
Received September 24, 2020, accepted November 10, 2020, date of publication November 18, 2020,
date of current version December 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3039056

A Content Fingerprint-Based Cluster-Wide
Inline Deduplication for Shared-Nothing
Storage Systems
AWAIS KHAN 1, (Member, IEEE), PRINCE HAMANDAWANA 2, AND YOUNGJAE KIM 1
1Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea
2Department of Computer Science and Engineering, Ajou University, Suwon 16499, South Korea

Corresponding author: Youngjae Kim (youkim@sogang.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF), Korea government (MSIT), under Grant
NRF-2018R1A1A1A05079398, and in part by the Institute of Information and Communications Technology Planning and Evaluation
(IITP), Korea government (MSIT) (Development of low-latency storage module for I/O intensive edge data processing) under Grant
2020-0-00104.

ABSTRACT Deduplication has been principally employed in distributed storage systems to improve storage
space efficiency. Traditional deduplication research ignores the design specifications of shared-nothing
distributed storage systems such as no central metadata bottleneck, scalability, and storage rebalancing.
Likewise, inline deduplication integration poses serious threats to storage system read/write performance,
consistency, and scalability. Mainly, this is due to ineffective and error-prone deduplication metadata,
duplicate lookup I/O redirection, and placement of content fingerprints and data chunks. Further, transaction
failures after deduplication integration often render inconsistencies in data chunks, deduplication metadata,
and garbage data chunks. results in rendering inconsistencies in data chunks, deduplication metadata,
and garbage data chunks. In this paper, we propose GRATE, a high-performance inline cluster-wide data
deduplication, complying with the design constraints of shared-nothing storage systems. In particular,
GRATE eliminates duplicate copies across the cluster for high storage space efficiency without jeopardizing
performance. We employ a distributed deduplication metadata shard, which promises high-performance
deduplication metadata and duplicate fingerprint lookup I/Os without introducing a single point of failure.
The placement of data and deduplication metadata is made cluster-wide based on the content fingerprint
of chunks. We decouple the deduplication metadata shard from read I/O path and replace it with a read
manifestation object to further speedup read performance. To guarantee deduplication-enabled transaction
consistency and efficient garbage identification, we design a flag-based asynchronous consistency scheme,
capable of repairing the missing data chunks on duplicate arrival. We design and implement GRATE in Ceph.
The evaluation shows an average of 18% performance bandwidth improvement over the content addressable
deduplication approach at smaller chunk sizes, i.e., less than 128KB while maintaining high storage space
savings.

INDEX TERMS Parallel and distributed storage systems, shared-nothing architecture, data deduplication.

I. INTRODUCTION
The shared-nothing storage systems (SN-SS) accommodate
a large number of storage servers for high performance, scal-
ability, availability, and fault-tolerance [1], [2]. SN-SS such
as GlusterFS [2], Sorento [3] and Ceph Object Storage [1] is
widely employed in cloud storage due to multiple properties:

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Wang .

(i) it contains no central metadata bottleneck, therefore it is
highly scalable, (ii) storage servers are independent where a
single storage server failure cannot crash the whole cluster,
and (iii) it allows dynamic changes in the cluster, such as addi-
tion or removal of storage servers and can relocate objects in
the cluster to balance storage utilization across the storage
servers.

Nowadays, the ever-growing volume of digital informa-
tion has raised a critical and increasing concern for storage

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 209163

https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0002-1030-3844
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0002-0973-1614


A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 1. (a) Traditional distributed DB-sharding approach and (b) storage rebalancing issues in shared-nothing storage system such as Ceph [1] and
GlusterFS [2]. Specifically, (b) illustrates the chunk relocation when a new server is added to the cluster.

capacity optimization [4]–[11]. Deduplication (dedup) tech-
niques are employed widely in storage systems to improve
storage efficiency. There exist several studies on cluster-scale
dedup [7], [12]–[19]. However, direct adoption of such dedup
techniques on the shared-nothing storage system violates the
basic design constraints of SN-SS. For example, a centralized
dedup approach, where a single centralized dedup server han-
dles all the dedup requests adopted in [12], [14], [20], not only
violates shared-nothing properties of SN-SS but also limits
the scalability and introduces a single point of failure. Thus,
it is critical to consider a decentralized dedup approach for
SN-SS. On the other hand, a simple decentralized approach
to distributing dedupmetadata across multiple external dedup
servers [6], [13], [15]–[17], [21]–[26] requires specialized
high performance dedup appliances, increasing the manage-
ment and hardware cost of large-scale clusters [26]. Further-
more, using distributed key-value stores or external database
services also violate the node autonomosity of SN-SS.

An alternative approach is to embed dedup on each stor-
age server in the cluster while ensuring the design proper-
ties such as shared-nothing and node independence [1], [3].
For instance, a simple database partitioning (DB-sharding)
approach [27], [28] that embeds a single database partition
(DB-Shard) of the whole dedup metadata database on each
storage server has been proposed [18]. However, this database
sharding approach to SN-SS suffers from inherited problems,
i.e., to identify a duplicate chunk, the fingerprint lookup is
broadcasted to all DB-Shards in the cluster, which poses a
severe threat to scalability. Figure 1 depicts global dedup
implemented via the DB-sharding approach in SN-SS. When
a duplicate fingerprint lookup is required, the lookup I/Os are
redirected to all the DB-shard instances alive in the cluster to
find out the existence of fingerprint, as shown in Figure 1(a).
This random broadcasting incurs high-performance degrada-
tion, particularly for small chunk sizes employed to improve
storage efficiency.

Another challenging issue is deeply related to storage
rebalancing. In SN-SS, the storage rebalancing happens on
the addition, removal, or failure of a storage server in the
cluster. It can also be triggered when there is a significant

I/O load or space usage imbalance among servers [3], [29].
This rebalancing shuffles the data chunks across the storage
servers to evenly balance the space utilization in the cluster,
as shown in Figure 1(b). In such a case, dedup metadata
must be updated for the new location of the chunk in the
cluster. Therefore, rebalancing incurs high metadata update
I/Os. So, to keep track of chunk location across the clus-
ter, the respective DB-shards are updated on each storage
server. Additionally, it also requires to modify the existing
rebalancing mechanism to monitor chunk location changes.
Figure 1(a) and (b) illustrate these problems.
Figure 1(a) depicts the addition of a new server, i.e.,

server.5 in the storage cluster, whereas Figure 1(b) shows
the process of chunk shuffling to balance storage utilization
across all the servers in the cluster. The black dotted arrows
depict the chunk relocation from one server to the other
server, whereas the red dotted arrows depict chunk location
updates in database shards. Similarly, the read performance
also degrades when dedup is integrated into storage systems
due to inherent change in read I/O path, i.e., the object
is reconstructed by contacting DB-shards for object lay-
out/metadata which often acts as a bottleneck [30]. Another
approach is to employ object recipe or content-addressable
object approach [21], [31]–[33]. In this approach, each object
has its separate metadata object containing recipe or lay-
out information, whereas reference count related metadata
is stored in an extended attribute of each data chunk [31],
[32]. This approach is viable for SN-SS, but it incurs high
dedup metadata overhead by having a content/recipe file for
each object. Moreover, it degrades performance due to slower
fingerprint lookup and reference update operations.

Further, dedup also requires transactional changes, where
a complete object transaction splits into multiple small fixed
or variable chunk-based transactions [18], [34]–[36]. These
changes, if not implemented carefully, can cause inconsistent
data and dedup metadata in an event of communication, disk
or storage server failures. To address such inconsistencies,
a soft-update metadata approach in a single disk-based file
system was proposed [30], [37]. However, it is not directly
applicable to the distributed nature of SN-SS, where parallel

209164 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

I/Os distribute data chunks. Additionally, transaction order-
ing and delay operations require extra check-pointing and
journaling, which is contrary to dedup, i.e., storage space sav-
ings. Another outcome of transaction failures is the presence
of garbage chunks in the cluster, which are the remains of
failed transactions. The effective removal of garbage chunks
is essential in reclaiming space and also to ensure the correct-
ness of reference count against each fingerprint. There exist
studies on identifying and removing garbage chunks [24],
[38]. However, again both incur additional monitoring and
journaling overhead.

To address the above-mentioned challenges, we propose
to build GRATE, a fingerprint-based scalable and consistent
cluster-wide inline dedup for SN-SS. We employ distributed
dedup metadata shard (DM-Shard) hosted on each storage
server and use content-generated fingerprints for duplicate
lookup I/O and data chunk placement. To ensure transac-
tion consistency and garbage identification, we design a
flag-based asynchronous consistency scheme. We decouple
the dedup metadata shard from read I/O path with a read
manifestation object to further speedup read performance for
hot objects.

This paper has the following specific contributions:

• We use the content-generated fingerprint to distribute and
locate the chunks in the cluster to overcome I/O broad-
casting overhead. We employ database partitioning to han-
dle deduplication metadata in a decentralized manner.
The content fingerprint and distributed metadata together
enable to preserve the design attributes of SN-SS.

