation. When the overload of iMC
occurs in Node0, Webserver (Node0) has severe performance
degradation compared to Webserver (Node1).

In summary, the performance degradation of each applica-
tion caused by iMC overload cannot be avoided by NThread
if the data location is fixed. That is, NThread cannot solve the
iMC overloading problem because it does not change the data
location. In this paper, we propose a data migration technique,
that distributes the overloaded iMC’s load to another node’s
iMC and maximizes the local access of the application by
reducing remote access.

III. DESIGN AND IMPLEMENTATION

This section describes the overview of Dragonfly, the
implementation of Dragonfly in the NOVA file system, and
the model-based migration policy.

A. Overview of Dragonfly

Dragonfly is a software module that performs data mi-
gration between NUMA nodes in NOVA. Dragonfly works
in concert with NThread. If the iMC of the target to which
the thread is to be migrated is overloaded, NThread does
not attempt to migrate the thread. However, Dragonfly
executes data migration, thus converting remote access to local
access. Figure 3 shows the difference between NThread and
Dragonfly. Figure 3(a) is the operation flow of NThread



Fig. 3. State transition diagram of operation flow for NThread and
Dragonfly.

and Figure 3(b) depicts that when the target iMC is not over-
loaded during remote access, the operation flow is the same
as that of NThread, but otherwise follows Dragonfly.
Dragonfly internally maintains a request queue that man-

ages information about the files requested for data migration.
Dragonfly inserts the file information of a thread that has
failed to migrate due to the overload of the target node’s
iMC into the request queue. This request queue is period-
ically emptied. Data migration also runs in the background
to minimize performance interference with foreground I/O.
When executing each data migration, Dragonfly determines
whether to migrate by calculating the migration opportunity
cost according to the MTP. In addition, parameter settings such
as Twindow and Tm used in the MTP algorithm are described
in detail in Section III-C. Ultimately, Dragonfly lowers
the load on the overloaded iMC by migrating data instead
of thread migration. Also, after data migration, threads access
the data locally.

B. NOVA File System with Dragonfly

NOVA is a log-structure-based file system for NVM. NOVA
has its own log for each file (inode) and log pages in 4KB units
are connected and managed in a linked list form. In addition,
NOVA stores meta data (64B) in the log and the actual data
is stored in a data page (4KB). Data pages are linked to the
log entry. In order to quickly access the data page of a file
through a log entry, a radix tree for the file is maintained in
DRAM.

Figure 4 depicts the NOVA file system architecture and
how Dragonfly migrates data from Node0 to Node1 in the
NOVA. Algorithm 1 describes the data migration process in the
NOVA in detail. When migration starts, the migration state of
the current file is allocated through an atomic operation (2, 18),
and a new Inode is created in the dst Node through the super
block (3). Copy the actual data page to dst Node through the
whileloop and create write log entry for the data page and
map write log entry to the corresponding data pages(4 12).
The write log entries and radix tree of the migrated file are
reconstructed based on the migrated data pages (13, 14). In
the process of mapping filp (file pointer) to the newly created
Inode (16), a lock is acquired with a spinlock to prevent any
thread from accessing the file (15, 17). By resetting the valid

Fig. 4. Overview of NOVA file system and file migration from Node 0 to 1.

bit of the old file in the src Node, the pages are returned and
can be reused when a new file is allocated later (19). After
changing filp, the application will be possible to access the
new file created in the dst Node locally.

Moreover, in order to enable file access even during data
migration, a shared lock (rw semaphore) is used for the file
structure. Files are migrated through the MTP, a policy that
determines how many files and what files to migrate. A
detailed description of the MTP is given in Section III-C.

C. Migration Trigger Policy

Performance gain can be expected by changing remote
access to local access through data migration. However, if
migration is performed without an appropriate policy, per-
formance degradation and write amplification problems may
occur [7, 8]. MTP was designed to maximize the performance
gains from migration by solving the aforementioned problems.
MTP checks the request queue at each time window and
decides to migrate each file based on the model. Dragonfly
can be triggered by system call with MTP at the user level,
or can be performed by itself with MTP at the kernel level.

Algorithm 1 Migration Algorithm
1: procedure MIGRATE(filp, src, dst) . migrate file
2: atomic set(Inode state, MIG)
3: build new Inode in dst Node
4: while numblock > 0 do . migrate data pages
5: read write entry log in src Node
6: read according data pages in src Node
7: allocate new free list in dst Node
8: copied = memcpy mcsafe(dst, src, pagesize)
9: initialize write log entry for new data pages

10: append write log entry
11: numblock -= copied
12: end while
13: update Inode tail
14: rebuild radix tree . for new write log entry
15: spin lock(f lock) . critical section
16: Set filp to new Inode
17: spin unlock(f lock)
18: atomic set(Inode state, DONE)
19: Invalidate old Inode
20: return filesize
21: end procedure



Twindow
Tr Tm Tl

0 Tmig	start Tmig	end Twindow

THr

THl

Remote	Access Local	Access
Th
ro
ug
hp
ut
	(I
O
PS

)

Time

Fig. 5. Throughput by interval before, during, and after migration of data
over time.

