
An Integrated Indexing and Search Service
for Distributed File Systems

Hyogi Sim , Awais Khan , Sudharshan S. Vazhkudai, Seung-Hwan Lim,

Ali R. Butt , and Youngjae Kim

Abstract—Data services such as search, discovery, andmanagement in scalable distributed environments have traditionally been

decoupled from the underlying file systems, and are often deployed using external databases and indexing services. However, modern

data production rates, looming datamovement costs, and the lack of metadata, entail revisiting the decoupled file system-data services

design philosophy. In this article, we present TagIt, a scalable datamanagement service framework aimed at scientific datasets, which

can be integrated into prevalent distributed file system architectures. A key feature of TagIt is a scalable, distributedmetadata indexing

framework, which facilitates a flexible tagging capability to support data discovery. Furthermore, the tags can also be associated with an

active operator, for pre-processing, filtering, or automaticmetadata extraction, whichwe seamlessly offload to file servers in a load-aware

fashion.We have integrated TagIt into two popular distributed file systems, i.e., GlusterFS and CephFS. Our evaluation demonstrates

that TagIt can expedite data search operation by up to 10� over the extant decoupled approach.

Index Terms—Distributed systems, storage management, scientific data management

Ç

1 INTRODUCTION

BIG data management and analytics services play an ever
crucial role in modern enterprise data processing, busi-

ness intelligence, and scientific discovery. While the use of
such services in the enterprise has received much of the
attention, their use for scientific data analysis promises to
produce the most impact. Consider scientific experimental
facilities (e.g., Large Hadron Collidor [19], Spallation Neu-
tron Source [15]), observational devices (e.g., Large Synoptic
Survey Telescope [20]) and computing simulations of scien-
tific phenomena (e.g., on supercomputers [18], [21]), which
produce massive amounts of data that need to be analyzed
for insights. For example, a 24-hour run of the fusion simula-
tion, XGC [22], on the Titan machine [21] generates 1 PB of
data each timestep, spread across O(100,000) files on the par-
allel file system (PFS), Spider [43]. The underlying storage
system contains 1 billion files, and sifting through them to
discover relevant data products of interest can be extremely
cumbersome. Thus, there is a crucial need for fast and
streamlined data services to search and discover scientific
datasets at scale.

There are a number of well-established large-scale paral-
lel and distributed file systems, such as GPFS [47], Lustre [9],
HDFS [49], GlusterFS [17], Ceph [54], PanFS [57], PVFS [45],

and GoogleFS [28]. However, these focus on scalable storage
and failure resilience, but do not support the tight integra-
tion of scalable search and discovery semantics into the file
system. While services such as indexing, searching and tag-
ging exist for discovery in commodity, desktop file systems
such as HFS+ [6] for Mac OS X or Google Desktop [5], such
services cannot be simply extended or incorporated into
PFS, especially at scale. Thus, many scientific communities
still resort to manually organizing the files and directories
with descriptive filenames, and use extensive file system
crawling to locate data products of interest. Besides prob-
lems with scaling, such approaches lack the ability to cap-
ture more descriptive metadata about the data. This has led
to ad hoc solutions and cumbersome approaches using
manual annotations and domain-specific databases [1], [4].
Such solutions decouple the file system and the search/dis-
covery infrastructure, where users explicitly publish the
data products stored in the file system to an external cata-
log, and provide metadata, out of band of the data produc-
tion process on the file system.

A number of factors underscore the need to revisit the
decoupled philosophy for designing data services for scien-
tific discovery. First, the decoupling of search/discovery
from the file system inevitably results in inconsistencies
between the data files and the external index. Second, since
collecting metadata is a human-intensive process, oftentimes
users only provide basic metadata during data publication to
external catalogs, consequently limiting its efficacy. Instead,
we argue that there is significant value in providing hooks so
that users can annotate datasets in situ, as part of the file sys-
tem. File systems already provide extended attributes as a
way to add more metadata to files, which can be exploited to
augment domain-specific information. Third, the dearth of
metadata is only exacerbated by the rapid growth in data

� H. Sim, S. S. Vazhkudai, and S.-H. Lim are with Oak Ridge National
Laboratory,OakRidge, TN37830. E-mail: {simh, vazhkudaiss, lims1}@ornl.gov.

� A. Khan and Y. Kim are with Sogang University, Seoul 04107, South
Korea. E-mail: {awais, youkim}@sogang.ac.kr.

� A.R. Butt is with Virginia Tech, Blacksburg, VA 24061.
E-mail: butta@cs.vt.edu.

Manuscript received 13 Aug. 2019; revised 15 Apr. 2020; accepted 21 Apr. 2020.
Date of publication 27 Apr. 2020; date of current version 15 May 2020.
(Corresponding author: Youngjae Kim.)
Recommended for acceptance by S. He.
Digital Object Identifier no. 10.1109/TPDS.2020.2990656

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020 2375

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0002-0871-7263
https://orcid.org/0000-0002-0871-7263
https://orcid.org/0000-0002-0871-7263
https://orcid.org/0000-0002-0871-7263
https://orcid.org/0000-0002-0871-7263
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
mailto:simh@ornl.gov
mailto:vazhkudaiss@ornl.gov
mailto:lims1@ornl.gov
mailto:awais@sogang.ac.kr
mailto:youkim@sogang.ac.kr
mailto:butta@cs.vt.edu

production rates and volume, and it can be very cumbersome
for users to providemetadata about all of these data products
in a post hoc fashion, i.e., (much) later than data production.
There is a wealth of information buried within these files,
which if harnessed efficiently can help answer numerous
data disposition questions. Fourth, growing data production
rates imply that the datamovement cost also growsmanifold.
Typically, the process of data analysis entails the discovery of
relevant data or regions/variables of interest within the data,
e.g., a variable within a netCDF [11] dataset, by posing a
query to an external database catalog, and then moving the
data from the file system to an analysis cluster for post proc-
essing. This process incurs a lot of unnecessary data move-
ment. Instead, file system servers could potentially aid in
such data reduction during the discovery process, thereby
minimizing data movement. Finally, profiling of large-scale,
production storage systems has shown that there are enough
spare cycles on the file servers to take on additional services,
e.g., Spider servers have been shown to experience less than
20 percent of their individual peak throughput for 95 percent
of the time [30], [35]. While this may vary across deploy-
ments, there is the possibility of using the spare cycles for
additional services.

1.1 Contributions

We present an integrated approach, TagIt, to address the
above identified challenges. The goal of this project is to
enable the indexing and search of data, resident on file sys-
tems, facilitating the fast and efficient discovery of data.

Tagging. Associating an index term or a “tag” to stored
data for later quick retrieval has been shown to be very
effective in commodity, desktop file systems [6], e.g., picture
tagging, and improve productivity manifold. However, the
underlying truly distributed architecture and scale require-
ments severely restrict the use of such systems in large-scale
parallel and distributed file systems. TagIt extrapolates
such capabilities to petabyte-scale file systems, wherein
users can associate a richer context to collections of files by
adding their own tags in order to quickly discover them,
e.g., associating a piece of metadata, “10th checkpoint of the
Supernova explosion job run,” to be able to quickly retrieve
and operate on the tens of thousands of files from a job sim-
ulating Supernova explosions.

Distributed Metadata Indexing. To realize the tagging func-
tionality, we have designed a consistent and scalable meta-
data indexing service that indexes user-defined extended
attributes, and is tightly integrated into a shared-nothing dis-
tributed file system. Hosting the metadata indexing service
inside the file system effectively simplifies many consistency
issues associated with the external database approach. The
metadata index database is fully distributed across the avail-
able file system servers, each of which manages a horizontal
shard of a global metadata index database for distributed
query processing. Our design does not have any centralized
components and performs well even in a large-scale deploy-
ment, i.e., 105 million files in 96 logical volume servers
(Section 5.1.2).

Active Operators. We go beyond tagging to also support
executing operations on tagged files. We have developed
the ability to apply an operation or a filter on the file collec-
tions or specific portions of a file, which will be performed

on the file system servers. This can be particularly useful
when a user wishes to extract a large multi-dimensional var-
iable, e.g., temperature, from a collection of files, upon
which to run some analysis, e.g., mean temperature of an
ice sheet dataset, instead of moving entire petabytes of data.
This is similar to the ‘find -exec’ functionality, except that
the operations are conducted on the file system servers,
avoiding costly data transfers between the client and the file
system. Computing the decadal average for a large atmo-
spheric measurement data collection (a 150 GB AMIP data-
set with more than 130 files) suggests that TagIt’s active
operator can complete 10� faster than the traditional out-
of-band calculation of the average.

Automatically Extracting Metadata and Indexing. To facili-
tate more sophisticated searches and richer metadata, TagIt
also can automatically extract metadata from files and fur-
ther index them using the aforementioned active operation
framework. To reduce the impact on the servers, we limit
them to a subset of files that the user deems worthy, e.g., a
tagged collection.

Integration of TagIt With GlusterFS and CephFS. To show
the feasibility of TagIt, we have implemented TagIt into two
popular file systems, GlusterFS [19] and CephFS [2]. Our
experiments on both file systems demonstrate that TagIt
can provide advanced data management features with a
reasonable overhead, e.g., 4 percent on GlusterFS and 13
percent on CephFS, for metadata-intensive workloads.

The rest of the paper is organized as follows: Section 2
explains the overview of TagIt followed by basic design
principles and implementation of TagIt in GlusterFS in
Section 3. We discuss TagIt integration in CephFS in
Section 4. We present the evaluation of TagIt in GlusterFS
and CephFS in Section 5. After discussing related work in
Section 6, we conclude with final remarks in Section 7.

2 TAGIT OVERVIEW

The key design goals of TagIt are as follows: (i) Making file
systems inherently searchable; (ii) enabling metadata cap-
ture; (iii) minimizing data movement; and (iv) building
easy-to-use system tools and interfaces. In order to build a
file system that natively supports scientific data discovery
service, we have prototyped TagIt atop GlusterFS [17]. Par-
ticularly, GlusterFS features a shared-nothing architec-
ture [51], which allows us to seamlessly integrate our ideas
and demonstrate its efficacy in deployable systems.

Fig. 1 presents the architecture of TagIt. Users can read
and write data objects from the file system via a mount
point. In GlusterFS, each backend file system is independent
and self-contained. File metadata such as filenames, directo-
ries, access permissions, and layout are distributed and
stored in backend file systems called bricks. Each brick is
simply a directory inside a mounted file system (e.g., XFS).
A logical volume server exports files inside a brick to clients.
File metadata is stored in the same volume server as the
associated file. This means that all operations to a single file
are effectively isolated to a single volume server, obviating
the need for centralized metadata servers.