• We design flag-based asynchronous consistency to ensure
the correct status of the transaction, data, and deduplication
metadata. Our consistency scheme is capable of repairing
the corrupt deduplication data and metadata in case of
duplicate arrivals.s

• We propose a contention-free read I/O by decoupling
DM-Shard from read I/O path to minimize the dedupli-
cation metadata bottleneck for hot objects, a significant
performance degradation factor in the read I/O path.

• We design and implement an effective garbage collection
for distributed deduplication enabled storage systemswith-
out additional monitoring and journaling overhead.

• We implement the proposed cluster-wide deduplication in
Ceph and evaluate the proposed ideas in a real testbed.
We compared GRATE with distributed deduplication and
content-addressable approach. The evaluation shows an
average performance improvement of 38% and 18% at
smaller chunk sizes, i.e., 4KB and 64KB without depre-
ciating disk space savings.

The rest of the paper is organized as follows: Section II
describes the background, motivation and challenges. In
Section III we describe how we address the challenges
through our key components followed by design and imple-
mentation in Section IV. We discuss the contention-free
read I/O design in Section V. Section VI presents our eval-
uation results followed by read performance analysis in

FIGURE 2. An overview of distributed storage architectures.

Section VII and related work in Section VIII. We conclude in
Section IX.

II. BACKGROUND AND MOTIVATION
In this section, we present the necessary background and
practical problems to apply cluster-wide inline deduplication
on the distributed shared-nothing storage systems.

A. SHARED-NOTHING STORAGE SYSTEM
SN-SS has emerged as an essential storage architecture in
recent years [1]–[3], [39]–[41]. The key characteristics of
such systems include, i) high performance and scalability,
ii) no centralized metadata bottleneck, iii) no single point
of failure, and iv) addition and removal of storage servers
on the go. On the contrary, shared storage architectures
e.g., Lustre [42] has the issues of a single point of con-
tention and failure, i.e., centralized metadata server. Figure 2
depicts an architectural overview of two systems, i.e., Par-
allel File system (PFS) with a centralized metadata server
shown on (left) and Distributed File System (DFS) following
the shared-nothing architecture shown on (right). In particu-
lar, Lustre implements a centralized metadata server where
file layout information is stored, and when multiple clients
access to the metadata server, it becomes a bottleneck. Fur-
ther, such centralized metadata server also acts as a sin-
gle point of failure, resulting in loss of data. In contrast,
distributed storage systems following shared-nothing archi-
tecture such as Ceph [1], [43] and GlusterFS [2], do not
have such a single point performance bottleneck issue. Both
do not employ a centralized metadata server and instead,
use a Distributed Hash Table (DHT) for data placement.
Since they know where data is placed in advance before I/O
requests are issued, SN-SS can, therefore, scale-out without
metadata servers. In particular, Ceph is also widely known
for its dynamic and highly efficient placement algorithm
CRUSH [44]. CRUSH algorithm empowers Ceph to invali-
date the need for metadata servers. Thus, making it a single
point of failure-free.

1) CEPH STORAGE MODEL
Ceph is a distributed object storage system that provides
excellent performance, reliability, and scalability [1], [45].
Ceph maximizes the separation between data and metadata
management by replacing allocation tables with a uniform
and balanced data distribution algorithm named CRUSH,

VOLUME 8, 2020 209165



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

designed for unreliable object storage daemons (OSDs) [1],
[44]. Ceph consists of object storage daemon (OSD), mon-
itors, and clients. The logical pools are defined on storage
servers, and each pool comprises of several placement groups
(pgs), which is configured based on available OSDs. Ceph
stores and replicate an object at the granularity of a placement
group. When Ceph clients store an object, CRUSH com-
putes the placement group for storing objects using logical
pool name, object name hash, and modulo total number of
placement groups [44]. The additional details of the CRUSH
algorithm can be found in [44].

B. EXISTING DEDUPLICATION TECHNIQUES
Next, we describe the existing data deduplication studies
along with their scope and limitations.

1) INLINE VS. OFFLINE
Deduplication in primary storage can be classified as inline or
offline, depending on the time when deduplication operation
is carried [46]. Inline deduplication is carried out when the
I/O is in progress [16], whereas offline deduplication is per-
formed on already stored data [47]. Inline deduplication is
highly effective in terms of instant storage space savings [5],
[19], [37], [48]–[50]. However, it degrades I/O throughput.
It is highly sensitive to I/O latency because it includes chunk-
ing, computing fingerprints of data chunks, and duplicate
lookups in the critical I/O path.

2) LOCAL DISK-BASED DEDUPLICATION
Data deduplication is an essential component of cloud storage
environments [18], [19]. The storage systems with dedu-
plication decrease storage consumption by identifying dis-
tinct data chunks with identical content. A single instance
of unique data chunk is stored with metadata to reconstruct
original data [50]. To gain such storage efficiency, local or
disk-based deduplication is adopted in different systems [14],
[30], [37], [51]–[56]. A few commercial products such as
Pure storage [52], EMC [51], and HPE 3Pa [57] perform
inline deduplication at the storage device level, however,
requires a massive amount of storage space for dedupli-
cation metadata. In disk-based deduplication, each disk is
responsible for removing duplicates locally. The benefit of
disk-based deduplication is high performance and compli-
ance with storage system characteristics. However, storage
space efficiency decreases with the increasing number of
disks in the cluster. For instance, as shown in Figure 3, foo
and bar are two objects with different names but identi-
cal contents. The disk-based deduplication fails to capture
such duplicates due to object name-based placement and
non-awareness of neighbor disk contents. As reported in [32],
local deduplication gains a space savings of only 15% even
in the case of a 50% deduplication ratio in the workload.
Such local disk-based deduplication solutions fail to improve
storage space efficiency in cluster storage environments
sufficiently.

FIGURE 3. An overview of disk-based local data deduplication.

3) GLOBAL DATA DEDUPLICATION
Over the past years, there have been many efforts to develop
global or cluster-wide deduplication solutions [12], [13],
[15], [39], [49], [58]. In global deduplication, each data
chunk can have only a single instance across the whole
cluster, unlike local or disk-based deduplication. Venti [12]
employs a central deduplication server which does not fit
into shared-nothing architectures. HYDRAstor [21] can scale
because it uses the distributed content-addressable manifest
object to maintain the reference list of each chunk. How-
ever, the latency can increase in HYDRAstor [21] when the
number of objects increases because the content-addressable
manifest object is stored and managed like a data storage
object. Extreme Binning [20], SILO [17],

∑
-Dedupe [16]

and Probabilistic Deduplication [13] can remove duplicates
from the cluster. However, storage space efficiency is highly
dependent on workload because they use different similar-
ity and locality-based algorithms to detect duplicates. Exact
Deduplication [18], DeDe [15] and Boafft [23] share high
similarity to our proposed design. But these studies require
a two-level fingerprint check, i.e., first check fingerprint in
local index partition, and then remote node index partition.
Moreover, these studies target backup and archival storage
rather than primary storage. Further, SolidFire [59], EMC
VNX [22], and Clustered Data on Tap [60], all offer global
deduplication but limited to block-level interface.

C. FAILURE CASES IN DEDUPLICATION
As per our observation and analysis, deduplication imple-
mentation introduces transactional complexity along with
failure possibility. The deduplication write order, i.e., storing
fingerprint first followed by data chunk storage is essential,
to identify duplicates in advance before writing to storage.
Whereas, reversing the write order, i.e., storing data chunk
followed by storing fingerprint, cannot ensure the presence
of duplicate, as every data chunk is stored being unaware
that a particular data chunk is already stored in the storage.
Further, such reversed order cannot prevent duplicate write
I/Os causing additional disk bandwidth consumption. The
two likely failures can occur as a result of deduplication
integration in SN-SS.

1) PARTIAL TRANSACTION FAILURE
The deduplication integration in storage systems enables
storage space efficiency. However, it requires a complete

209166 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

transaction roll-back mechanism for failure scenarios to
ensure data and metadata consistency, which brings more
complex transaction handling. The partial transaction failure
is defined as when a transaction fails in the middle where
all the chunk fingerprint entries are populated in fingerprint
index tables, but some of the unique data chunks are not
stored entirely due to temporary network, software, or any
hardware issue [30], [61]. The effects of this failure include,
i) false or invalid entries populated in the fingerprint index
table, i.e., the actual data chunk corresponding to finger-
print does not exist in the storage. And ii) subset of data
chunks stored correctly during this transaction with no par-
ent object linked, i.e., garbage data chunks. An additional
fault-tolerance and recovery patch is required to prevent such
failures.