Currently, Dragonfly is implemented only in the former,
and the latter will be implemented in future work.

Problem Formulation: MTP is a mathematical model-
based data migration decision maker. Figure 5 describes the
I/O throughput for each time section before, during, and after
migrating data over time in one time window Twindow.

To describe the mathematical model, the following notations
are defined. Let Tr be the time section where only remote
access occurs in time window Twindow, Tm be the section
where local access gradually increases during migration, and
Tl be the section where local access occurs for all files after
migration ends. That is, Twindow is the sum of Tr, Tm, and
Tl as follows:

Twindow = Tr + Tm + Tl (1)

Local access throughput and remote access throughput are
denoted as THl and THr, respectively, and the migration
overhead value is denoted as Om. Here, Om is the total amount
of I/O data loss due to migration overhead during Twindow, and
the unit is byte. In Figure 5, THl and THr denote throughputs
for each time section respectively.

In the case of migration, the throughput for a specific time
t (0 < t < Tm) during Tm is equal to Equation (2).

1

Tm
{(Tm − t)× THr + t× THl} (2)

According to Equation (2), as time t passes, the remote
access ratio decreases and the local access ratio increases. So
total throughput at a specific time t increases.

From Equation (2), the total amount of data served during
Tm is Equation (3) and the total amount of data served during
Twindow is Equation (4).∫ Tm

0

{THr +
THl − THr

Tm
× t}dt−Om (3)

THr×Tr+

∫ Tm

0

{THr+
THl − THr

Tm
×t}dt−Om+THl×Tl

(4)

On the other hand, if data migration is not applied, all
files in the request queue are remotely accessed, and the total
amount of work for Twindow is equal to Equation (5).

THr × Twindow (5)

MTP compares Equation (4) and Equation (5) in each
Twindow. As seen in Equation (6), migration is triggered only
when Equation (4) is greater than Equation (5). From Equation
(6), the following Equation (7) is derived.∫ Tm

0

{THr +
THl − THr

Tm
× t}dt−Om + THl × Tl

> THr × (Tm + Tl)

(6)

Tl > K − Tm

2
, (K =

Om

THl − THr
) (7)

In addition, Tr in Equation (7) does not act as a variable.
Also, the remote access time Tr is almost zero because there is
no significant overhead in the process of calculating the actual
policy.

Twindow ≈ Tm + Tl, (∵ (1), Tr ≈ 0) (8)

As a result, the following Equation (9) is derived.

Tm < 2× (Twindow −K) (9)

From Equation (9), we have the following analysis:

• First, when the application is running, K is set for the system
dependent constants, THl, THr, and Om. From Equation
(9), Twindow should be larger than K.
• Second, according to Equation (9) Tm must be smaller than
2×(Twindow−K) to get throughput gain by data migration.
In other words, if Tm is smaller than the threshold in
Twindow, it means that Tl is relatively greater by the
expression (8). Increasing Tl leads to throughput gain by
local access.

IV. EVALUATION

This section describes the experimental setup and analyzes
the evaluation results of Dragonfly for various realistic
workloads.

A. Experimental Setup

Testbed Setup: We implemented Dragonfly in NOVA
and evaluated on a real Intel Optane DC PM server running
Linux kernel v5.1.0. The Intel Optane DC PM server has two
28 core NUMA Nodes, and each NUMA Node has 6 Optane
DC modules. The sever specifications are shown in Table I.

Workloads and Application Scenarios: We performed
the experiments using four workload applications (Web-
server, Webproxy, Videoserver, and Fileserver) generated via
Filebench [17]. Each application workload details are listed
in Table II. Further, to clearly demonstrate the iMC overload



Fig. 6. Performance analysis of Dragonfly. Runtime of (a)-(c) is 60 seconds.

TABLE I
SPECIFICATIONS OF INTEL OPTANE DC PM SERVER.

CPU Intel(R) Xeon(R) Platinum 8280M v2 2.70GHz
CPU Nodes (#): 2, Cores per Node (#): 28

Memory DRAMs per Node (#): 6, DDR4, 64 GB * 12 (=768GB)
PM Intel Optane DC Persistent Memory

PMs per Node (#): 6, 128 GB * 12 (=1.5TB)
OS Linux kernel 5.1.0

TABLE II
FILEBENCH WORKLOAD CHARACTERISTICS. RO DENOTES READ ONLY.