In the above shared-nothing file system structure of
GlusterFS, we have integrated data management services
within the volume server to manage the metadata index

2376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

database, active operations for server-side data optimiza-
tion, and metadata extraction. TagIt supports tagging of
datasets using arbitrary user-defined file metadata that is
internally stored as an extended attribute of the file. To facil-
itate search operations associated with such tags, TagIt
internally indexes the tags and any metadata attributes
about the datasets. The search index database of all attrib-
utes is tightly integrated into the file system itself, providing
a strong consistency between the data file and the index.
Moreover, the index is distributed across the volume serv-
ers, avoiding any centralized points, thereby achieving scal-
ability. Beyond basic search, TagIt also supports active
operations, which perform server-side data reduction or
extraction to minimize data movement. Moreover, TagIt
supports automatic metadata extraction to reduce laborious
user annotation tasks. TagIt handles metadata extraction as
an automatic active operation when processing data, and
further indexes the extracted metadata for future search
operations. Since such server-side processing can impact
system performance, the automatic extraction is only done
for datasets that the user has deemed worthy. Finally,
dynamic views allow users to intuitively manage tags and
active operators via virtual file system entries.

3 TAGIT IN GLUSTERFS

In this section, we discuss the key building blocks of our
approach, and how we build the metadata indexing mecha-
nism and integrate it into GlusterFS.

3.1 Inverted Metadata Index Database

We adopt an inverted index data structure to facilitate effi-
cient lookup of files in response to a search query. Inverted
metadata index is used widely in Internet searches to iden-
tify pages that contain a particular search term. However,
the approach has not been applied previously in the context
of file system searching and querying at scale. Here, given a
search term, we need to find collections of files with match-
ing attributes.

Traditional file systemsmaintain filemetadata in an inode,
while the directorymaintains a table of inodes to represent its
files and sub-directories [41]. Thus, for any given pathname,
the metadata is retrieved using a forward index structure. In
our case, we wish to find a file collection, not only based on
the pathname but also based on their metadata. The standard

file system indexing structure is therefore not suitable for our
needs, as it would require an exhaustive crawling of the
entire file system, which is too costly with growing scale. By
using an inverted index, our solution offers twomajor advan-
tages: (i) enabling search queries based on user-defined
attributes as well as system-defined attributes such as stan-
dard file system stat attributes, and (ii) avoiding crawling the
file system. We implement the inverted index (henceforth
referred to as index) using a relational database. We do not
use key-value stores, as they are not well-suited for the
lookup of multiple attributes from multiple tables at once,
which is required by many practical file search operations
(Table 2).

The relational schema is depicted in Fig. 2. The index is
implemented using four tables, GFID, FILE, xNAME, and
xDATA. The database schema manages any user-defined
attributes and system stat attributes in a unified way. File
attributes are stored in two separated tables, xNAME and
xDATA. For example, when a user assigns a new attribute,
temperature as �3:45 �C and 29:99 �C to files, data1 and
data2, respectively, the attribute’s name is added to the
xNAME table. The attribute’s value is added to the xDATA
table, along with other necessary fields from GFID and FILE
tables. Later, these files can be identified by performing a
search based on the temperature attribute, e.g., find files with
temperature < 0. The standard stat attributes are similarly
stored (pre-populated) with pre-defined names in the
xNAME table (st_size, st_mode, etc.).

3.2 Metadata Index Distribution

For the indexing service to support a large-scale file system,
we need a scalable design, as well as fault tolerance and dura-
bility capabilities, i.e., fast recovery upon server failures and
preventing server failure propagation. To this end, we split
the metadata index into multiple partitions, so the load can
be distributed between all the available volume servers.
Note that the metadata index is deployed on existing file
system servers, and not on additional servers. Practically,
the metadata index database is horizontally divided into
multiple partitions, and the partitions are scattered across
the available volume servers. This horizontal partitioning is
called database sharding [46], and each partition is referred
to as a shard. With this architecture, each shard has its own
(inverted) index database, i.e., its own table structure and
search indices that are used to complete operations on data-
base records (e.g., searching or updating records) indepen-
dent of other shards. The database partitioning technique

Fig. 1. Overview of TagIt architecture in GlusterFS [17].

Fig. 2. Sharded metadata index database in TagIt. Each index shard is
tightly coupled with the local brick.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2377

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

can effectively reduce the overall overhead associated with
search operations by exploiting the multiple independent
shards in parallel, as long as the records are evenly distrib-
uted across the shards.

Furthermore, as explained in Section 2, operations on a
file are limited to a single volume server that stores both the
file data and metadata. In TagIt, we also provide this shared-
nothing property to distribute all the records of the index
database to the volume servers. To distribute the index
shards, TagIt simply follows the file distribution algorithm
of the underlying GlusterFS, i.e., each index shard is popu-
lated with the metadata of files that are locally stored in the
corresponding volume server (Fig. 2). This tight coupling of
the metadata index shard and the backend file system
ensures that metadata and data are co-located, which has
several benefits. Since files are uniformly distributed across
volumes, the shards are also evenly distributed, effectively
providing load balancing. Moreover, the shards catering
only to their local volumes avoid any consistency issues
across servers. Finally, our distribution mechanism effec-
tively isolates single server failures, simplifying the recov-
ery process without affecting other servers in the cluster.

3.3 Synchronous Index Update

Solutions that are based on an index external to the file sys-
tem require periodical crawling of the file system to keep the
external database up-to-date and consistent with the file sys-
tem. Solutions such as change logs to automatically capture
file system updates have significant performance impact and
thus are often not deployed on extreme-scale storage sys-
tems. Crawling entails the entire directory tree to be scanned
and, for each file and directory, all of the attributes to be
fetched, and is significantly slow. For instance, a crawling of
the Spider file system [43], with about 32 PB and 1 billion
files, takes over 20 hours. However, even with such a costly
process, the records in the external index will get stale. To
address this limitation, all file operations in TagIt trigger an
update of the local index of the volume server, as part of the
regular file system control path, rather than through an out-
of-band mechanism. As a result, we refer to such an update
as being synchronous. However, adding the extra burden of
an index update to every file operation can substantially
slow down the file system performance. In the following, we
explain how TagIt is designed to minimize such a runtime
impact.

Index Update. TagIt index shards are updated upon every
file operation that causes changes to the file systemmetadata.
Such file operations include creating or deleting a file or a
directory, changing attributes (e.g., changing the ownership
or permission), and appending data to a file. All file opera-
tions in GlusterFS are implemented via I/O requests that are
sent to the target volume servers, which use I/O threads to
service the requests. We have added a synchronous update
functionality to these threads. After completing the operation,
an I/O thread checks whether the operation has changed any
file attributes, and if so, updates the index shard accordingly.
While the I/O thread is updating the index shard, it creates
an UNDO log in memory, and exclusively modifies the index
shard by acquiring an exclusive database lock. Such serialized
database accesses affect the response time of all file opera-
tions, especially when thread concurrency for file operations

increases. TagIt minimizes this overhead—associated with
the critical section where multiple I/O threads wait for
acquiring the database lock—by spawning a separate data-
base update thread that exclusively updates the index shard.
When an I/O thread needs to update the index shard, it cre-
ates and enqueues an “update request” to a shared queue.
The database update thread continuously dispatches the
update requests from the queue and applies the updates to
the index shard. This design may introduce a slight latency,
especially when a volume server is heavily loaded. We mea-
sured the latency by increasing the number of clients, each
running heavy file and directory creation operations, and
found it to be mostly negligible, e.g., under a millisecond for
up to eight clients per a server (Section 5.1.1). Given the signif-
icant benefit our update approach provides for the fore-
ground I/O operations, we argue that the delay offers a
reasonable tradeoff.

Consistency. As we discussed above, the asynchronous
database update in TagIt may introduce a delay before an
update request is dispatched and applied to the index data-
base by the index update thread. For example, if metadata,
X, is added to a file as an extended attribute, there may be a
slight delay for the metadata to be propagated to the index
database. Therefore, a search request for X could experience
inconsistent results for a brief time. We chose the asynchro-
nous update model due to its lower performance impact on
file operations. However, for applications requiring stron-
ger consistency, TagIt provides a command-line utility
(tagit-sync) for ensuring all enqueued updates are
promptly updated to guarantee consistent results, similar to
sync(1) utility. The tagit-sync command provides
stronger consistency while still minimizing the overhead
for all file operations, by shifting the burden on the applica-
tion requiring the higher consistency. Note that consistency
of standard metadata read operations (e.g., stat(2), get-
xattr(2), etc.) is not affected by our asynchronous index
update, since TagIt directly sends such operations to the
backend file system.

Durability. Changes to the database on index shard update
should be written to the disk or SSD in order to survive unex-
pected server failures. However, triggering additional I/O
operations for this purpose may decrease the overall server
performance. Instead, each index shard is backed by a data-
base file that is stored on the same backend file system, and
the database file is mapped into memory (using mmap(2)) at
runtime. As a result, TagIt does not trigger any extra I/O
operations ondatabase transaction commits, but instead relies
on the periodic dirty page syncperformed by the operating sys-
tem. In other words, the consistency of the index shard only
depends on the status of the backend file system; while this
may lead to a loss of the index database records on server fail-
ures, TagIt can quickly recover any lost records as follows.
Like most modern file systems, GlusterFS relies on a journal
to track file system updates and prevent data loss. TagIt
exploits the journal to avoid scanning the entire backend file
system for identifying any missing updates in the index
shard. After a server failure, the backend file system is recov-
ered; then, TagIt detects the unclean shutdown and scans the
journal in reverse order, looking for any missing updates
in the index shard. For each missing file entry, TagIt fetches
the associated metadata from the backend file system, by

2378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

invoking stat(2), listxattr(2) and getxattr(2) on
each missing file in the recovered backend file system, and
populates the index shard. The recovery process happens on
a per volume server basis, since each index shard is only asso-
ciated with a single backend file system on the same volume
server.

3.4 Distributed Query Processing

TagIt broadcasts search queries to all distributed index
shards. Despite of the communication overhead, TagIt can
achieve significantly improved performance particularly for
complicated file search queries, even in a large-scale cluster,
i.e., 96 volume servers (Section 5.1.2).

Also, the distributed query processing in TagIt can impact
the performance of foreground I/O operations. However, in
a practical scientific workflow, i.e., searching for a dataset
and then applying an operation on them, TagIt not only out-
performs a conventional method (without using TagIt) but
also impacts less on other foreground I/O operations
(Section 5.1.3).

3.5 Service Architecture

We use the indexing mechanism to build advanced data
services, such as tagging, active operators, and dynamic views.
Tagging allows custom marking/grouping of files, and sup-
porting it in petabyte-scale PFS has the potential to enable dis-
covery of relevant data products from among hundreds of
millions of files. Further, active operators (which run on the
file servers) can be associatedwith the collections tominimize
data movement between file servers and clients. The results
can themselves be further tagged and indexed. These features
allow for automatic metadata extraction aswell. Finally, TagIt
also supports virtual directories, where a user can associate a
file search operation to a virtual directory for easy interactions
and scripted operations on the selected files.