2) REFERENCE TO AN INVALID FINGERPRINT
An invalid fingerprint means that the associated data chunk
to this fingerprint does not exist in the storage system. In this
case, when a duplicate fingerprint lookup I/O arrives, scans
the fingerprint index table. If the fingerprint is found, it sim-
ply increments the fingerprint reference count value. For
example, let’s assume that DM-Shard contains false or invalid
fingerprint entry. If a duplicate arrives, it increments the refer-
ence count value of that invalid fingerprint, meaning that there
are two duplicates. However, there exists no actual stored data
chunk associated with those two fingerprints. In the conven-
tional deduplication approach, the presence of a fingerprint
in DM-Shard denotes that the corresponding data chunk is
also present in the storage, which might not be accurate in the
failure case, thus making duplicate fingerprints to increment
the reference value. Such reference to an invalid fingerprint
problem is attributed to deduplication transaction ordering.
The deduplication implementations using reference count
logic are highly susceptible to such a problem. Currently,
there is no mechanism to ensure that the fingerprint is valid or
invalid. In other words, whether the associated data chunk is
present in the storage or not. This failure introduces the data
and metadata inconsistency.

D. MOTIVATION
Our target architecture is shared-nothing storage systems
such as Ceph [1].

Currently, Ceph lacks such inline cluster-wide data dedu-
plication and in order to design deduplication for Ceph,
we need to follow shared-nothing storage system design
constraints. A simple and centralized deduplication in Ceph
introduces the central dependency which breaks the no cen-
tralized metadata property of Ceph. The distributed and
decentralized deduplication can address such design con-
straints. However, it poses several other challenges. For
example, how accurately and efficiently we can find the
duplicate contents in a Ceph storage cluster spanning over
100s of servers. A simple solution is to use a fixed location
of chunks in storage cluster. However, we cannot rely on fixed
or confined location of data chunks across the cluster because

in self-balanced storage systems like Ceph, the data chunks
are relocated across the disk and storage servers to balance
the storage utilization [1], [3]. Figure 1 depicts this scenario,
where a new server is added and chunks are relocated to
balance the storage utilization to the newly added server. The
fixed or confined location adopted in existing studies can
cause serious issues such as additional heavymetadata update
I/Os depicted by red dotted arrows in Figure 1(b). Thus,
it is very challenging to embed a deduplication approach
that complies with the design properties of shared-nothing
distributed storage systems such as, shared-nothing and self-
rebalancing.

Apart from self-rebalancing, these approaches merely
scale as the number of storage servers increases in the cluster.
For example, to find duplicates, we need to check all the
DB-Shards to find the duplicate fingerprints. Such dupli-
cate fingerprint lookup latency is greatly impacted by the
number of nodes in the cluster. The similarity or locality
based algorithms such as [13], [17], [25], [29], [62], [63]
cannot remove the duplicates from cluster entirely. Similarly,
the direct integration of deduplication also influences the
read I/O performance because an additional redirection is
needed to satisfy the read request. In such scenarios, the
deduplication metadata often becomes a hotspot and bot-
tleneck if not carefully designed [30]. Another challenge is
to ensure the deduplication data and metadata transactional
consistency and correctness. All referenced data chunks and
fingerprint entries must be preserved, so deduplicated data
can be retrieved for future reads.

A partially failed deduplication transactions can leave
garbage data chunks, which are not pointing to any parent
object or being referenced by any other chunk in the cluster.
The motivation behind the removal of garbage data chunks is
to claim the space occupied by the stored data chunks which
are not referenced by any object. A simple logging approach
to track and remove garbages of failed transactions is viable in
the disk-based deduplication approach. But it is challenging
in clusters spanning over 100s of OSD servers. As, logging
based methods require additional space, which is contrary to
deduplication, i.e., less space savings.

Overall, the motivation of this study is to design an inline
server-side cluster-wide deduplication, which has low fin-
gerprint lookup I/O overhead, and it can adapt to a node
joining and removal seamlessly. We also consider it critical
to solve the deduplication data and metadata inconsistencies
from the failed transactions in our cluster-wide deduplication
design. Further, to minimize read performance degradation
introduced by the inclusion of deduplication, we consider
decoupling the read I/O path from write I/O.

III. GRATE: CLUSTER-WIDE DATA DEDUPLICATION
In this section, we discuss the critical design decisions for
cluster-wide deduplication in shared-nothing storage sys-
tems. We firstly introduce the overview of each component
followed by the workflow, as shown in Figure 4.

VOLUME 8, 2020 209167



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 4. GRATE: cluster-wide deduplication based on DB-sharding and
content-fingerprint based placement in SN-SS.

A. SYSTEM OVERVIEW
The proposed deduplication design comprises five compo-
nents, as shown in Figure 4.

1) CONTENT FINGERPRINT-BASED I/O REDIRECTION
This module ensures the distribution and lookup of dedu-
plication metadata and data chunks. One of the challenges
in our study is not to fix the location of data chunks due
to storage rebalancing property of storage systems such as
Ceph [1] and Sorrento [3]. We accomplish this by employing
a second CRUSH [44] algorithm to distribute and locate the
data chunks and chunk fingerprints.

2) DISTRIBUTED DEDUPLICATION METADATA SHARD
Each storage server stores data chunks and deduplication
metadata shard, i.e., DM-Shard in Figure 4. Specifically,
we manage deduplication metadata in a scalable, distributed
manner. Each deduplication metadata partition (DM-Shard)
keeps the unique information of objects and data chunks in a
separate data structure, i.e., Object Map (OMAP) and Chunk
Information Table (CIT).

3) FLAG-ASSISTED CONSISTENCY
This module provides the consistency of data chunks and
deduplication metadata. We integrate a consistency flag
against each chunk fingerprint in the deduplication metadata
shard. The flag validates the consistency status of any chunk
fingerprint entry in DM-Shard.

4) CONTENTION-FREE READ I/O
To improve the read performance due to the integra-
tion of deduplication, the contention-free read I/O mod-
ule selectively generates the manifest object to speed-up
and for the scalable reconstruction of hot objects for the
read I/Os.

5) PARALLEL GARBAGE COLLECTION
This module periodically executes on each object storage
server. It identifies, collects, and removes the garbage data
chunks and invalid fingerprint entries in deduplication meta-
data shards.

B. WORKFLOW
GRATE write workflow is shown in Figure 4. The client per-
forms object name hashing and locate the storage server
to write or read objects in the cluster. Each storage server
performs deduplication and stores data and metadata. When
storage server receives a write request (OSS 1 in Figure 4),
it is responsible for splitting the object into small fixed-size
data chunks and computing the fingerprint for each chunk’s
content. Then, it redirects the data chunk to the storage server
based on the computed fingerprint (OSS 4 in Figure 4). This
fingerprint-based redirection frees from keeping the location
of each data chunk in the storage system. At this point,
the storage server builds a mapping of the object and its
data chunks’ fingerprints in Deduplication Metadata Shard
(DM-Shard) as shown in Figure 4 (OSS 1). We explain the
DM-Shard in Section IV-A.

The redirected chunks received on other storage servers
(OSS 4 in Figure 4) are treated in the following manner;
The chunk fingerprint lookup is made in Chunk Information
Table (CIT) of DM-Shard. If chunk fingerprint exists and
consistency flag is valid, then the reference count (RFC in
CIT) increment is granted. Whereas, the non-existence of
fingerprint is treated as a unique chunk. CIT entry is pop-
ulated with an invalid flag and data chunk is stored in the
storage server (OSS 4). This process is iterated for all the
data chunks in parallel. When all the chunks are stored, then
Object Map (OMAP) entry is created (OSS 1 in Figure 4)
which defines the object layout such as name, fingerprint
and chunk list of the object. The write operation finishes,
when all the data chunks, OMAP and CIT data structures are
created. The flag-assisted consistency guarantees the valid-
ity and correctness of all the CIT entries and data chunks
in storage without additional logging and journaling. The
DM-Shard and tagged consistency together assist in iden-
tifying the garbages and orphan data chunks, i.e., remains
of partially failed transactions. The chunk fingerprints with
an invalid consistency flag (Flag in CIT) are interpreted as
garbage data chunks and collected periodically.

Note that, each read I/O first landing to any OSS needs to
contact DM-Shard’s OMAP to fetch the object reconstruction
layout, i.e., list of data chunk fingerprints belonging to the
object. Then, each data chunk against the fingerprint is read
in parallel, and the full object is assembled and returned to
the client. Besides, we also offer a different read I/O path for
objects with high sharing and access frequency, i.e., unique
data chunk, which can become hotspot or overlaps in many
objects. We generate a recipe or manifest object for such
objects and avoid aggressive contact points to DM-Shard,
thus improving read I/O latency in deduplication storage
systems. We detail this contention-free read I/O in Section V.

209168 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 5. Object map and chunk information table layout.