Heavy Case Light Case Read:
Application Size File Thr Size File Thr Write

(KB) (#) (#) (KB) (#) (#) Ratio
Webserver 160 10K 14 16 10K 7 10:1
Webproxy 160 100K 14 64 10K 7 5:1

Videoserver 2GB 50 28 1GB 50 14 RO
Fileserver 128 10k 14 128 1K 7 1:2

cases, we present two cases for each application workloads,
i.e., Heavy and light.

Also, in NThread, both iMC load and CPU utilization of
the target node were considered during thread migration, but
in current scope of work, only iMC overload scenario was
considered. Because, when I/O size is greater than 4KB, iMC
overload has a higher impact on system throughput than CPU
utilization. In our experiment, 16KB was set as the minimum
I/O size. At 16KB, iMC overload was dominant rather than
CPU utilization.

To simulate the situation of multiple applications running
on a single server, we executed all four applications on the
server for each application scenario of Webserver, Webproxy,
and Fileserver workloads. For the Videoserver application
scenario, only two applications run on the server. In this
experiment, Note that, for this experiment, the location of the
file significantly impacts the application performance.

Initial Data Placement: Files were initially fixed in the
Optane DC Memory of Node0 before application execution.
The reason for pre-allocating the initial data to one node
is to simulate the effect of data migration. When multiple
applications are executed, they are executed in either Node0
or Node1 to perform both local or remote memory access.

We compare the Dragonfly with the following variants:

• Baseline: Vanilla NOVA
• NThread: NOVA performing thread migration
• NThread + Dragonfly: NOVA performing data migra-

tion in addition to thread migration

In Dragonfly, data migration between NUMA nodes is
performed on a per-application basis. When applying MTP, the
user-level application monitors the migration triggering values
inside the kernel periodically and triggers data migration via
a system call.

B. Results

We experimented with two cases (Heavy, Light) for each
application scenario. In each experiment, Twindow in MTP is
set to 6 seconds. We discuss how to set an optimal Twindow

in MTP in detail later. Figure 6(a) is a case where the iMC of
Node0 is overloaded. When the iMC is overloaded, NThread
no longer proceeds with thread migration. Thus, there is no
difference in throughput between baseline and NThread.
However, Dragonfly migrates files that are being remotely
accessed and distributes the iMC’s load of Node0 to Node1,
allowing all threads to perform local read I/O. As a result,
Dragonfly shows a performance improvement of 1.5× in a
Webserver application scenario, 1.2× in Webproxy, and 7.1×
in Videoserver compared to NThread. On the other hand, in
the case of the Fileserver application scenario where the write
ratio is relatively high, local writes and reads are performed
dependent on the location of the thread. So, all of baseline,
NThread, and Dragonfly show similar results.

Figure 6(b) is a situation where there is no iMC overload in
the iMC of Node0. Therefore, Dragonfly does not migrate
data so its performance is similar to NThread. Overall, the
throughput of NThread and Dragonfly increases 28.9%
compared to baseline.

The effectiveness of MTP is determined by the value of
Twindow. The optimal value for Twindow varies depending on
the application. We describe below how to find the optimal
Twindow value for a Webserver (Heavy) application. First we
find the value of K in Equation 7. This value is obtained
by THl, THr, and Om. THl is the application throughput
when all files of this application are accessed locally. On the
other hand, THl is the application throughput when remotely
accessing all files of this application. In our experiment,
these values were measured to be 20.7 GB/s and 13.5 GB/s,
respectively. Next, we find the time (Tm) it takes to migrate
all the files of this application from remote memory to local
memory. In our experiment, this value was measured to be
3.5 seconds. Then we get the calculated values of THl ×
Tm and THr × Tm respectively. And the difference between



these two calculated values is Om. In our experiment, Om

was calculated as 30.6 GB. So we can compute the value of
K using THl, THr, and Om. In our experiment, the value of
K is 4.25. Finally, we can confirm that there is a performance
gain by setting the value of Twindow to 6 seconds based on
Equation 9.

Figure 6(c) shows the measurement result of the application
throughput by changing the value of Twindow for the Web-
server (Heavy) application. From the figure, we see that the
highest throughput is when the Twindow is 6 seconds. We
also observe that if the Twindow is larger than 6 seconds,
the performance decreases due to the lower migration trigger
frequency. This means that files are accumulated in the request
queue, but not triggered. On the other hand, if Twindow is
smaller than 6 seconds, the performance decreases because the
amount of time to benefit from local access after migration is
reduced. In the red region, the migration overhead is greater
than the benefit from local access gain through migration, so
the throughput is even lower than the dotted red line, indicating
the only remote access throughput without migration.