We have implemented a data management service frame-
work inside the file system to support the above services. We
also provide access to the services via a command-line util-
ity, ‘tagit’. tagit relies on standard UNIX system calls,
such as setxattr(2) and getxattr(2). Fig. 3 shows the
service architecture of TagIt and its different software com-
ponents. On the client side, data management requests trig-
gered by tagit are sent to IPC Managers or Dynamic View
Managers according to the type of the requested service. The
IPC Managers handle communications between clients and
servers through the GlusterFS translator framework [17],
while Dynamic View Managers handle the dynamic views. On
the server side, volume servers have both a IPC Manager for

handling communications with clients, and an Index DB
Manager for managing the local index shard. Furthermore,
ActiveManagers execute the service side of the active operators.
Finally, normal file I/O operations are handled through the I/
OManager provided byGlusterFS.

3.6 Data Management Services

Tagging. Users can manage tags, e.g., create or delete a tag,
using the tagit command, which in turn uses standard
extended attribute operations (e.g., setxattr(2) and
removexattr(2)) on the servers as needed, and Index DB
Manager updates the index. Later on, such user-defined tags
can be used in the context of a file search, together with
other file attributes, e.g., name, size, etc. The restrictions for
creating tags follow Linux’s extended attribute policy. attri-
bute in Linux VFS, For example, the size of each tag is lim-
ited by an extended attribute in the Linux VFS (i.e., 255
bytes for the name and 64 KB for the value). The maximum
number of extended attributes for a single file is file system-
specific (e.g., unlimited in XFS), and the space consumption
for storing extended attributes counts towards file system
quotas. Therefore, even if a user deems too many files to be
important, and creates tags, the enforced FS quota will pre-
vent any overage.

Active Operators. TagIt provides an easy interface for
applying operators to a file collection of interest. The opera-
tors are run on the volume servers to avoid transferring
data between clients and servers. Operators can be any
user-specified commands, which are applied to file collec-
tions that results from a search query request. Suppose a
user wants to run the ncdumpprogram against all netCDF
files in a directory, e.g., /proj1. The user executes the com-
mand ‘tagit -execute /proj1 -name=*.nc -exe-

c=ncdump’. Upon execution of the command, the IPC
Manager on the client broadcasts a request to all volume
servers, which is similar to what happens when executing a
file search. The IPC Manager on each server receives the
search query and executes the request as it would do for a
normal file search, but, instead of returning the results back
to the client, the Active Manager executes the command (e.g.,
ncdump) on each file in the search result. The Active Man-
ager also buffers the output of the command. When all
active executions complete, the buffered output is returned
to the client. Finally, the client receives the output from all
the servers, combines them, and presents the output to the
user. This sequence is depicted in Fig. 4a, and it is referred
as Operatorsimple. Particularly for data-intensive tasks, using
the active operators can effectively decrease the application
runtime by reducing data transfers between the client and
file servers, and also by exploiting the parallelism frommul-
tiple volume servers.

Fig. 3. Service architecture of TagIt.

Fig. 4. Control flows of active operators inside a volume server.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2379

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

TagIt also allows users to specify a format-transformation
command as an operator (e.g., resizing image files or
extracting a variable, temperature, from netCDF files) and
run it against a set of searched files. Consider a search
query, wherein a user wants to compute the average tem-
perature of the monthly atmospheric measurement data
(netCDF files) over a decade, from the Atmospheric Model
Intercomparison Project (AMIP) experiment [27]. The files
contain several properties (e.g., temperature, salinity) with
their associated values that describe the experiment and are
encoded in netCDF format. Let us further assume that the
netCDF files have been tagged within TagIt, with the
AtmosphericMeasurement metadata. Our indexing of both
the tags and the file system stat metadata will ensure that
the netCDF files corresponding to the monthly atmospheric
measurements over the last decade are quickly identified.
However, without the ability to just extract the temperature
variable (arrays of values) from the monthly data, and apply
the mean function on the TagIt volume servers, we will
need to move entire datasets to the client, which may con-
tain other attributes such as salinity, etc. To address this,
TagIt supports the format-transformation operator. This can
be achieved by appending an extra argument specifying a
directory, in which the transformed files will be stored.
Internally, this works identically to Operatorsimple, except
that the Active Manager now creates an output file (in the
specified directory) per execution: ‘tagit -transform

-outdir=/new -tag-id=dataset -tag-val=Mea-

surement -exec=gettemp’.
The output files generated by the gettemp program will

appear in the /newdirectory. This exploits the GlusterFS
feature that each brick mirrors the entire directory tree but
can also project newly created files in the local brick to cli-
ents. Only error codes from the runs are returned to the cli-
ent. Note that the active operators in TagIt aim to reduce the
data movement between the storage system and the client
by providing a convenient framework for server-side data
reduction. Applications may still need to perform addi-
tional operations, such as aggregation or sorting, to com-
plete the analysis that requires extra communications, e.g.,
data shuffling.

We have extended Operatorsimple to interface it with the
index services in order to provide more advanced capabili-
ties. Suppose a user wants to extract the metadata of
searched file collections, run the operators on them, and
index the results after the operators are executed. For that,
the user can specify the ‘-index’ argument to the tagit

command. In this context, the Active Manager buffers the
output from each execution, as it does with a Simple Execu-
tion. However, in addition, each line of the output is parsed
as a key-value pair (e.g., dimension=5) and the parsed
pairs are tagged, i.e., added to the index shard and set as
extended attributes to the input file(s). This process is
depicted in Fig. 4b and referred as Operatoradvanced.

Security. If users use active operators to execute untrusted
binary code, the volume server can compromise the perfor-
mance and security of the entire file system. To preclude
malicious and buggy behaviors in untrusted user programs,
the IPC Manager can manage a quarantined environment to
run user supplied programs. Specifically, TagIt can adopt
the Linu Container [8] for an isolation environment, and

create an unprivileged container (i.e., lacking the superuser
privileges) without any external network connections. We
currently dedicate two CPU cores and 4 GB memory to the
container from a 12 core, 64 GB volume server in our testbed
(Table 1). Further exploration for building a secure environ-
ment is beyond the scope of this work.

Automatic Metadata Extraction. Although TagIt can per-
form Operatoradvanced automatically for all the files in the file
system, the sheer volume of data in extreme-scale file sys-
tems will overwhelm the file servers. Instead, TagIt allows
users to trigger the automatic metadata extraction only for
file collections that the user has deemed worthy. Specifi-
cally, a user can register a directory for automatic metadata
extraction with an attribute such as ‘tagit-autoindex
/some/dir’. After the directory is registered, TagIt auto-
matically extracts metadata from all the files with specific
file format extensions such as hd5 and nc under the direc-
tory and indexes them. Internally, every volume server in
TagIt maintains additional records of ‘{extension,
extractor}’ and the list of registered directories. When
this feature is enabled, on every file close operation, TagIt
additionally checks whether automatic extraction should be
triggered. It is triggered only if the file is modified, the file
has a known-type extension, and, lastly, one of the parent
directories appears in the list of automatic extraction direc-
tories. If so, the file is enqueued to the extraction queue. An
extraction helper thread (per volume server) applies the
extractor program on the queued files.

The automatic metadata extraction framework also helps
users keep the tags (or attributes) always up-to-date, i.e.,
consistent to associated data files. Specifically, if an attribute
P has been extracted from a file F via the automatic meta-
data extraction framework, P becomes inconsistent if the
contents of F change. TagIt has an elegant way to address
this by virtue of the registration mechanism outlined above.
Since users need to register a directory for TagIt to automat-
ically extract the metadata, whenever the contents of the file
F change, TagIt will rerun the extractor program and
update P. As a result, the contents of the file F and the asso-
ciated attribute P will remain consistent without any user
intervention.

Dynamic Views. TagIt provides a dynamic view, a special
file that associated to a search query. This concept is similar
to views in relational databases [25] and further elaborated
in our previous work [50].

4 TAGIT IN CEPHFS

In this section, we explain how TagIt has been integrated
into CephFS [2]. Although both GlusterFS and CephFS
share the shared-nothing design philosophy, the architectures

TABLE 1
Testbed Specification

Server (16) Client (16)

CPU 12-core Intel Xeon E5-2609 8-core Intel Xeon E5-2603
RAM 64 GB 64 GB
OS RHEL 6.5 (Linux-3.1.22) RHEL 6.5 (Linux-3.1.22)
Network 1 Gbps Ethernet 1 Gbps Ethernet
Storage 240 GB SSD, 1 TB HDD N/A

2380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

of two file systems fundamentally differ. Therefore, we first
explain the architecture of CephFS (Section 4.1) and then
discuss our integration of TagIt in CephFS (Section 4.3).

4.1 CephFS Architecture

Ceph is a distributed storage system that offers versatile stor-
age interfaces such as object, block, and file [2]. Particularly,
the scalable design principles of Ceph such as clean storage
abstraction, decoupling data and control paths, and determin-
istic object placement allow to facilitate high-performance file
systems at scale [55], [56]. CephFS is built upon the Ceph
object storage, RADOS [56], by layering the file system inter-
face and semantics. CephFS follows a shared-nothing archi-
tecture and thus effectively avoids common problems in
distributed storage systems, including the single point of fail-
ure and the centralized hotspot. Internally, a CephFS cluster
consists of three major components, i.e., Object Storage Dae-
mon (OSD), Monitor (Mon), and Metadata Server (MDS), as
shown in Fig. 5. Next, we briefly explain each of these three
components.

4.1.1 Object Storage Daemon (OSD)

CephOSD is primarily responsible for storing andmanaging
object data and metadata. In addition, OSD also performs
internal cluster operations such as replication, backfilling
(for failure recovery [55]), and heartbeat exchanges between
peers. An OSD can be associated with a single disk or parti-
tion, and thus a single physical server can host multiple OSD
daemons. Ceph defines logical OSD pools, each of which
consists of a set of OSDs. A single logical pool is further
grouped into multiple placement groups (PGs). A number of
operations in Ceph, including object placement and replica-
tion, are performed at the granularity of a PG. For instance,
the CRUSH algorithm [34], [55] deterministically computes a
target PG for a given object and its attributes. The RADOS
layer provides uniform access method to the object storage
layer, as depicted in Fig. 5.

4.1.2 Metadata Server (MDS)

As mentioned above, CephFS layers the file system interface
and semantics atop the object storage, RADOS. Internally,
CephFS defines aMDS cluster (Fig. 5), a dedicated set of serv-
ers in the cluster for serving file system metadata operations.
The MDS cluster does not store the file system metadata

locally but persist themusing the RADOS object storage layer.
A set of OSDs can form a metadata pool for handling meta-
data requests from the MDS cluster. For handling operations
of a file, a CephFS client first needs to acquire a file handler
and capability of the file from the MSD cluster [48]. The file
handler contains the file attributes, e.g., ownership and strip-
ing information, while the capability is a public key that
allows the client to directly access to the target OSDs. After
acquiring the file handle and capability, the client can directly
access the target OSDs for subsequently manipulating the file
data. To reduce the metadata workload on OSD servers, the
MDS cluster keeps the directorymap in the collectivememory
space and acts as a distributed metadata cache. CephFS also
introduces a dynamic subtree partitioning algorithm [48], for
dynamically balancing theworkload across theMDS cluster.