IV. DESIGN AND IMPLEMENTATION
In this section, we discuss in depth the design and implemen-
tation of GRATE.

A. DEDUPLICATION METADATA SHARD
We build Deduplication Metadata Shard (DM-Shard) as
shown in Figure 4 to effectively manage deduplication meta-
data. The design decision to use distributed DM-Shard is
to comply with the scalable and shared-nothing property of
shared-nothing storage systems. The centralized deduplica-
tion metadata design limits the scalability and violates the
shared-nothing property of SN-SS. Every storage server in
the cluster hosts a DM-Shard holding all the persistent data
structures such as object layout information and data chunk
fingerprint. Each shard keeps unique information of objects
and data chunks in a separate data structure, i.e., Object
Map (OMAP) and Chunk Information Table (CIT), as illus-
trated in Figure 5.

• Object Map: OMAP maintains the complete layout and
reconstruction logic of an object, i.e., object name, object
fingerprint, and list of data chunks. The OMAP data struc-
ture is shown in Figure 5. In DHT-based storage systems,
an object is identified by hashing the object name. If we
do not maintain the hash of the object, we cannot recon-
struct the original object because we need all the chunks’
fingerprints created from this object. OMAP assists in read
operations, where object fingerprint is given to lookup
chunks belonging to a specific object. Each row of OMAP
denotes an original object layout.

• Chunk Information Table:CITmaintains the performance-
sensitive deduplication metadata. It includes data chunk
fingerprint, reference count, and commit flag. All the
chunk lookup and reference update operations are possible
via this data structure. Each row of CIT denotes informa-
tion about a specific chunk fingerprint.

The benefit of keeping different data structures ismanifold:
i) To provide an effective execution of fingerprint operations,
i.e., lookup, increment/decrement, ii) Reduced congestion on
a single data structure when multiple I/Os access the data
structure, and iii) To avoid data chunk fingerprint lookup in
case of the read request.

Both OMAP and CIT data structure entries are created
synchronously during a write operation to avoid concurrent
lookups of identical fingerprints, which can result in storage
inefficiency. We describe complete read and write I/O trans-
action with the usage of OMAP and CIT in Subsection IV-B.
To ensure deduplication metadata replication and fault-
tolerance, we rely on the underlying shared-nothing storage
system because we store our DM-Shard in the storage server,
and it is replicated like a regular object.

B. CHUNK RELOCATION AND I/O ROUTING
SN-SS such as Ceph [1] and Gluster [2] distribute objects
in a storage-balanced fashion. For instance, Ceph uses the
CRUSH algorithm [44] to fairly distribute the storage load
across the storage servers, when the cluster topology changes,
e.g., a new storage server is added, removed or disk fail-
ure occurred. The objects are relocated across the storage
servers to balance the storage load in the cluster, as shown
in Figure 1(b). This object and chunk relocation process is
neglected in previous deduplication studies such as [16], [18],
[21], [23]. In previous studies, the location of the object and
data chunks is stored along with metadata, i.e., data chunk
1A is stored on server.a, and data chunk 1B is stored on
server.b. This type of deduplication metadata management
suffers when chunks are relocated in the cluster because the
object and chunk location is lost. One solution can be to trans-
form current self-balancing mechanism to update the dedu-
plication metadata while relocating the objects and chunks,
but it entails the complex implementation and a high number
of I/Os for every object and chunk relocation to update the
deduplication metadata.

To determine the exact location of the data chunk and
respective DM-Shard across the cluster, we use the data
chunk fingerprint. The fingerprint can be obtained in two
ways: i) to generate the fingerprint directly from the data
chunk contents (write request approach), and ii) to obtain
the data chunk fingerprint from OMAP fingerprint tells the
storage server location responsible for storing the actual
data chunk and the deduplication metadata shard (CIT).
This content-based placement relieves us from i) compli-
cated location management for each data chunk, ii) modi-
fications in the existing self-balancing mechanism, and iii)
frequent deduplication metadata updates. Another gain of
this content-based placement is that we do not require to
broadcast I/Os to all storage servers for fingerprint lookup.
Instead, we send a single lookup I/O to only a single storage
server.

C. WRITE I/O FLOW
Next, we discuss the write I/O transaction flow in
our proposed cluster-wide dedup approach, as shown in
Figure 6(a) & (b). The encircled number depicts the sequence
of steps/operations in Figure 6.

1) WRITE I/O
The client performs object name hashing and locates the
storage server to write the object. At first, the object is divided

VOLUME 8, 2020 209169



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 6. A complete write I/O transaction in cluster-wide data deduplication system.

into small data chunks, as shown in Figure 6(a) (step 1). The
different color represents unique data chunk content, and the
fingerprint is computed against each data chunk’s content (fp
in step 2). Then, the fingerprint is supplied to the placement
function for redirection to OSS in the cluster (step 3). This
placement function is exactly same with client placement
function, i.e., CRUSH in Ceph [1] and DHT in GlusterFS [2].
The DM-Shard hosted on redirected OSS validates the fin-
gerprint existence in CIT. If fingerprint exists and the con-
sistency flag is valid, then the reference count increment
is granted (step 4). If fingerprint exists and the consistency
flag is invalid, then reference count increment is not granted.
Rather, a stat like system call is issued to chunk storage to
validate the existence of data chunk contents (getattr() in
step 4). If the stat call fails, then we store the data chunk
and switch the consistency flag to valid. If stat returns true
then, we switch flag to valid and send the acknowledgment
to OSS responsible for performing chunking, fingerprinting,
and redirection (step 5 & 6). Finally, respective OSS sends
the acknowledgment message to the client (step 7).

2) READ I/O
The read I/O is simpler than the aforementioned write I/O,
as shown in Figure 6(b). The client issues a read object
request, and the request is redirected to OSS bound to store
the object using the CRUSH algorithm. At this moment,
we retrieve the object layout information (list of chunk fin-
gerprints comprising the object) from the OMAP stored in
the DM-Shard given object fingerprint (step 1 & step 2). The
OMAP structure is shown in Figure 5. Next, we issue parallel
I/Os to read chunk data (step 3 & 4) and then reconstruct the
object and return to the client (step 5).

D. FLAG-ASSISTED ASYNCHRONOUS CONSISTENCY
The deduplication metadata inconsistencies in distributed
storage systems lead to data authenticity and integrity
issues [61], [64]. For example, if an object transaction is
split into multiple chunk-based transactions, and one of the
small transactions fails. Then, in such a case, the whole object
transaction fails, and two problems are likely to happen.

First, it results in an invalid or misleading reference finger-
print in DM-Shard, and second, the existence of garbage
data chunks left from the failed transaction. Worst of all,
a new incoming duplicate fingerprint increments the invalid
reference fingerprint entry, causing metadata inconsistency.
Due to transaction-level modifications, a complicated trans-
action and rollback logic are required to cater to failure cases
and ensure reference count consistency [24], [38]. A simple
solution is to populate fingerprint entries in DM-Shard once
the transaction completes successfully, and if the transaction
fails, there are no invalid fingerprint entries. However, this
simple approach has two significant problems, i.e., First,
it compromises the deduplication efficiency because when
duplicates arrive in parallel, we cannot check fingerprints in
DM-Shard. Second, if any failure happens during the trans-
action, the data chunks become unreachable, as there are no
corresponding fingerprints in DM-Shard.

To address such consistency concerns, we add a consis-
tency flag to each data chunk entry in CIT, which not only
specifies the consistency state of the chunk but is capable of
restoring the missing data chunk as well. The CIT structure
is shown in Figure 5. The consistency flag can only be valid
or invalid. By default, the consistency flag is invalid for every
chunk entry in CIT. The valid consistency flag ensures that the
data chunk is stored correctly, and deduplication metadata is
consistent. Whereas, an invalid consistency flag shows that
data chunk corresponding to the fingerprint entry is missing
from storage or transaction is currently in progress.

An alternative is to add a consistency flag with an object
or chunk entry and update the consistency flag at transaction
completion synchronously. However, such a choice requires
transaction lock and updating the flag synchronously, which
affects the scalability of the storage system. To avoid
such unnecessary transaction locking, we propose an asyn-
chronous thread-based consistency manager that runs on
every storage server. All the incoming write I/Os registers
to consistency manager. Once the I/O transaction completes,
the consistency manager asynchronously updates the con-
sistency flag managed in CIT (Section IV-A). If there is
a crash during reference count update I/O, we do not roll

209170 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 7. Reference count increment operation with valid and invalid
consistency flag.

back the whole transaction. Instead, such fingerprint entries
with an invalid consistency flag are collected by the garbage
collector, and later, both data chunk and fingerprints are
removed.

Note that, when storage rebalancing is triggered, the sys-
tem relocates the data chunks across the cluster. In such cases,
the CIT entry is populated with an invalid flag on DM-Shard
for the relocated data chunk, and once the data chunk is
rearranged successfully, then the flag entry is updated. Note
that the flag update is carried out in the same fashion as for
the regular data chunk write operation. In the current scope
of the work, there might exist some reference count values
which can be higher than the real duplicates referring to that
fingerprint. However, we believe that such can be tolerable
compared to a fingerprint entry having no data chunk associ-
ated in the storage.