Finally, we used Webserver (Heavy) application and mea-
sured the application throughput by increasing its overall
execution time to see the performance change according to
the execution time of each application time. Figure 6(d)
shows the performance of Dragonfly and NThread. We
observed that NThread has no performance difference as
runtime changes. Whereas, Dragonfly throughput increases
as runtime increases. The reason is that the longer the runtime,
the longer the time to benefit from local access.

V. CONCLUSION

In this paper, we found that NThread does not migrate
threads if the integrated memory controller (iMC) of the
CPU node to which the threads are migrated is overloaded,
but rather, there is a performance benefit to migrating data
to the location of the threads. To this end, we propose
Dragonfly, a data migration technique for the NVM file
system. Dragonfly goes beyond the limits of thread mi-
gration and maximizes local access through data migration.
This data migration entails the effect of distributing the load
of the overloaded iMC among the iMCs. Also, Dragonfly
precisely decides whether to migrate data using a model-based
data migration trigger policy (MTP) and minimizes perfor-
mance overhead caused by reckless data migration in the file
system. We implemented both NThread and Dragonfly in
NOVA and evaluated them in an Intel Optane DC PM server
running Linux kernel v5.1.0. As a representative experimental
result, Dragonfly showed a 7.1× higher throughput than
NThread in the Filebench’s Videoserver application scenario.

VI. ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments
that have improved the paper. This work was supported by
the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (No. 2014-3-00035, Research on High
Performance and Scalable Manycore Operating System).

REFERENCES
[1] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,

“An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory,” in Proceedings of the USENIX Conference on File and Storage
Technologies, FAST ’20, 2020.

[2] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. Oh, and Y. Kim, “Per-
sistent memory object storage and indexing for scientific computing,”
in 2020 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC), pp. 1–9, 2020.

[3] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory Place-
ment on NUMA Systems: Asymmetry Matters,” in Proceedings of the
USENIX Annual Technical Conference, ATC ’15, 2015.

[4] J. W. Kim, J.-H. Kim, A. Khan, Y. Kim, and S. Park, “Zonfs: A storage
class memory file system with memory zone partitioning on linux,” in
Foundations and Applications of Self* Systems (FAS* W), 2017 IEEE
2nd International Workshops on, pp. 277–282, IEEE, 2017.

[5] T. Kim, A. Khan, Y. Kim, P. Kasu, S. Atchley, and B. B. Fraguela,
“Numa-aware thread scheduling for big data transfers over terabits
network infrastructure,” Sci. Program., vol. 2018, Jan. 2018.

[6] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and C. R. Das, “D-
Factor: A Quantitative Model of Application Slow-down in Multi-
Resource Shared Systems,” in Proceedings of the ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, 2012.

[7] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang, “HiNUMA:
NUMA-Aware Data Placement and Migration in Hybrid Memory Sys-
tems,” in Proceedings of the IEEE 37th International Conference on
Computer Design, ICCD ’19, pp. 367–375, 2019.

[8] S. Yu, S. Park, and W. Baek, “Design and Implementation of Bandwidth-
Aware Memory Placement and Migration Policies for Heterogeneous
Memory Systems,” in Proceedings of the International Conference on
Supercomputing, ICS ’17, 2017.

[9] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories,” in Proceedings of the USENIX
Conference on File and Storage Technologies, FAST ’16, 2016.

[10] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible File-system Interfaces to Storage-class
Memory,” in Proceedings of the 9th European Conference on Computer
Systems (EuroSys), pp. 14:1–14:14, 2014.

[11] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “SplitFS: Reducing Software Overhead in File Systems for
Persistent Memory,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, pp. 494–508, 2019.

[12] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon, S. Peter,
W. Reda, H. N. Schuh, and E. Witchel, “Assise: Performance and
Availability via Client-local NVM in a Distributed File System,” in
Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’20, pp. 1011–1027, Nov. 2020.

[13] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A Cross Media File System,” in Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, p. 460–477,
2017.

[14] J.-H. Kim, J. Kim, S. Park, and Y. Kim, “pNOVA: Optimizing Shared
File I/O Operations of NVM File System on Manycore Servers,”
in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’19, 2019.

[15] J.-H. Kim, Y. Kim, S. Jamil, C.-G. Lee, and S. Park, “Parallelizing
Shared File I/O Operations of NVM File System for Manycore Servers,”
IEEE Access, vol. 9, pp. 24570–24585, 2021.

[16] J. Wang, D. Jiang, and J. Xiong, “NUMA-Aware Thread Migration for
High Performance NVMM File Systems,” in Proceedings of the 36th
International Conference on Massive Storage Systems and Technology,
MSST ’20, 2020.

[17] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework
for file system benchmarking,” ;login: The USENIX Magazine, vol. 41,
pp. 6–12, March 2016.