4.1.3 Monitor

A set of Monitor daemons manage the topology of the
CephFS cluster. For instance, a CephFS client first asks the
Monitor daemon of the latest cluster map, which describes
the cluster topology and authorization information, for
sending I/O requests to appropriate service daemons. Spe-
cifically, the cluster map consists of five maps, i.e., Monitor,
OSD, MDS, PG, and CRUSHmaps [54].

4.2 CephFS and GlusterFS: Architectural Analogy

Here, we summarize key design differences between Glus-
terFS and CephFS. Particularly, we focus on architectural
aspects that directly affect our design of TagIt in both file
systems. Figs. 1 and 5 depicts the high-level architecture of
GlusterFS and CephFS, respectively, coupled with TagIt.

Data and Metadata Distribution. Although, both file sys-
tems employ a hash-based placement algorithm for evenly
distributing file system objects, e.g., metadata records, data
blocks, etc., across the file system cluster, actual object man-
agement is fundamentally different from each other. Specifi-
cally, GlusterFS determines a target server of a file according
to the hash value of the file name, and then stores both data
and metadata of the file to the target server. In addition, the
directory tree is replicated in all backend file systems in the
cluster. Therefore, all operations to a file can be isolated to a
single server in GlusterFS. In contrast, CephFS defines a data
pool for storing data objects and separately a metadata pool
for storing metadata objects. However, both of data and
metadata pools can be configured to be an identical set of
servers. Consequently, depending on the cluster configura-
tion, a data object and its corresponding metadata object in
CephFS can be stored in a single server or two different serv-
ers. Therefore, integration of TagIt on CephFS differs from
integration of TagIt in GlusterFS due to disjoint and loosely
coupled placement of data andmetadata.

Metadata Extraction I/O Path. For initiating operations to a
file, a CephFS client first need to acquire the file layout
information from a MDS. This I/O path is intrinsically dif-
ferent from I/O paths in GlusterFS, which does not have
any dedicated metadata servers. Therefore, in CephFS,
TagIt collects standard file system metadata, i.e., stat(2)
attributes, from OSD servers in the metadata pool, while it
extracts additional metadata from the file content from OSD
servers in the data pool. In contrast, TagIt in GlusterFS

Fig. 5. Overview of TagIt architecture when integrated in CephFS.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2381

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

collects and extracts all metadata of a file from a single vol-
ume server.

For integrating TagIt into CephFS, aforementioned archi-
tectural dissimilarities between CephFS and GlusterFS
impose unavoidable changes to our original design of TagIt
in GlusterFS. In the following subsection, we explain how
TagIt is attuned to the CephFS architecture.

4.3 TagIt Integration in CephFS

Here, we elaborate how we have integrated TagIt into the
CephFS architecture.

4.3.1 Metadata Index Distribution

Fig. 5 depicts the architecture of TagIt in CephFS. As dis-
cussed above, the CephFS cluster largely grouped into three
internal clusters, i.e., OSD, MDS, and Monitor clusters. The
architecture of CephFS differs from GlusterFS primarily in
handling the file systemmetadata. In GlusterFS, a single vol-
ume server stores both data andmetadata of a file (Section 2),
and a client can perform both data and metadata operations
of a file by exploiting a single volume server. In contrast,
CephFS keeps a separate MDS cluster for handling metadata
operations. Moreover, CephFS stores file data and metadata
using separate OSD pools, meaning that it is not likely that a
single server stores both data andmetadata of a file. This dis-
similarity in handling the filemetadata imposes amajor chal-
lenge for integrating the TagIt framework into CephFS.

In our design, we host the index shards on the OSD serv-
ers in the metadata pool. Specifically, each OSD in the meta-
data pool hosts its own index database shard, which is then
populated by the file metadata that the corresponding OSD
stores. This effectively co-locates the original file metadata
and the associated TagIt index records, similarly to TagIt in
GlusterFS (Section 3.2), and provides the following advan-
tages compared to alternatively placing the index shards on
the MDS cluster. First, the number of OSD servers tend to far
exceed the number ofMDS servers in a prudently configured
CephFS cluster, i.e., the recommended number of MDS serv-
ers is only one tenth of the number of OSDs in a cluster [3],
[53]. Therefore, TagIt can reduce the performance impact on
each server and also exploit more aggregated computational
power for active operations. Second, we can distribute the

index shard records by simply following the nativemetadata
distribution mechanism in CephFS, i.e., the CRUSH algo-
rithm. Third, in case of a failure, the recovery process
becomes simpler by hosting the TagIt records in the same
OSD that stores the corresponding CephFS filemetadata.

4.3.2 Index Database Update

Index Update. Fig. 6 shows the extended I/O paths of
CephFS in (a) file metadata and (b) data operations with the
TagIt integration. Specifically, the operations in bold fonts
highlight the additional steps that TagIt introduces.

For a file creation (Fig. 6a), a CephFS client first sends a file
creation request to an active MDS server. Upon receiving the
request, the MDS server first determines the file inode num-
ber and the target OSD server within the metadata pool (via
the CRUSH algorithm) and then journals the metadata oper-
ation to ensure the file system consistency on failures. Later,
the MDS server asynchronously flushes the journal data to
OSD servers via the RADOS interface. An important charac-
teristic of CRUSH algorithm is that it is fully distributed,
implying that any client, MDS or OSD can independently
determine the location of any object in the cluster based on
the target object name. On the target OSD server, the meta-
data object is stored in the form of a key-value pair, where
the key is file name hash and the value is file layout attrib-
utes [54]. In addition, the metadata object can be replicated
in multiple OSDs based on the configurable replication fac-
tor [56]. The TagIt service is triggered when the OSD server
handles the replication. Specifically, TagIt reads the target
metadata object and populate the index shard synchronously
with file system metadata, as shown in Fig. 6a. After index
shard is populated, an acknowledgement is sent to the MDS
server, which then responds to the client with a file handler
and capability [37]. TheMDS server also caches themetadata
entry inmemory for handling future operations.

Fig. 6b depicts the flow of data operations, after the file
metadata has been created and populated in the TagIt index
shard. First, the CephFS client passes the file data to the
underlying RADOS layer with the file handler and meta-
data information. Then, RADOS stripes the file into smaller
fixed unit objects, or stripes (4 MB by default), and gener-
ates an object identifier (object id) for each stripe. After this,
the CephFS uses CRUSH [55] algorithm to distribute the

Fig. 6. Updated (a) metadata operation path and (b) data operation path in CephFS with the TagIt integration. The TagIt operations are shown in
bold fonts.

2382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

stripes across the data pool OSD servers in parallel [56]. Simi-
larly to the metadata objects, these stripe objects are also rep-
licated based on the replication policy. At this point, TagIt
processes the file data for user-defined tags if necessary, e.g.,
metadata extraction. After processing the data, TagIt may
need to send the metadata to a different OSD, because
CephFS differentiates the data pool andmetadata pool. TagIt
acquires the target OSD by using the CRUSH algorithm
(with the target filename), as shown in Fig. 6b. Upon receiv-
ing the data, the target OSD properly updates the file attrib-
utes in the index shard and sends an acknowledgment.
These steps are repeated until all stripes are exhausted, at
which the CephFS client receives an acknowledgement mes-
sage indicating a success. Note that TagIt operation paths
reside strictly within the original file operation paths of
CephFS, which obviates the need for implementing its own
transactions to assure the consistency across multiple index
shards. In addition, TagIt does not disrupt any distributed
transaction semantics that are required by file operations in
CephFS.

Consistency. With TagIt-Async, users may experience a
brief inconsistency between the file system and index data-
base. Similarly to TagIt in GlusterFS (Section 3.3), TagIt-
Sync or the tagit-sync utility can be used appropriately
to guarantee the stronger consistency. Furthermore, TagIt
does not affect the consistency of file operations in CephFS.

Durability. For ensuring the file system consistency across
system failures, CephFS maintains the file system journal on
MDS. When CephFS performs the recovery process by
replaying the journal, some metadata objects may be
appended or removed on metadata pool OSDs. To keep the
index database consistent with the recovered file system sta-
tus, TagIt deliberately suspend its recovery process until
CephFS completes the recovery. Once the file system is fully
recovered, the TagIt instance in each OSD server examines
the changes in the metadata objects and updates the index
database accordingly. Therefore, as with TagIt in GlusterFS
(Section 3.3), the recovery process of TagIt in CephFS is
locally performed within individual OSDs.

4.3.3 Distributed Query Processing

To facilitate scientific discovery processes, TagIt supports
sophisticated file search queries based on file attributes and
user taggings. Similarly to TagIt in GlusterFS, the query
processing of TagIt in CephFS broadcasts a search query to
all index shards in the cluster. However, the different clus-
ter architecture in CephFS results in different performance
implications in processing the file search queries.

As we discussed in Section 4.1, CephFS allows to assign
an exclusive set of OSDs, i.e., a metadata pool, for storing
the file system metadata, and effectively separates the meta-
data and data paths within the cluster [54]. Since TagIt pop-
ulates the index shards only in the metadata pool, the
number of TagIt index shards in CephFS becomes substan-
tially smaller than the number of index shards in GlusterFS.
Consequently, the query broadcasting overhead also lessens
in CephFS. Furthermore, due to the strict separation of data
and metadata paths in CephFS, the distributed query proc-
essing of TagIt in CephFS does not directly affect the fore-
ground data I/O operations.

Other TagIt services such as active operators are exe-
cuted on data pool OSD servers. The primary architecture is
similar to our design in GlusterFS (Section 3.4), and we do
not elaborate here.

5 EVALUATION

In this section, we evaluate the performance of TagIt in
GlusterFS (Section 5.1) and CephFS (Section 5.2).

5.1 Evaluation of TagIt in GlusterFS

Implementation. TagIt has been implemented atop GlusterFS
3.7, an open-source distributed file system. We extended the
translator framework in GlusterFS to implement index data-
base services (index shard) and science discovery services
(active operator and dynamic views). On the server side, an
index shard translator is implemented using a light-weight
database, SQLite [16]. On the client side, dynamic views are
implemented in the meta translator, a virtual file system
framework in GlusterFS. For evaluating TagIt, we consider
two implementations—TagIt-Sync and TagIt-Async. In TagIt-
Sync, the index database is synchronously updated, while in
TagIt-Async, a dedicated thread is spawned to update the
database asynchronously (Section 3.3).

Testbed. Table 1 shows our testbed, where we used a pri-
vate testbed with 32 nodes connected via 1 Gbps Ethernet,
configured as 16 servers and 16 clients. For a realistic perfor-
mance comparison, we used both synthetic and real-world
workloads. For synthetic workloads, we used mdtest [10]
and IOR [7] benchmarks for file metadata and file I/O inten-
sive workloads, respectively. For a real workload, we used
real-world scientific datasets such as the AMIP atmospheric
measurement datasets [27]. All experiments were repeated
six times, unless otherwise noted, and we report an average
with a 95 percent confidence interval.

5.1.1 Metadata Indexing Overhead

In our first test, we study the performance overhead of the
integrated index databases of TagIt on the GlusterFS vol-
ume servers, while servicing file I/O operations.