1) UNIQUE AND DUPLICATE WRITE USE-CASE
We describe the proposed consistency scheme with simple
use-cases, as shown in Figure 7.

a: UNIQUE WRITE
In this case, the object splits into fixed-size small chunks and
stores the chunk on different object storage servers based on
data chunk fingerprint. Whenever a CIT entry is created for
any data chunk with an invalid consistency flag, the consis-
tency manager is notified. It validates the status of the chunk
in storage and switches the consistency flag from invalid to
valid asynchronously. This approach does not introduce addi-
tional notable latency to write I/O. Note that, the consistency
manager is not notified for reference count operations such
as increment or decrement of chunk fingerprint with a valid
consistency flag. Moreover, it is not possible to have an entry
with a valid consistency flag and no associated data chunk
stored in the storage system.

b: DUPLICATE WRITE
In duplicate write case, when a duplicate fingerprint arrives
and requires to increment the reference count in CIT, it needs
to check the flag before increment as shown in step 1 of
Figure 7(a). The fingerprint entries with a valid consistency
flag allow the reference count increment. However, if the
consistency flag is invalid, additional measures are needed
to ensure the consistency of deduplication data and meta-
data. Figure 7(b) shows a case of partial transaction failure
where a chunk is stored successfully, but due to crash, the
flag is not switched from invalid to valid. Then, there is a
need to perform an additional consistency check, which we
call Reconciliation Check (RCC), to ensure the existence
of data chunk in the storage server (step 2 in Figure 7(b)).
The RCC operates, in the same manner, like get attribute
system call in the file system. If RCC returns the data chunk
attributes, we switch the consistency flag from invalid to valid
(step 3) and proceed with reference count operation, i.e.,
increment (step 4). Another use-case is for duplicate arrival
similar to Figure 7(b), i.e., the flag is invalid, but the actual
data chunk linked to the corresponding fingerprint is missing
from storage as depicted in Figure 7(c). Such a scenario can
happen when fingerprints are stored in DM-Shard, and failure
occurred before the storage of data chunks. This use-case
highlights how the proposed consistency flag and reconcil-
iation check can repair the data chunk inconsistency. When
the reconciliation check finds that data chunk is missing
from the storage (Figure 7(c) step 2), it stores the actual
data chunk (step 3), and the flag is changed from invalid to
valid (step 4). Then, only the reference increment operation
is granted (step 5).

We claim that the proposed asynchronous consistency
scheme ensures the data and deduplicationmetadata accuracy
even in case of failures and prevents the storage system from
inconsistencies.

E. PARALLEL GARBAGE COLLECTION
The garbage identification and removal are studied in pre-
vious studies as well [24], [37], [38], [61]. However, these
studies use different kinds of logging and monitoring, which
can overload the storage servers and consume the storage
server resources, thus reducing the overall system perfor-
mance. To claim free space consumed by garbage data
chunks, we design an effective parallel garbage identifica-
tion and removal mechanism. As our deduplication service
is embedded on each object storage server, so the garbage
collection is also dedicated to each object storage server. The
garbage collection thread runs in the background and peri-
odically collects the data chunk fingerprints with an invalid
consistency flag from CIT. It keeps the fingerprints for a
pre-defined threshold. Once the threshold expires, the thread
cross-validates the consistency flag of collected fingerprints
to CIT entries. This matching is a compute-intensive oper-
ation and is required to assess any change, in particular to
the collected fingerprints. If there is no change in consistency
flag status for collected fingerprint entries, then the garbage

VOLUME 8, 2020 209171



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

data chunks are removed from the storage system, and their
corresponding fingerprints are also removed fromDM-Shard.
Furthermore, the fingerprints with an invalid flag but no cor-
responding data chunks in storage are also removed. We do
not use any additional journaling because it requires extra
disk space.

Our garbage collection operates in three phases mainly as
shown in Figure 8;

Select: The select phase collects and buffers the finger-
prints with an invalid consistency flag from local DM-Shard,
as shown in Figure 8 (step 1).

Filter:The filter phase cross-validates the collected finger-
print flagswith respective fingerprint flags in local DM-Shard
and removes the fingerprints from the list with an updated
consistency flag. For example, if a fingerprint in the select
phase has an invalid flag, but while cross-validating, the fin-
gerprint consistency flag is valid. Then, we do not remove this
reference fingerprint fromDM-Shard. Neither we remove the
associated data chunk. It is triggered after the select phase
based on a configured time threshold. Note that, a smaller
time threshold can compromise the storage server throughput
and can elevate CPU usage.

Remove: This is the final phase, where we remove the
stored chunks (step 3.1) and buffered entries from CIT
(step 3.2) in Figure 8. We pick fingerprint entry from the
buffered list, check the stored data chunk against it. If the data
chunk exists, remove the data chunk first and then fingerprint
entry from the DM-Shard. Otherwise, remove the fingerprint
entry from the DM-Shard.

Note that the ordering of fingerprint and data chunk
removal is important in deduplication environments. Figure 8
(step 3.1 and 3.2) reflects the order when data chunks are
removed before fingerprint removal. It is because if there
is any failure or interruption in the garbage collection oper-
ation after data chunks are removed, we can collect and
remove the fingerprint entries from the DM-Shard in the
next garbage collection cycle. On the other hand, if the
fingerprints are removed earlier than the data chunks and
failure happens, the data chunks become unreachable. It is
because the fingerprints referencing to those data chunks are
already removed, Thus, leaving garbage and freely floating
data chunks inaccessible.

V. CONTENTION-FREE READ I/O
In this section, we discuss the motivation behind proposed
contention-free read I/O design.

One of the dominant limiting factors in degraded read
performance in deduplication enabled storage systems is
essentially derived from high access latency to deduplication
metadata [30]. There are several factors elevating latency
access to deduplication metadata. Table 1 shows the dedupli-
cation metadata I/Os making contact with DM-Shard aggres-
sively in our previous work [36]. So, when the workload
is a mix of read and write I/Os, each deduplication meta-
data I/O hitting DM-Shard contributes to introducing addi-
tional latency for the read I/Os. It is because underlying

FIGURE 8. Overview of garbage collection flow. Note that, RFC column in
CIT is not shown for simplicity.

TABLE 1. Deduplication metadata I/O categorization with respect to
DM-Shard.

DM-Shard is a single thread, which fails to facilitate multiple
requests simultaneously. Even if it is multi-thread imple-
mentation, then various writers will acquire the lock, incur-
ring additional latency. Similarly, when a read I/O comes,
it has to wait until the availability of DM-Shard, in par-
ticular, OMAP, as shown in Figure 5. Moreover, the prob-
lem gets worse when the workload has high deduplication
ratio, which denotes a particular server hosted DM-Shard
is going to be a hotspot for deduplication metadata I/Os
shown in Table 1 due to content-centric deduplication. If the
deduplication core architecture is changed, i.e., similarity or
locality-based algorithms to identify duplicates as proposed
in [17], [25], [26], it reduces the deduplication efficiency.
The goal of our research is to design high performance and
scalable cluster-scale deduplication without compromising
space savings.

The existing deduplication approaches intended for global
deduplication in Ceph [31], [32], [36] are not suitable for both
read and write at the same time. For instance, [31], [32] heav-
ily relies on managing reference count values in extended
attributes of chunks, which degrades write I/O performance.
Whereas, [36] maintains reference count and consistency
flags inDM-Shard, which is amagnitude faster when it comes
to fingerprint scan/lookup and reference update operations.

To reduce the conflict between read and write I/Os in
DM-Shard, we propose to decouple read I/O path from
write I/Os by designing a hybrid approach, where the
write I/Os are served via DM-Shard and read I/Os are

209172 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 9. Contention-free read I/O path. The cfp[] denotes the chunk
fingerprint list similar to OMAP’s chunk list (see Figure 5).

served from a content-addressable manifest object. In the
rest of the paper, we refer to it as Read Manifest Object
(RMO). The RMO is nothing but just a Ceph object con-
taining the object’s layout information, similar to OMAP
in DM-Shard. The reason to redirect read I/Os to RMO
objects is manifolds, i.e., i) RMO is treated like a Ceph
object and reads are served in a scalable fashion, ii) it reduces
stress on DM-Shards, and iii) it is easy to cache frequently
accessed RMO objects. There are several studies solving read
contention problems with respect to data contention [29],
[32], [61], [65]. However, most of these deduplication
works neglect deduplication metadata contentions in read
I/O path.