Metadata-Intensive Workloads. Fig. 7 shows the perfor-
mance comparison of TagIt and GlusterFS for metadata-
intensive workloads, including file operations (e.g., create
and unlink) and directory operations (e.g., mkdir and rmdir).
We increase the number of clients from 1 to 16. In order to see
the impact of the storage device characteristics, we consid-
ered both SSD andHDDvolume server configurations.

Fig. 7a, 7b, 7c, and 7d show the results with the SSD vol-
ume configuration. In file operations (Fig. 7a and 7b), we see
that both TagIt and GlusterFS scale linearly with respect to
the number of clients. Further, we can see that the through-
put of TagIt-Async is only 4 percent lower than the through-
put of GlusterFS, on average. However, TagIt-Sync exhibits a
noticeably decreased throughput compared to GlusterFS,
due to frequent database file sync operations. For directory
operations (Fig. 7c and 7d), TagIt-Async and GlusterFS scale
only up to 8 clients. This can be attributed to the fundamental
design of GlusterFS, in which all directories are replicated in
every volume server (Section 2). Fig. 7e, 7f, 7g, and 7h show
the results with the HDD volume configuration. Not surpris-
ingly, we have similar observations as in Fig. 7a, 7b, 7c, and

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2383

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

7d, except that the throughput under TagIt-Sync are too low
to be discernible in the graphs.

Impact of Server Congestion. The preceding experiments
were conductedwith the number of clients being less than or
equal to the number of servers. In our next test, we consider
a case in which servers are overloaded by more clients. To
create the overloaded condition, we increased the number of
clients from 1 to 16 while keeping a single server. Each client
concurrently creates 10,000 files in its own directory.

In Fig. 8a, we observe that TagIt-Sync does not scale with
more than four clients. In contrast, TagIt-Async scales simi-
larly to GlusterFS. However, with 16 clients, we notice TagIt-
Async shows lower throughput than GlusterFS. This is
because the database update thread in TagIt (Section 3.3) is
overloaded and cannot keep up with the speed of incoming
requests. This can introduce a non-negligible delay for
updating the database, which in turn may result in an incon-
sistency between the file system and the index database
(Section 3.3). To investigate the delay, wemeasured database
update latencies of the first 10,000 create requests. Fig. 8b
presents the delays with respect to the request sequence in
time-series. We observe that, for up to eight concurrent
clients, the delays are under 1 millisecond for all requests.
However, the delay increases up to above 20 seconds with 16
clients. Overall, TagIt-Async performs similar to GlusterFS,
and it is important to properly estimate the maximum server
load to keep themetadata index database consistent.

I/O Intensive Workloads. Fig. 9 shows the performance
overhead of metadata indexing for representative I/O pat-
terns for scientific applications. In specific, we perform our
tests for both a single shared file I/O model (N processes
reading and writing to a single file, N1-Read and N1-Write

in the figure) and a per-process file I/O model (N processes
reading and writing N files, NN-Read and NN-Write in the
figure). For the N1 tests, a single shared file is created for 16
clients, and each client concurrently appends 4 MB at a time
until the aggregate size of file operations per client reaches
1 GB (16 GB total). For NN tests, each client writes in its own
file separately. Overall, for both tests, we see little perfor-
mance degradation due to themetadata indexing in TagIt.

Crash Recovery. TagIt recovers from a server failure by
repopulating any lost updates to the index database. From a
single server failure, the recovery program of TagIt can
recover 351.95 files per second, e.g., for the lost metadata
updates of 10,000 files, TagIt can repopulate the local index
shard within 30 seconds.

Indexing Overhead at Scale. Here, we evaluate the perfor-
mance of TagIt on a large cluster to study how TagIt perfor-
mance scales with an increased number of volume servers
and clients. The testbed cluster consists of 104 diskless nodes,
each of which is equipped with two four-core Intel Xeon
E5410 processors (total eight cores) and 16 GB RAM. The
nodes are connected via an infiniband network (Mellanox
MT25208, 10 Gbit/sec). We configured the file systems
(GlusterFS and TagIt-Async) with 80 volume servers using
80 physical nodes. A memory file system (tmpfs) was used as
a backend storage on the volume servers. The rest of the 24
nodes were used as clients. To evaluate the metadata index-
ing overhead, we ran the mdtest benchmark by spawning
two processes on each client node (total 48 client processes).
Fig. 10 shows the result with seven different metadata opera-
tions, namely create, stat, read, and remove (unlink) for files
and directories (with the exception of reads for directories).
F- and D- denote file and directory operations, respectively.
Each test was run five times, and since there was very little

Fig. 7. Performance overhead of metadata indexing in the file system. mdtest [10] benchmark was used to generate metadata-intensive workloads.
We used two different storage volume configurations, with SSDs ((a)–(d)) and with HDDs ((e)–(h)), to observe the performance impact of storage
device characteristics.

Fig. 8. Experiments with an overloaded server. (a) shows the normalized
throughput, and (b) depicts queueing delays of database update requests.

Fig. 9. Performance comparison of GlusterFS and TagIt-Async for paral-
lel I/O workloads. IOR benchmark [7] was used to generate N1 and NN
workdloads.

2384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

variation between the runs, we only present the average. For
each operation, the TagIt-Async throughput is normalized to
the GlusterFS throughput. We observe that the indexing
overhead of TagIt is less than 5 percent in all cases, except for
the file remove operation (F-remove) where the overhead is
around 10 percent. Since file remove (unlink) is the fastest
metadata operation in GlusterFS (Fig. 7), its indexing over-
head is more discernible than other operations. Overall, this
result is consistent with our previous observation, and the
indexing overhead of TagIt is not affected by the cluster scale
due to the shared-nothing architecture.

5.1.2 File Search Performance

In our next tests, we evaluate the effectiveness of file searches
in TagIt compared to an external database approach. Since
SQLite does not support the server mode, 16 MySQL servers
(identical to the number of volume servers in TagIt) are used
to evaluate the external database approach. Note that, in
TagIt, such external servers are not needed, because the data-
base is integrated into the file system. We used the same
server machines with SSDs for both cases (Table 1), and all
SSDs were formatted with the XFS file system. For a realistic
workload, we used a snapshot of the Spider file system [43],
taken on July 1, 2015. The snapshot contains information
on pathnames and attributes of 1,303,156 files and 3,294
directories.

Index Database Population Overhead. TagIt populates index
shards during file operations, whereas the external database
approach has to perform a periodic update. Specifically, the
external database approach requires the following steps.
First, the entire file system has to be scanned to generate a
current file system snapshot. Second, databases are popu-
lated with the file system snapshot. In our experiment, we
developed an in-house program to take a file system snap-
shot using findand stat system utilities and populate the
databases, although the scanning process could be expe-
dited [38]. The 16 MySQL servers of the external approach
were populated in parallel from 16 clients.

Table 4 compares database management overheads for
TagIt and the external database approach in terms of

database space and update overheads. Both approaches use
the similar amount of storage space for storing the data-
bases. Specifically in TagIt, the index shard per server only
requires 110.63 MB. To build its database, the external data-
base approach takes about 96 minutes to populate the index;
93 minutes to crawl the file system and generate a file sys-
tem snapshot, and about 4 minutes to update the 16 MySQL
servers. Although the database population process could
overlap with the file system crawling process, its improve-
ment would be minimal because the file system crawling
time is dominant in the entire database population time.
Such long delays can lead to inconsistency between the file
system and the database and are clearly undesirable, espe-
cially in large-scale file systems.

File Search Performance. To compare the file search perfor-
mance, we used the databases that have been populated in
the previous experiment, and tested with five realistic stat-
based queries for file searches as shown in Table 2. Note that
these tests are also representative of tagging-based file
searches. To measure the query performance, we wrote a C
program that repeatedly executes a given SQL query 50
times. To test a multi-user environment, we measured the
performance by increasing the number of clients to 16. We
also used a warm-up period of a minute for each query test.
Table 3 shows the total runtime and the summary of individ-
ual database request latencies for each case. We observe that
TagIt can process Q1 query about three times faster than
MySQL. Note that Q1 is a simple query that requires a full
scan of an entire column without resorting the database
index. In our experiments, SQLite could process this type of
query faster thanMySQL. For Q2, Q4, andQ5, TagIt also out-
performs MySQL. We see that TagIt outperforms MySQL by
a factor of 7, when using 8 ormore clients.

In order to further investigate the lower query perfor-
mance of MySQL for Q2, Q4, and Q5, we analyzed the query
load distribution across servers. In particular, we counted
the number of processed result records of each query in all
MySQL servers. Surprisingly, we found thatMySQL exhibits
a heavily skewed distribution of the result records across
servers for these queries (Q2, Q4 and Q5), as shown in
Fig. 11. In Fig. 11, we can clearly see that there is a severe
load imbalance across the 16 MySQL servers in the external
database approach. For Q4, 562 records (total 647) are proc-
essed on a single server, and similarly for Q5, 35,150 result
records (total 50,552) are processed on a single server. More-
over, for Q2, a single server had all matching 124 records.
The reason for this heavily skewed record distribution can
be attributed to the way that the databases are populated. In
the external database approach, records are distributed
based on the order in which they appear in the snapshot file.

Fig. 10. Metadata indexing overhead of TagIt for a large deployment.
F- and D- denote the file and directory operations, respectively.

TABLE 2
Various File Search Queries to Measure the Query Performance

Description Attributes Tables Results (#)

Q1 Locate files and directories with pathname containing ‘never-existing’. name FILE 0
Q2 Count the number of all regular files under ‘/proj’, owned by a user. path, mode, uid FILE, xNAME, xDATA 1
Q3 Find regular files with a ‘.mpi’ extension owned by a group, under ‘/proj’. path, name, mode, gid FILE, xNAME, xDATA 3
Q4 List all files owned by a group. path, mode, gid FILE, xNAME, xDATA 647
Q5 List all regular files which have been created in the last 24 hours. path, mode, ctime FILE, xNAME, xDATA 50,552

Attribute column shows metadata required to answer the query, while table column shows database tables that hold the metadata columns.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2385

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

The snapshot file is created by crawling the file system tree,
and files in the same directory are likely to appear continu-
ously. In contrast, TagIt evenly distributes the records to all
16 volume servers because the distribution of the records fol-
lows the file distribution policy of GlusterFS, i.e., a distrib-
uted hash table.

Such a skewed distribution of records not only negates
the benefit of the parallel query processing, but also signifi-
cantly slows down the overall processing time. Note that a
single query processing internally involves communication
with all 16 database servers due to the nature of the sharded
database architecture. Thus, a query cannot be answered
until the slowest server completes its processing. We can
observe this problem in Table 3, particularly by comparing
average latencies with 95th and 99th percentile latencies.
For instance, in MySQL with 8 clients, 99th percentile laten-
cies are 6.7�, 7.8� and 13.2� higher than the average laten-
cies for Q2, Q4 and Q5, respectively. For Q3, MySQL
processes faster than TagIt. It is because MySQL can prune
the result record set based on the file name (‘%.mpi’) prior
to other conditions, which alleviates the negative impact of
the skewed record distribution.

We also compared the scalability of query processing
performance under increasing number of clients. For a fair

analysis, we used a simple linear regression with the run-
time measurements in Table 3. We compared the slope of
the fit line for each query. Table 5 shows the coefficient (r),
the slope of the fit line, of the runtime function with the
number of clients as an explanatory variable. Note that a
higher r value implies that the runtime increases more
sharply as the number of clients increases. We observe that
for Q1, TagIt and MySQL have similar slopes, however for
Q2, Q4 and Q5, MySQL shows much higher slopes than
TagIt, implying that MySQL scales worse than TagIt. For
Q3, we see that MySQL scales better than TagIt.

Search Performance at Scale. Next, we evaluate the over-
head of query broadcasting (Section 3.4). In particular, we
build the file system with 96 volume servers, and populate
them with 105 million files from the Spider II snapshot file.
We perform this experiment using 48 nodes of the Rhea
cluster at Oak Ridge Leadership Computing Facility [12].
After populating the file system, the overall database size is
140 GB (m ¼ 1:45 and s ¼ 0:07 across 96 volume servers).
We execute Q1, Q2, and Q3 in Table 2 from a single client
while varying the number of volume servers from 2 to 96.
Note that for Q3, the number of resulting records is 4,766 in

TABLE 3
Query Performance Under TagIt Versus the Crawling Approach With 16 MySQL Servers

Number of Clients 1 2 4 8 16

System MySQL TagIt MySQL TagIt MySQL TagIt MySQL TagIt MySQL TagIt

Q1 Total Runtime (s) 2.780 0.840 3.716 1.580 7.689 3.026 19.659 5.843 41.846 11.392
Avg. Latency (s) 0.043 0.016 0.050 0.018 0.074 0.033 0.087 0.061 0.154 0.152
95th Percentile 0.056 0.018 0.085 0.033 0.175 0.063 0.424 0.124 0.866 0.249
99th Percentile 0.059 0.024 0.086 0.035 0.191 0.064 0.429 0.125 0.875 0.250

Q2 Total Runtime (s) 15.499 6.840 68.599 13.471 165.501 26.408 401.340 53.409 815.478 103.839
Avg. Latency (s) 0.306 0.131 1.202 0.164 0.909 0.292 1.640 0.542 9.885 1.192
95th Percentile 0.309 0.136 1.366 0.268 2.809 0.530 6.167 1.075 16.043 2.125
99th Percentile 0.311 0.158 1.398 0.272 4.122 0.542 11.034 1.079 16.654 2.160

Q3 Total Runtime (s) 6.052 12.927 6.918 25.537 8.783 51.731 17.759 98.743 38.110 190.289
Avg. Latency (s) 0.032 0.064 0.034 0.097 0.038 0.169 0.051 0.216 0.077 0.613
95th Percentile 0.121 0.257 0.132 0.508 0.171 1.027 0.347 2.041 0.736 3.843
99th Percentile 0.121 0.259 0.146 0.520 0.183 1.056 0.368 2.099 0.783 4.108

Q4 Total Runtime (s) 16.711 8.508 67.476 16.278 161.971 32.474 409.635 64.828 795.376 131.545
Avg. Latency (s) 0.320 0.163 1.185 0.206 0.987 0.293 1.428 0.855 7.776 1.632
95th Percentile 0.325 0.168 1.339 0.318 2.724 0.635 6.044 1.427 15.646 2.691
99th Percentile 0.356 0.195 1.388 0.329 4.097 0.819 11.183 1.710 16.258 3.277

Q5 Total Runtime (s) 32.390 49.420 128.516 50.727 326.109 76.295 803.266 153.888 1512.220 312.241
Avg. Latency (s) 0.387 0.703 1.329 0.701 1.127 1.106 1.691 1.868 9.247 3.594
95th Percentile 0.647 0.905 2.525 0.912 5.540 1.603 10.832 2.949 29.763 6.089
99th Percentile 0.649 0.917 2.664 0.953 7.589 1.756 22.368 3.398 30.898 6.484

TABLE 4
Database Size and Update Time Under TagIt Versus the

Crawling Approach With 16 MySQL Servers

MySQL-16 TagIt

Database Size 1971.39 MB 1770.08 MB
Crawling/Update Time 96.10min N/A

Fig. 11. Distributions of records for MySQL and TagIt. The record distri-
bution of Q2 is similar but we do not show the result due to the page
limitation.

2386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

this setup. Fig. 12 shows the result. We observe that execut-
ing Q2 and Q3 takes substantially longer than Q1, mainly
because of the difference in the complexity of the queries.
Q1 only needs to scan a single column (path) from a single
table, whereas Q2 and Q3 require scanning and joining mul-
tiple database tables. In addition, for all queries, the benefit
of sharded architecture outweighs the overhead of broad-
casting. Using linear regression, we find that adding a single
volume server merely increases runtime by 0.013�, 0.018�,
and 0.016� for Q1, Q2, and Q3, respectively. For instance,
executing Q3 with 96 volume servers takes 6.1 seconds,
which is only 1.6 seconds more than the runtime with two
volume servers (4.5 seconds).

5.1.3 Science Discovery Services

To study the effectiveness of active operators, we used the
query of computing the decadal average temperature of the
AMIP [27] datasets, composed of 132 1.2 GB netCDF files
(total 150 GB) (Section 3.6). We wrote a dedicated program
(operator) using the netCDF library, which that calculates
an average of the temperature variables in a netCDF file.
We execute the program using two different methods, Off-
line and TagIt. In Offline, the program is run on a client and
reads files from the file system. In TagIt, we offload the exe-
cution of the program using the operator framework. In Off-
line, we increase the number of threads from 1 to 8 to
observe the impact of parallelism. We also evaluated the
impact on the performance of normal I/O operations when
they are performed during the program executions.

Evaluation of Operatorsimple Fig. 13a shows the results with-
out any foreground I/O. For Offline, the run time decreases
as we increase the parallelism up to 4 clients. With 8 clients,
however, the effect of parallelism almost disappears due to
the I/O contention between the threads. In contrast, we see
that TagIt performs noticeably faster than Offline. Note that
TagIt not only utilizes multiple file servers to run the opera-
tors, but also performs near-data processing, minimizing
datamovement between the file servers and the client. More-
over, due to the shared nothing architecture of TagIt, there
exists little I/O contention between the operators running on
the different servers. Fig. 13b shows the results when either

Offline-1 (one thread) or TagIt-C runs concurrently with a
foreground I/O operation. To understand the impact from
overlapped executions, we launch a separate client that
either reads or writes a 1 GB file sequentially. Under the read
workload with Offline-1, the I/O bandwidth drops by about
30 percent. However, under thewrite workload, there is little
impact on the foreground I/O both from Offline-1 and TagIt-
C. This is because the foregroundwrite operations are locally
buffered before reaching the servers and thus not directly
affected by the server-side contentions.

Evaluation of Operatoradvanced We have also evaluated the
performance impact of Operatoradvanced. Our experiment
result indicates that Operatoradvanced perform 10 percent
faster than Operatorsimple to calculate statistical summaries
of the same AMIP dataset [50].

5.2 Evaluation of TagIt in CephFS

Implementation. TagIt has been implemented atop Ceph 10.2.3.
Specifically, we have extended the Ceph OSD service to man-
age a dedicated index database shard using SQLite [16]. For
the command-line utilities, we have extended the existing
Ceph command line interface. We compare the performance
of TagIt-Sync and TagIt-Async against the baseline CephFS
without anymodification.

Testbed. We configured a Ceph storage cluster consisting
of eight OSD servers (OSSs), three Monitors, four Metadata
servers and two Ceph client nodes. All nodes are connected
via a 10 Gbps network. Each machine is equipped with Intel
E5-2670v4@2.40 GHz (10 Cores) and 32 GB DRAM, running
CentOS 7.3. In addition, each OSS also has two 256 GB SSDs.
Each SSD is formatted as an XFS volume and dedicated to a
single OSD daemon. Therefore, each OSS spawns two OSD
daemons, and the Ceph cluster runs 16 OSD daemons in
total. To minimize the performance variance, we disable the
MDS logging and also discard the client side inode, dentry
and page caches before each run.

For performance comparison, we use the mdtest bench-
mark [10], which generates metadata operations in parallel.
All experimentswere repeated six times, and the performance
variance was small between runs, i.e., less than 2 percent.
Therefore, we simply report an average.

5.2.1 Metadata-Intensive Workloads

Fig. 14 shows the performance comparison between TagIt-
Sync, TagIt-Async and CephFS for metadata-intensive work-
loads, including file operations, i.e., (a) create and (b) unlink,
and directory operations, i.e., (c) mkdir and (d) rmdir. To
mimic a congested environment, we increase the number of
client threads in each client node up to 8, i.e., total 16 clients.

TABLE 5
Coefficients of Linear Runtime Functions With the Number

of Clients as an Explanatory Variable

Systems r(Q1) r(Q2) r(Q3) r(Q4) r(Q5)

MySQL 2.678 53.638 2.188 52.456 99.731
TagIt 0.702 6.475 11.790 8.211 18.139

In all cases, R2 values are greater than 99 percent.

Fig. 12. Query performance scaling under increasing volume servers
and 105 million files.

Fig. 13. Performance impact of active operators in TagIt. (a) Performance
under Offline versus TagIt. (b) Impact on foreground I/O operations.
TagIt-C and TagIt-W show the cold and warm volume server cache case,
respectively.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2387

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

For all four operations, we observe that both TagIt and
CephFS scale linearly with respect to the number of clients.
On average, the throughput of TagIt-Sync is 40 percent lower
than the throughput of CephFS, due to its additional opera-
tions for updating the index database shard in a synchronous
manner. Specifically, SQLite frequently performs file sync
operations, which leads to a significant delay. However, we
note that the performance degradation of TagIt-Sync in
CephFS is relatively lower, compared to our previous obser-
vation for TagIt-Sync in GlusterFS (Fig. 7). This is because of
the primary design of the Ceph file system, i.e., i) decoupled
data and metadata management, ii) file and directory meta-
data in CephFS is very small, consisting entirely of directory
entries (file names) and inodes only, and iii) backend key-
value database for storing metadata objects [54]. For TagIt-
Async, the average performance reduction across the four
metadata operations is less than 13 percent, a reasonable
trade-off for providing advanced datamanagement features.

5.2.2 Impact of Varying the Metadata Pool Size

The size of the metadata pool in CephFS, i.e., the number of
OSDs in the metadata pool, is configurable. This allows us to
infer the performance impact of TagIt in other file systems
with a different number ofmetadata servers. For instance, Lus-
tre [9] runs a single metadata server, while GlusterFS utilizes
all available servers for storingmetadata (Section 2). Therefore,
in this experiment, we increase the size of themetadata pool in
our CephFS cluster up to 16 and measure the performance
overhead of TagIt. Specifically, we spawn 16 client threads,
each ofwhich creates 5,000 files in its owndirectory.