A. READ MANIFEST OBJECT GENERATION
By simply generating RMO against each object incurs high
space overhead and will result in a higher number of addi-
tional I/Os as well in the cluster. Thus, we propose to dynam-
ically generate RMO against hot objects with high access
frequency. The hotness of the object is defined by the chunk
with high reference count value (CIT in Figure 5). Thus,
we can improve write I/O latency by minimizing stress on
DM-Shard and also improve read I/O latency by decoupling
it from DM-Shard. However, it is not true for every read I/O,
and some read I/Os for objects with low hotness measure will
be still entertained by DM-Shard. We specifically generate
RMOs by scanning CIT of DM-Shards, and backtracking
the CIT chunk entry with higher reference count in CIT and
generate a RMO object against particular object in OMAP.
Further, different cache eviction policies can be implemented
on such RMO object generation and removal to minimize
storage space utilization.

B. READ I/O REDIRECTION
Figure 9 shows the read I/O path in GRATE. As we have
discussed earlier the read I/O flow in Section IV-C2, and is
valid for objects with low hotness value or access frequency.
However, for objects with higher access frequency, the I/O
request will not hit DM-Shard and instead CRUSH [44] will
directly retrieve the generated RMO against read I/O for
object layout information and read data chunks in parallel as
shown in Figure 9. Note that, the proposed contention-free
design will reduce the stress on DM-Shard and decouples
the read I/O path from write I/O. However, the chunk frag-
mentation problem still exists and we consider to solve this
challenge as our future work.

VI. EVALUATION
This section provides the evaluation of proposed cluster-wide
data deduplication framework.

Implementation: We implement GRATE in Ceph v10.2.3.
The DM-Shard, consistency manager, and garbage collection
thread are embedded in each OSD. We use fixed-size chunk-
ing and SHA-1 algorithm to generate a data chunk fingerprint.
We pass the fingerprint to the CRUSH algorithm [44] to
distribute the data chunks in the Ceph storage cluster. The
deduplication operations such as fingerprint lookup I/Os,
tagged consistency, and garbage collection are achieved via
the Ceph standard messenger framework. We slightly mod-
ified the self-balancing and recovery mechanism to update
deduplication metadata when data chunks relocate across the
storage cluster. We use SQLite [66] as back-end storage for
DM-Shard.

A. EXPERIMENTAL SETUP
We configured Ceph storage cluster on a testbed consist-
ing of 7 OSSs, 3 Monitors, and 4 Ceph client nodes.
Each machine is equipped with Intel E5-2670v4@2.40GHz
(10 Cores), 32GB DRAM and 2 × 256GB Samsung SSDs
per OSS running Linux CentOS v7.3.

We used the FIO [67] benchmark for evaluation by vary-
ing deduplication ratio and number of client threads with a
4 TB synthetic write I/O workload. We compare the proposed
deduplication approach (GRATE) with three variants.

Baseline Ceph: Ceph without deduplication integration.
DB-Shard Dedup: Ceph with deduplication implemented

via simple DB-sharding. It stores the location of chunks in
OMAP, i.e., fixed or pinned location and does not use con-
tent fingerprint-based I/O redirection. To check duplicates,
it requires to broadcast fingerprint I/Os to all the DM-Shards
on each OSD server across the cluster. Note that, DM-Shard
uses SQLite DB with a single thread implementation as in
GRATE.

CAO-Dedup: Ceph with deduplication implemented via
content-addressable object. It is also referred to as hash
object or file recipe approach in the previous studies [21],
[31], [32]. In this approach, each object transaction has
its own separate content addressable object which lists the

VOLUME 8, 2020 209173



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 10. Comparative performance analysis with distributed deduplication and content addressable approach. The DR denotes deduplication ratio.

chunk fingerprints, i.e., similar to our OMAP structure (see
Section IV-A). However, the reference count is maintained in
the extended attribute of each stored data chunk. As discussed
in Section VIII, due to high design similarity in both [31]
and [32], we only compare the proposed approach with [31].
We claim that, the comparison with one of the two studies
in the current manuscript reflect the characteristics of both
studies and does not require comparison to each of them indi-
vidually and CAO approach [31] in the current manuscript
reflects the characteristics of the work in [32] as well.

B. WRITE PERFORMANCE ANALYSIS
1) VARYING CHUNK SIZE
Figure 10(a) shows the write bandwidth of all four
approaches. We set the deduplication percentage to zero, i.e.,
no duplication and use 8 client threads in FIO benchmark.
We observe that, DB-Shard Dedup shows poor performance
out of all approaches due to duplicate lookup I/O broadcast
problem, i.e., to find a duplicate fingerprint, it requires to
send I/Os to all DB-Shards in the cluster. Whereas, GRATE and
CAO-Dedup both show scalable performance with increasing
chunk size. It is because both of the approaches employ
content-generated fingerprint and no blind lookup I/Os are
broadcasted. An important thing to note here is that GRATE and
CAO-Dedup show a little performance difference but when
the chunk size gets bigger than 512KB, CAO-Dedup outper-
forms our approach. It is mainly attributed to OSD caching.
CAO-Dedup performance improves via OSD caching which
makes duplicate lookup operations faster. On the contrary,
the smaller chunk size ends in more OSD cache misses, thus
leading to degraded performance compared to our approach.
GRATE has high performance and space efficiency for small
chunk sizes. CAO-Dedup, on the other hand, has poor per-
formance in this case, i.e., GRATE is better than CAO-Dedup
when it requires storage space efficiency.

2) VARYING DEDUPLICATION RATIO
Next, we discuss the performance of GRATE with respect to
deduplication ratio as shown in Figure 10 (b). We set the
chunk size to 128 KB and use 8 client threads to compare

GRATE with other approaches. We observed that all the three
approaches, i.e., DB-Shard, CAO-Dedup and GRATE shows
a limited performance improvement up to a certain thresh-
old regardless of deduplication percentage in the workload.
A simple fact is that the high deduplication ratio incurs
reduced number of writes in the cluster, hence increasing
the performance. Whereas, at high deduplication ratio, the
expected performance gain is masked by chunking, fin-
gerprint and deduplication metadata operations. The higher
deduplication ratio, the high number of deduplication meta-
data I/Os, i.e., specifically reference increment I/Os. Surpris-
ingly, all of the approaches show an average of only up to 6%
of performance improvement compared to 0% deduplication
ratio. One of the reason for less performance improvement
is derived from redirection of small data chunk I/Os over the
network, which are too small to show further improvement
even if not stored. An important thing to note here is that,
if the network is slower, the performance improvement will
be higher with increasing deduplication ratio in the workload.

3) VARYING NUMBER OF CLIENTS
To test the scalability, we vary the number of client threads in
FIO [67]. We set the chunk size 128KB and fixed deduplica-
tion ratio to 20%.

Figure 10(c) shows that all of the approaches scale with
increasing number of client threads. However, as the client
thread varies from 8 onwards in DB-Shard Dedup, the per-
formance increase becomes less compared to performance
gain between 4 and 8 threads. A simple reason is that;
DB-Shard Dedup uses a single thread version of SQLite
which cannot scale with massively broadcasted duplicate
chunk I/Os causing contention on DB-Shards. Similarly,
GRATE also has same DB-Shard implementation but I/O broad-
cast problem is resolved by using content-fingerprint based
I/O redirection, i.e., CRUSH [44], which minimizes the stress
on each DB-Shard. GRATE show scalability and improves the
bandwidth with increasing number of client threads because
CRUSH [44] distributes the data chunks uniformly in a
load-aware fashion to object storage servers and DM-Shard
is distributed across all the object storage servers which
overcome the possible chances of deduplication metadata

209174 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 11. Deduplication metadata lookup I/O frequency and latency analysis.

contention. Even though, CAO-Dedup also uses CRUSH [44]
for data distribution, the duplicate chunk lookup and ref-
erence management in extended attribute limits the perfor-
mance increase in CAO-Dedup.

Note that, we observed a similar performance trend for
Figure 10(b) and (c), for all the chunk sizes as in Figure 10(a),
thus we show only results with 128 KB chunk size. In over-
all, the proposed approach outperforms the CAO-Dedup and
DB-Shard Dedup in smaller chunk sizes and show a sub-
stantial performance gain when deduplication ratio increases
in workload. Further, scalability with increasing number of
clients also proves that the proposed design is highly robust.

C. I/O REDIRECTION AND DEDUPLICATION METADATA
In this subsection, we discuss the content fingerprint based
I/O redirection scalability and deduplicationmetadata storage
overhead.

1) LOOKUP IO SCALABILITY AND REFERENCE OPERATIONS
The efficient and scalable fingerprint lookup directly impacts
the deduplication enabled storage system performance. The
distributed storage systems comprising of hundreds of OSDs
require a scalable lookup I/O to ensure high performance.
Figure 11 (a) shows the fingerprint lookup I/O performance
with respect to increasing number of OSDs. We observe
from the results that the GRATE shows a consistent lookup
I/O latency as compared to DB-Shard Dedup. However,
DB-Shard Dedup broadcasts fingerprint lookup I/O to all the
OSDs across the cluster to validate the duplication of chunk.
This I/O broadcast limits the scalability of deduplication
storage systems.