Fig. 15 shows the file create performance of CephFS,
TagIt-Sync, and TagIt-Async under the different metadata
pool sizes.We first observe that the performance of themeta-
data operation severely diminishes in all systems, when the
number of OSDs becomes less than four. On average, TagIt-
Sync exhibits a performance overhead of 70 percent, whereas
the performance reduction of TagIt-Async is 16 percent. Par-
ticularly, the overhead of TagIt tends to become higher when
OSDs are heavily congested, e.g., the performance overhead

of TagIt-Sync and TagIt-Async is 77 and 27 percent, respec-
tively,when only a singleOSD is allocated. This performance
degradation is also attributed to the design of the placement
group (PG) in CephFS. Specifically, the smaller metadata
pool leads to a less number of PGs for servicing the incoming
requests. Since CephFS uses a PG-based locking, all the
requests landing to a single PG exhibit a significant delay
from the PG lock contention [42]. Moreover, TagIt-Sync fur-
ther increases the latency for populating the associated
entries synchronously in the TagIt index shard. In contrast,
CephFS and TagIt-Async exhibit stable performance and
scalability with the increasing number of OSDs, as our previ-
ous observation in Fig. 14.

Overall, our experiments with CephFS demonstrate that
the primary concept of TagIt, i.e., integrating the data man-
agement services into a file system, is feasible and practical
for diverse distributed file systems.

6 RELATED WORK

Managing metadata in a large-scale file system has been the
focus of many works. GIGA+ [44] is a directory service that
can be stacked on any parallel file systems. FusionFS [61]
and SoMeta [52] employ a distributed key-value store for a
scalable metadata management. Recently, DAOS [39] pro-
poses a new parallel file system architecture based on a dis-
tributed object-based storage, to address the limitations of
the traditional POSIX interface in emerging extreme-scale
platforms. Although these systems are scalable and alleviate
the metadata overhead of file systems, unlike TagIt, they do
not directly implement searchability that requires further
indexing and management of metadata, as we have previ-
ously explained in Section 3.1.

File system searchability has mostly been achieved by
using external applications in a post hoc fashion [5], [40].
However, keeping the search index up-to-date with graceful
performance degradation is non-trivial even in a single-user
system [23]. The research community generally anticipates
magnified challenges for maintaining a search index for large
scale file systems. Spyglass [38] reduces the crawling over-
head, but the solution is specialized to the architecture of the
NetApp WAFL file system [31]. In contrast, TagIt addresses
such shortcomings and provides a scalable data management
service. VSFS [58] offers a searchable FUSE-based file system
interface that sits on other parallel file systems, and provides
a namespace-based file query language, similar to Semantic
File System [29]. However, VSFS still maintains a metadata
index outside of the file system, and thus requires its own
data distribution and servers to scale [59]. The integrated
design of TagIt precludes such extra servers and custom dis-
tributions. HP StoreAll ExpressQuery [32] is a production

Fig. 14. Performance overhead of metadata indexing in the CephFS. We used the mdtest [10] benchmark for generating the metadata-intensive
workloads.

Fig. 15. Comparative performance analysis of CephFS and TagIt while
varying the number of OSDs in metadata pool.

2388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

archival storage system that provides a rich metadata service,
using a distributed database [26]. As before, the use of a
decoupled metadata database is a limiting factor in this sys-
tem as well. Moreover, these systems do not support
advanced data management services (Section 3.4). Apache
Lucene/Solr [14] supports automatic metadata extraction for
well-known file types. However, the system also requires file
system crawling due to its decoupled architecture. DART [60]
is a distributed data structure that is tailored to support affix-
based keyword search operations in HPC systems. However,
its inability to support numerical range queries may diminish
its practicality in scientific computing. In contrast, TagIt sup-
ports complex search operations including the numerical
range queries and string-based queries.

In scientific computing, a number of custom solutions, i.e.,
external to the file system, have been proposed to provide data
management services. SciDB [13] is a database system special-
ized for scientific applications, and provides pre-processing of
datasets, such as transporting a vector-based dataset. Data-
Hub [24] offers github-inspired scientific data management
and sharing, based on database techniques. EMPRESS 2.0 [36]
stores custom metadata of a simulation outcome using a rela-
tional database to facilitate a post-processing. SciSpace [33]
offers search and discovery services based on a collaborative
scientific namespace framework. However, such designs
require using a custom interface instead of a file system and
may create an impractical hassle for users. In contrast, TagIt
provides both searchability and pre-processing within the file
systemvia the familiar command line interface.

7 CONCLUSION

In this paper, we have presented a case for tightly integrating
data management services within file systems to enable rich
search semantics therein. Traditionally, such services are pro-
vided via database catalogs external to the file system, which
is not sustainable in the face of emerging data generation
trends. TagIt maintains a scalable and consistent metadata
index database inside the file system and offers advanced data
management services including tagging, search, and active
operations, to expedite scientific discovery processes. TagIt
also features an easy-to-use user-interface; a dedicated com-
mand line utility provides similar semantics of the traditional
find utility, and the dynamic view organizes data collections
of interests in an intuitive directory hierarchy. Our evaluation
with TagIt implemented atop two popular distributed file sys-
tems, i.e., GlusterFS and CephFS, shows that TagIt is viable
and outperforms an external data management approach,
without the need for deploying any additional resources.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. DOE’s Scien-
tific data management program, by US National Science
Foundation through Grants CNS-1615411, CNS-1405697 and
CNS-1565314, and by the National Research Foundation of
Korea (NRF) grant funded by the Korea Government (Minis-
try of Science and ICT) under Grant 2018R1A1A1A05079398.
The work was also supported by, and used the resources of,
the Oak Ridge Leadership Computing Facility, located in the
National Center for Computational Sciences at ORNL, which

is managed by UT Battelle, LLC for the U.S. DOE (under the
contract No. DE-AC05-00OR22725).

REFERENCES

[1] ARM Climate Research Facility, 2020. [Online]. Available: http://
www.arm.gov/.

[2] Ceph Home Page - Ceph, 2020. [Online]. Available: https://ceph.
com/

[3] Discover CephFS, 2020, Accessed: Aug. 07, 2019. [Online]. Avail-
able: https://www.suse.com/media/report/discover_cephfs.PDF

[4] ESGF, Earth System Grid Federation, 2017. [Online]. Available:
http://esg.ccs.ornl.gov

[5] Google Desktop, 2017, [Online]. Available: http://desktop.
google.com

[6] HFS Plus - Wikipedia, the free encyclopedia, 2020. [Online]. Avail-
able: https://en.wikipedia.org/wiki/HFS_Plus

[7] IOR HPC Benchmark, 2020. [Online]. Available: http://
sourceforge.net/projects/ior-sio/

[8] Linux Containers - LXC - Introduction, 2020. [Online]. Available:
https://linuxcontainers.org/lxc/introduction/

[9] Lustre, 2020. [Online]. Available: http://lustre.org
[10] MDTEST. mdtest: HPC benchmark for metadata performance,

2020. [Online]. Available: http://sourceforge.net/projects/
mdtest/

[11] Network Common Data Form (NetCDF), 2020. [Online]. Avail-
able: http://www.unidata.ucar.edu/software/netcdf/

[12] Rhea – Oak Ridge Leadership Computing Facility, 2020. [Online].
Available: https://www.olcf.ornl.gov/computing-resources/rhea/

[13] SciDB, 2020. [Online]. Available: http://www.paradigm4.com/
[14] Solr - Apache Lucene, 2020. [Online]. Available: http://lucene.

apache.org/solr/
[15] Spallation Neutron Source | Neutron Science at ORNL, 2020.

[Online]. Available: https://neutrons.ornl.gov/sns
[16] SQLiteHome Page, 2020. [Online].Available: http://www.sqlite.org
[17] Storage for yourCloud.—Gluster, 2020. [Online].Available: http://

www.gluster.org
[18] Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C

1.45GHz, Sunway | TOP500 Supercomputer Sites, 2020. [Online].
Available: http://www.top500.org/system/178764

[19] The Large Hadron Collider | CERN, 2020. [Online]. Available:
http://home.cern/topics/large-hadron-collider

[20] The Large Synoptic Survey Telescope: Welcome, 2020. [Online].
Available: http://www.lsst.org/

[21] Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x | TOP500 Supercomputer Sites.
[Online]. Available: http://www.top500.org/system/177975

[22] XGC - Oak Ridge Leadership Computing Facility, 2020. [Online].
Available: https://www.olcf.ornl.gov/caar/xgc/

[23] N. Anciaux, S. Lallali, I. S. Popa, and P. Pucheral, “A scalable
search engine for mass storage smart objects,” Proc. VLDB Endow-
ment, vol. 8, no. 9, pp. 910–921, 2015.

[24] A. Bhardwaj et al., “Collaborative data analyticswithDataHub,” Proc.
VLDBEndowment, vol. 8, no. 12, pp. 1916–1919, 2015.

[25] D. D. Chamberlin, J. Gray, and I. L. Traiger, “Views, authoriza-
tion, and locking in a relational data base system,” in Proc. May
19–22, 1975 Nat. Comput. Conf. Expo., 1975, pp. 425–430.

[26] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III , C. A. Soules, and
A. Veitch, “LazyBase: Trading freshness for performance in a
scalable database,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
pp. 169–182.

[27] W. L. Gates, “AMIP: The atmospheric model intercomparison proj-
ect,” Bull. Amer. Meteorological Soc., vol. 73, no. 12, pp. 1962–1970,
1992.

[28] S. Ghemawat,H. Gobioff, and S.-T. Leung, “TheGoogle file system,”
in Proc. 19th ACMSymp. Operating Syst. Princ., 2003, pp. 29–43.

[29] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.,
“Semantic file systems,” in Proc. 13th ACM Symp. Operating Syst.
Princ., 1991, pp. 16–25.

[30] R. Gunasekaran, S.Oral, J.Hill, R.Miller, F.Wang, andD. Leverman,
“Comparative I/O workload characterization of two leadership
class storage clusters,” in Proc. 10th Parallel Data Storage Workshop,
2015, pp. 31–36.

[31] D. Hitz, J. Lau, and M. A. Malcolm, “File system design for an
NFS file server appliance,” in Proc. USENIX Winter Tech. Conf.,
1994, Art. no. 19.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2389

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

http://www.arm.gov/.
http://www.arm.gov/.
https://ceph.com/
https://ceph.com/
https://www.suse.com/media/report/discover_cephfs.PDF
http://esg.ccs.ornl.gov
http://desktop.google.com
http://desktop.google.com
https://en.wikipedia.org/wiki/HFS_Plus
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
https://linuxcontainers.org/lxc/introduction/
http://lustre.org
http://sourceforge.net/projects/mdtest/
http://sourceforge.net/projects/mdtest/
http://www.unidata.ucar.edu/software/netcdf/
https://www.olcf.ornl.gov/computing-resources/rhea/
http://www.paradigm4.com/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://neutrons.ornl.gov/sns
http://www.sqlite.org
http://www.gluster.org
http://www.gluster.org
http://www.top500.org/system/178764
http://home.cern/topics/large-hadron-collider
http://www.lsst.org/
http://www.top500.org/system/177975
https://www.olcf.ornl.gov/caar/xgc/

[32] C. Johnson et al., “From research to practice: Experiences engineer-
ing a production metadata database for a scale out file system,” in
Proc. 12thUSENIXConf. File Storage Technol., 2014, pp. 191–198.

[33] A. Khan, T. Kim, H. Byun, and Y. Kim, “SciSpace: A scientific col-
laboration workspace for geo-distributed HPC data centers,”
Future Gener. Comput. Syst., vol. 101, pp. 398–409, 2019.

[34] A. Khan, C. Lee, P. Hamandawana, S. Park, and K. Youngjae, “A
robust fault-tolerant and scalable cluster-wide deduplication for
shared-nothing storage systems,” in Proc. IEEE 26th Int. Symp.
Model. Anal. Simul. Comput. Telecommun. Syst., 2018, pp. 87–93.

[35] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Z. Zhang,
and B. W. Settlemyer, “Workload characterization of a leadership
class storage cluster,” in Proc. 5th Petascale Data Storage Workshop,
2010, pp. 1–5.

[36] M. Lawson and J. Lofstead, “Using a robust metadata manage-
ment system to accelerate scientific discovery at extreme scales,”
in Proc. IEEE/ACM 3rd Int. Workshop Parallel Data Storage Data
Intensive Scalable Comput. Syst., 2018, pp. 13–23.

[37] A. Leung and E. L. Miller, “Scalable security for large, high perfor-
mance storage systems,” in Proc. 2nd ACM Workshop Storage Secur.
Survivability, 2006, pp. 29–40.

[38] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
“Spyglass: Fast, scalable metadata search for large-scale storage
systems,” in Proc. 7th USENIX Conf. File Storage Technol., 2009,
pp. 153–166.

[39] J. Lofstead, I. Jimenez, C.Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“DAOS and friends: A proposal for an exascale storage system,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2016, Art. no. 50.

[40] U. Manber et al., “GLIMPSE: A tool to search through entire file
systems,” in Proc. Usenix Winter Tech. Conf., 1994, Art. no. 4.

[41] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast
file system for UNIX,” ACM Trans. Comput. Syst., vol. 2, no. 3,
pp. 181–197, 1984.

[42] M. Oh, J. Eom, J. Yoon, J. Y. Yun, S. Kim, and H. Y. Yeom,
“Performance optimization for all flash scale-out storage,” in Proc.
IEEE Int. Conf. Cluster Comput., 2016, pp. 316–325.

[43] S. Oral et al., “Best practices and lessons learned from deploying and
operating large-scale data-centric parallel file systems,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2014, pp. 217–228.

[44] S. Patil and G. Gibson, “Scale and concurrency of GIGA+: File sys-
tem directories with millions of files,” in Proc. 9th USENIX Conf.
File Stroage Technol., 2011, Art. no. 13.

[45] R. Ross and R. Latham, “PVFS: A parallel file system,” in Proc.
ACM/IEEE Conf. Supercomput., 2006, pp. 1135–1142.

[46] S. Sarin, M. DeWitt, and R. Rosenburg, “Overview of SHARD: A
system for highly available replicated data,” Comput. Corpora-
tion America, Cambridge, MA, USA, Tech. Rep. CCA-88–01, 1988.

[47] F. B. Schmuck andR. L.Haskin, “GPFS:A shared-disk file system for
large computing clusters,” in Proc. 1st USENIX Conf. File Storage
Technol., 2002, pp. 19–es.

[48] M. A. Sevilla et al., “Mantle: A programmable metadata load bal-
ancer for the ceph file system,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2015, pp. 1–12.

[49] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[50] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vall�ee, S.-H. Lim, and
A. R. Butt, “Tagit: An integrated indexing and search service for file
systems,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2017, Art. no. 5.

[51] M. Stonebraker, “The case for shared nothing,”Database Eng., vol. 9,
pp. 1–12, 1986.

[52] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “SoMeta:
Scalable object-centric metadata management for high perfor-
mance computing,” in Proc. IEEE Int. Conf. Cluster Comput., 2017,
pp. 359–369.

[53] A. W. Leung and E. Miller, “Scalable security for large, high per-
formance storage systems,” in Proc. 2nd ACM Workshop Storage
Secur. Survivability, 2006, pp. 29–40.

[54] S. A.Weil, S. A. Brandt, E. L.Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. 7th Symp. Operating Syst. Des. Implementation, 2006, pp. 307–320.

[55] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,”
in Proc. ACM/IEEE Conf. Supercomput., 2006, pp. 122–es.

[56] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “RADOS:
A scalable, reliable storage service for petabyte-scale storage
clusters,” in Proc. 2nd Int. Workshop Petascale Data Storage: Held
Conjunction Supercomput., 2007, pp. 35–44.

[57] B.Welch et al., “Scalable performance of the Panasas parallel file sys-
tem,” inProc. 6thUSENIXConf. File Storage Technol., 2008, pp. 1–17.

[58] L. Xu, Z. Huang, H. Jiang, L. Tian, and D. Swanson, “VSFS: A
searchable distributed file system,” in Proc. 9th Parallel Data Stor-
age Workshop, 2014, pp. 25–30.

[59] L. Xu, H. Jiang, L. Tian, and Z. Huang, “Propeller: A scalable real-
time file-search service in distributed systems,” in Proc. IEEE 34th
Int. Conf. Distrib. Comput. Syst., 2014, pp. 378–388.

[60] W. Zhang, H. Tang, S. Byna, and Y. Chen, “DART: Distributed
adaptive radix tree for efficient affix-based keyword search on
HPC systems,” in Proc. 27th Int. Conf. Parallel Archit. Compilation
Techn., 2018, Art. no. 24.

[61] D. Zhao et al., “FusionFS: Toward supporting data-intensive scien-
tific applications on extreme-scale high-performance computing
systems,” in Proc. IEEE Int. Conf. Big Data, 2014, pp. 61–70.

Hyogi Sim received the BS degree in civil engi-
neering and MS degree in computer engineering
from Hanyang University, Seoul, South Korea, and
the MS degree in computer science from Virginia
Tech, Blacksburg, Virginia, in 2014, and is currently
working toward the PhD degree at Virginia Tech,
Blacksburg, Virginia. He joinedOak Ridge National
Laboratory in 2015, as a post-masters associate.
During this appointment, he conducted research
and development on active storage systems and
scientific data management for HPC systems. He

is currently anHPC systems engineer with Oak Ridge National Laboratory.
His primary role is to design and develop a checkpoint-restart storage sys-
tem for the exascale computing project. His areas of interest include stor-
age systems and distributed systems.

Awais Khan received the BS degree in bioinfor-
matics from Mohammad Ali Jinnah University,
Islamabad, Pakistan. He is an MS leading to PhD
integrated program student in Sogang University,
Seoul, South Korea. He worked for one of leading
software companies as a software engineer from
2012 to 2015. Currently, he is amember with Labo-
ratory for Advanced System Software, Sogang
University Computer Science and Engineering
Department. His research interests include cloud
computing, cluster-scale deduplication, parallel,
and distributed file systems.

Sudharshan S. Vazhkudai is the director of the
Hyper-Scale Data Center Program, Computing
and Computational Sciences Directorate, Oak
Ridge National Lab (a U.S. DOE Lab). In this role,
he leads an initiative to build and deploy scalable,
distributed storage infrastructure and rich data/
metadata management services to capture and
support mountains of scientific data emanating
from computer simulations, experiments and
observations conducted at the various ORNL facili-
ties. In addition, he also contributes to the co-

design and deployment of supercomputers and associated solutions for
the Nation’s Premier Supercomputing Center, the Oak Ridge Leadership
Computing Facility (OLCF). OLCF is home to the world’s No. 1 supercom-
puter, Summit, the future Frontier exascale system and the fastest storage
system, Spider, providing billions of core hours to a scientific user base
from academia, government and industry, to perform breakthrough
research in science. Prior to his current role, he led the Technology Integra-
tion (TechInt) Group, building solutions for supercomputers in several
areas such as file and storage systems, non-volatile memory, data man-
agement, system architecture, networking, and distributed systems. He is
also a distinguished scientist with ORNL and studies the fundamental
underpinnings of supercomputers and data centers in many of the afore-
mentioned areas.

2390 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

Seung-Hwan Lim received the bachelor’s and
master’s degrees, both from Seoul National Uni-
versity, Seoul, South Korea, in 1998 and 2000,
respectively, and the PhD degree in computer sci-
ence and engineering from Penn State, State Col-
lege, Pennsylvania, in 2012, under the guidance of
Dr. Chita R. Das. Between PhD and master’s
degree, he worked as a software engineer with
Samsung Electronics from February 2000 to
August 2005. He joined Oak Ridge National Labo-
ratory in February 2012 as a postdoctoral research

associate, transited into a staff member in September 2013. His current
research focuses on data analysismethods and systems.

Ali R. Butt received the PhD degree in electrical
and computer engineering from Purdue University,
West Lafayette, Indiana, in 2006. He is a professor
of computer science with Virginia Tech. He is a dis-
tinguished member of the ACM. He is a recipient of
an NSF CAREER Award (2008), IBM Faculty
Awards (2008, 2015), a VT College of Engineering
(COE) Dean’s Award for “Outstanding New assis-
tant Professor” (2009), an IBM Shared University
Research Award (2009), and NetApp Faculty Fel-
lowships (2011, 2015). He was named a VT COE

faculty fellow in 2013. He was an Academic visitor with IBM Almaden
Research Center (Summer 2012) and a visiting research fellow with the
Queen’s University of Belfast (Summer 2013). He has served as the asso-
ciate editor of the ACM Transactions on Storage (2016-present), the IEEE
Transactions on Parallel and Distributed Systems (2013-present), the
Cluster Computing: The Journal of Networks, Software Tools and Applica-
tions (2013-present), and the Sustainable Computing: Informatics and
Systems (2010-2015). He is an alumni of the National Academy of Engi-
neering’s US Frontiers of Engineering (FOE) Symposium (2009), US-
Japan FOE (2012), andNational Academy of Science’s AASymposiumon
Sensor Science (2015). He was also an organizer for the US FOE in 2010.
His research interests include distributed computing systems, cloud
computing, file and storage systems, Internet of Things, I/O systems, and
operating systems. At Virginia Tech, he leads the Distributed Systems &
Storage Laboratory (DSSL).

Youngjae Kim received the BS degree in com-
puter science from Sogang University, Seoul,
South Korea, in 2001, the MS degree in computer
science from KAIST, Daejeon, South Korea, in
2003, and the PhD degree in computer science
and engineering from Pennsylvania State Univer-
sity, University Park, Pennsylvania, in 2009. He
is currently an associate professor with the Depart-
ment of Computer Science and Engineering,
Sogang University, Seoul, South Korea. Before
joining Sogang University, he was a R&D staff

member with the US Department of Energy’s Oak Ridge National Labora-
tory (2009–2015) and an assistant professor with Ajou University, Suwon,
South Korea (2015–2016). His research interests include distributed file
and storage, parallel I/O, operating systems, emerging storage technolo-
gies, and performance evaluation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SIM ET AL.: INTEGRATED INDEXING AND SEARCH SERVICE FOR DISTRIBUTED FILE SYSTEMS 2391

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:19:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