For deduplication metadata operations, in particular, for
reference count increment, we compare the proposed with
approach with two implementations, i) CAO-Dedup, and
ii) GRATE-RC, a variant of the proposed approach, in which
the for every reference increment I/O, an additional Recon-
ciliation Check I/O is initiated to validate the status of data
chunk in the storage. Note that, unlike GRATE-RC the proposed
approach only issues the Reconciliation Check I/O when the
consistency flag is invalid and not for every I/O.

Figure 11 (b) depicts the reference count increment oper-
ation for each of the aforementioned approach. As observed
from the previous analysis in Figure 10, when the chunk size
ismuch smaller, CAO-Dedup performance is lower compared

to GRATE. It is because of placement group locking structure
of Ceph, i.e., a higher number of reference increment I/O
requests land to the same placement group. However, Ceph
uses lock to ensure consistency at placement group level,
introducing additional latency to dedup metadata operations.
More importantly, we observed GRATE-RC shows poor perfor-
mance than CAO-Dedup, it is because an additional lookup
I/O is redirected to storage to confirm the presence of actual
data chunk. In reality, GRATE only redirects the increment I/O
if the consistency flag is invalid for a particular fingerprint
entry, which is an outcome of transaction failure scenarios.

2) DEDUPLICATION METADATA STORAGE OVERHEAD
To analyze the deduplication metadata storage overhead,
we compared the proposed approach with CAO-Dedup
approach. The CAO-Dedup creates an additional content
addressable object to facilitate future read operations and
similarly, this content addressable object is also replicated.
We use two different chunk sizes to clearly observe the
metadata storage overhead,.i.e., 64K and 512K as shown
in Figure 11(c). For both chunk sizes, we observe that
CAO-Dedup incurs more than the twice metadata storage
overhead compared toGRATE’smetadata storage overhead. It is
because we used database object to manage all deduplica-
tion metadata. Whereas, CAO-Dedup manages the reference
counter in extended attribute and each content addressable
object, i.e., layout/CAO object has its own Ceph object meta-
data. Irrespective of the chunk size, the Ceph object metadata
cannot be avoided which is approximately at least 512 bytes
for each content addressable object [32].

Overall, the number of duplicate lookup I/Os of proposed
approach and CAO-Dedup are same due to usage of same
methodology, i.e., CRUSH algorithm to place and locate the
fingerprint and data chunks. However, the reference update
operation and deduplication metadata storage overhead is
lower in the proposed approach than the counter parts. More-
over, the deduplication metadata storage overhead of GRATE

is magnitude less than CAO-Dedup, thus contributing to disk
storage space savings.

D. ASYNCHRONOUS TAGGED CONSISTENCY
To analyze the performance penalty incurred by the proposed
consistency scheme, we compare the proposed approach

VOLUME 8, 2020 209175



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

FIGURE 12. GRATE flag-assisted consistency performance.

FIGURE 13. Garbage collection impact on performance and CPU
utilization in CAO-Dedup.

(GRATE-CBA) with three other implementation variants. First,
GRATE without any consistency flag mechanism, i.e., system
becomes inconsistent in case of failures. Second, unlike the
proposed approach, where we manage the consistency flag
in CIT table. This approach manages the consistency flag in
OMAP table and update the flag synchronously at transaction
completion and refer to this approach as (GRATE-OBS). The
benefit of keeping the flag in OMAP ismagnitude lower num-
ber of I/Os to update the consistency flag. Third, we store and
manage consistency flag against in CIT table and update the
flag synchronously and refer to this approach as (GRATE-CBS).
This approach requires an I/O to update the consistency flag
synchronously causing higher number of I/Os compared to
GRATE-OBS.

Figure 12 shows the bandwidth of different consistency
variants when employed. We see that, when chunk size is
small, the performance is poor in both chunk and object-based
synchronous consistency compared to proposed GRATE-CBA.
However, when we increase the chunk size, the performance
improves. The chunk-based consistency shows high perfor-
mance overhead as compared to others. It is due to additional
higher number of I/Os required to switch the flags. Whereas,
GRATE-OBS shows fair performance because only a single
I/O is required to switch the flag but it still degrades the
performance more than 15% compared to baseline GRATE.
On the other hand, the GRATE-CBA incurs negligible overhead
compared to chunk and object-based synchronous consis-
tency schemes. Because both of the synchronous approaches
introduce a transaction lock which increases the I/O latency,
whereas the proposed approach switches the consistency flag

FIGURE 14. Garbage collection impact on performance and CPU
utilization in GRATE.

asynchronously without acquiring any transaction lock, thus
no performance overhead is incurred.

E. GARBAGE COLLECTION OVERHEAD
To show the effectiveness of the proposed garbage iden-
tification and removal, we compare our approach against
Ceph internal scrubbing mechanism [1]. As, the current con-
tent addressable approach, i.e., CAO-Dedup approach relies
on Ceph scrubbing mechanism to remove garbage chunks,
analogous to Fsck [1], [32]. Ceph scrubbing can be carried
out in two ways, light scrubbing, and deep scrubbing [68].
Deep scrubbing reads the data and uses checksums to ensure
data consistency and integrity, Whereas, the light scrub-
bing checks the object size and attributes stored within each
placement group [68]. Therefore, to make a fair comparison,
we consider only light scrubbing and invoke garbage collec-
tion after every 80 seconds. Figure 13 depicts the write perfor-
mance of CAO-Dedup with scrubbing in progress. From the
results, we observe that the when scrubbing in invoked, the
CAO-Dedup approach reduces the performance and elevates
the CPU utilization. It is because the scrubbing scheme has
to analyze all the placement group catalogs and check all the
attributes of both content addressable object and data chunks
stored.

Whereas, Figure 14 depicts the write performance of our
approach along with garbage collection in progress. Our
approach outperforms the CAO-Dedup with integrated scrub-
bing approach. Because our approach only analyze the finger-
print entries with an invalid consistency flag. We also analyze
the CPU utilization of our approach compared to CAO-Dedup
when garbage collection is triggered. Figure 13 and 14 show
the CPU utilization of each approach. We observe a similar
pattern as in write performance, that CAO-Dedup has higher
CPU consumption because of compute-intensive scanning of
all placement groups catalog and metadata attribute match-
ing for each object. However, there is another limitation
in CAO-Dedup integrated with scrubbing approach, that it
cannot remove the invalid, erroneous and corrupt reference
count entries.

F. STORAGE EFFICIENCY
We conduct this experiment to show the storage space effi-
ciency of proposed GRATE compared to local disk-based dedu-
plication. To enable disk-based dedup, we configure Ceph
cluster with BtrFS [53] as backend disk file system with

209176 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

TABLE 2. Deduplication space savings in percentage.

TABLE 3. Recovery time (in seconds) with varying failed OSDs.

deduplication enabled. We use 100% deduplication ratio and
report the results in Table 2. We observe that disk-based
dedup storage efficiency decreases with increasing number
of disks. It is because disks are not aware of each other and
cannot identify the duplicates stored on other disks. Whereas,
GRATE storage efficiency remains high irrespective of number
of disks. Note that, Grate achieves up to 85% of space savings
even with a high duplication ratio in the workload. The rest
of the space saving is populated by an additional amount of
deduplication metadata being generated while deduping data.
Further, the size of this additional metadata grows proportion-
ally as the chunk size becomes smaller.

G. STORAGE REBALANCING AND RECOVERY
In this experiment, we show the robustness of proposedGRATE,
cluster-wide deduplication and its impact on existing rebal-
ancing and recovery mechanism. We compare our approach
with baseline Ceph and DB-Shard Dedup. For evaluation,
we store 100GB of data with 80% deduplication ratio in the
cluster and mark an OSD as failed OSD. Then, Ceph triggers
the self-balancing and recovery mechanism. The experimen-
tal results are shown in Table 3. The results clearly depict
the improved recovery time as taken by baseline Ceph and
DB-Shard approach. To further strengthen our observation,
we increase number of failed OSDs in the cluster by marking
OSD down and out. Whenever an OSD is marked down and
out in Ceph, the OSD is considered as failed OSD and cannot
participate in data placement. This improved recovery time is
due to less number of write operations in cluster because both
DB-Shard and GRATE approaches write the unique chunks,
whereas, baseline Ceph writes complete set of objects irre-
spective of deduplication ratio. However, difference between
GRATE and DB-Shard Dedup is mainly derived from additional
location metadata update I/Os in DB-Shard Dedup. Whereas,
the proposed approach employs fingerprint-based location
determination and requires no additional location update
I/Os. The evaluation results conclude that, the proposed GRATE

is highly robust and adopts to existing recovery mechanism.
It also reduces the recovery time as compared to baseline.

VII. READ PERFORMANCE ANALYSIS
In this section, we discuss the read I/O performance of
proposed cluster-wide deduplication and compare it with
CAO-Dedup by varying deduplication ratio, and mixed

FIGURE 15. Read I/O performance analysis.

read-write workloads.We use synthetic datasets generated via
FIO [67]. Because FIO provides suitable controls for gener-
ation of read-write mixed workload and deduplication ratio.
The motivation behind to use a mixed read-write workload is
to clearly portray the performance penalty in different con-
tention scenarios by the proposed deduplication architecture.

Figure 15 depicts the comparative analysis of GRATE with
no read optimization, GRATE-RMO with conflict-free read I/O
and CAO-Dedup approach. We set the chunk size to 4KB,
deduplication ratio to 30%, and use 8 client threads. Then,
we vary the read-write ratio to analyze the performance over-
head caused by contention of deduplication metadata. Note
that, we only generate 30% RMO objects for total workload.
We see that CAO-Dedup shows higher performance than the
proposed approaches in read I/Os. It is because CAO-Dedup
approach uses the content addressable objects for all read
requests, which are treated like normal Ceph objects [32]
and offers Ceph inherited scalability for read I/Os. Whereas,
GRATE degrades performance in mixed read-write workloads
due to potential contention at DM-Shard. We clearly see
that GRATE-RMO performs better than GRATE due to less con-
tact points with DM-Shard but performs lower than CAO-
Dedup. This lower performance is attributed to selective
RMO objects, which gives us more space efficiency com-
pared to CAO-Dedup approach but at the cost of read per-
formance degradation.

VIII. RELATED WORK
In this section, we focus on well-known dedup approaches
and compare against the proposed approach.

There are two state of the art design approaches used for
data dedup in distributed storage systems. First, disk-based
data dedup where each disk or storage server in the system
is responsible for removing duplicates locally such as [37],
[51]–[53], [59], [69]. The benefit of disk-based dedup is high
performance. However, storage space efficiency is limited
to local disk only and degrades with increasing number of
disks/nodes in the cluster. The second design approach is
global data dedup which can give maximum space savings
as compared disk-based local deduplication but incurs certain
performance overhead.

Several studies have been conducted on such global
dedup [12], [13], [15], [49], [58]. Venti [12] employs central
deduplication server which does not fit into shared-nothing
architectures. HYDRAstor [21] can scale because it uses the

VOLUME 8, 2020 209177



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

distributed content-addressable manifest object to maintain
the reference list of each chunk. However, the latency can
increase in HYDRAstor [21] when the number of objects
increases because the content-addressable manifest object is
stored and treated like a general object. ExtremeBinning [20],
SILO [17],

∑
-Dedupe [16] and Probabilistic Deduplica-

tion [13] can remove duplicates from the cluster. However,
the storage space efficiency is highly dependent on work-
load because they use different similarity and locality based
algorithms to detect duplicates. Exact Deduplication [18],
DeDe [15] and Boafft [23] share high similarity to our pro-
posed design. But these studies require two level fingerprint
check, i.e., first check fingerprint in local index partition, and
then remote node index partition. Moreover, these studies
target the backup and archival storage rather than primary
storage.

Additionally, DeDe and Boafft forms a superchunk by
aggregating multiple small chunks based on similarity pre-
diction algorithm and reroute the request to respective storage
server. Whereas, superchunk similarity cannot always make
good decision. Other Deduplication approaches for primary
storage systems, such as iDedup [49], DBLK [70], and I/O
Deduplication [71], exploit different workload characteristics
to attain a fair throughput and latency.

Besides, none of the existing studies consider the object
relocation problem in cluster-scale deduplication which is
triggered when storage is imbalanced [3]. The metadata
consistency is also a critical factor to ensure deduplication
system reliability [19], [30], [64], [72]. The inconsistent
metadata in deduplication systems can cause data integrity
issues such as reference count corruption and garbage data
chunks [37], [73]. The proposed method in [73] increases the
I/O latency by inline switching of flags per object and chunk
for each transaction. One of the recent studies [24] proposed a
container-based dedup framework equipped with group mark
and sweep based garbage collection approach. This approach
divides the underlying storage into small containers in a
similar fashion to Ceph placement group concept [1], [43]
and attach logs to each container to monitor all the writes and
updates. After a certain time threshold, the garbage collection
is triggered. Each log is scanned by threads for modified and
updated chunks. This approach requires high monitoring and
logging overhead. Moreover, every log entry cross-checking
with storage contents degrades performance during garbage
collection.

A recent study [32] shows the design trade-offs of global
deduplication via content addressable approach in Ceph [1].
However, firstly [32] is not purely inline, rather, it is offline
or lazy deduplication more suitable for hybrid storage. Sec-
ondly, it requires high metadata storage space compared to
our approach. Thirdly, it relies on internal scrubbing of Ceph
for garbage collection, which is unable to repair the reference
count errors. The most recent work [31] targets cluster-wide
deduplication in Ceph and uses the hash and deduplicated
object approach, which is similar to the content address-
able object adopted in [32]. Both [32] and [31] implements

cluster-scale deduplication in Ceph and share high resem-
blance in their design from various aspects, i.e., i) both
employ double hashing algorithm, i.e., CRUSH [44] to reach
actual data object, ii) both keep hash of content in an addi-
tional Ceph object called Hash object, iii) both require every
Ceph object to have an additional hash object, and iv) both
use extended attributes for reference count and employ write
lock to modify flag and reference count. On the contrary,
we rely on DB partitioning to manage lookups and refer-
ence count. The deduplication metadata storage is magnitude
smaller compared to [31], [32]. Crocus [39] a recent study
proposedGPU-aware chunking and fingerprinting tomitigate
the performance overhead of cluster-wide inline deduplica-
tion in Ceph hybrid storage. In this study, we propose to build
cluster-wide data deduplication capable to remove duplicates
across the cluster. The data chunk and deduplication meta-
data placement are conducted based on content generated
fingerprint. We employ Asynchronous tagged consistency
scheme to ensure the metadata and data consistency. Our
distributed metadata design and consistency scheme enables
us to efficiently identify and remove garbage data chunks
which are the result of the partially failed transactions. Fur-
ther, we eliminate the deduplicationmetadata bottleneck from
read I/O path.

IX. CONCLUSION
This paper presents a robust fault-tolerant, cluster-wide dedu-
plication framework for shared-nothing storage systems.
We design and implement a distributed deduplication meta-
data shard approach that uses the content hash of chunks to
minimize I/O broadcasting and object relocation problems.
We propose a tagged consistency approach to recover ref-
erence errors and lost data chunks in case of failures. The
distributed deduplication metadata and consistency approach
enables effective garbage identification and removal of
garbage data chunks. Further, the proposed contention-free
read I/O eliminates the deduplication metadata bottleneck
from read I/O path. We implement the proposed ideas in
Ceph, a scale-out distributed shared-nothing storage system.
The evaluation shows that the proposed approach supports
high scalability with minimal performance overhead, high
robustness, and fault tolerance.

REFERENCES
[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,

‘‘Ceph: A Scalable, High-performance Distributed File System,’’ in Proc.
7th Symp. Operating Syst. Design Implement., 2006, pp. 307–320.

[2] GLUSTER. Storage For Your Cloud. Gluster. Accessed: Oct. 23, 2020.
[Online]. Available: http://www.gluster.org

[3] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu,
‘‘A self-organizing storage cluster for parallel data-intensive applications,’’
in Proc. ACM/IEEE SC Conf., Nov. 2004, p. 52.

[4] A. Fekry, ‘‘Big data gets bigger: What about data cleaning analytics as a
storage service?’’ in Proc. 9th USENIX Workshop Hot Topics Storage File
Syst. (HotStorage). Santa Clara, CA, USA: USENIX Association, 2017.

[5] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sen-
gupta, ‘‘Primary data deduplication-large scale study and system design,’’
in Proc. USENIX Conf. Annu. Tech. Conf. Berkeley, CA, USA:
USENIX Association, 2012, p. 26. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2342821.2342847

209178 VOLUME 8, 2020



A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

[6] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, and L. Xu, ‘‘Application-aware
local-global source deduplication for cloud backup services of personal
storage,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1155–1165,
May 2014.

[7] X. Zhao, Y. Zhang, Y. Wu, K. Chen, J. Jiang, and K. Li, ‘‘Liquid:
A scalable deduplication file system for virtual machine images,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1257–1266, May 2014.

[8] J. Wu, Y. Hua, P. Zuo, and Y. Sun, ‘‘Improving restore performance in
deduplication systems via a cost-efficient rewriting scheme,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 1, pp. 119–132, Jan. 2019.

[9] J. Kaiser, T. Suss, L. Nagel, and A. Brinkmann, ‘‘Sorted deduplication:
How to process thousands of backup streams,’’ in Proc. 32nd Symp. Mass
Storage Syst. Technol. (MSST), 2016, pp. 1–14.

[10] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Y. Zhang, and Q. Liu,
‘‘FastCDC:A fast and efficient content-defined chunking approach for data
deduplication,’’ inProc. USENIXConf. Usenix Annu. Tech. Conf.Berkeley,
CA, USA: USENIX Association, 2016, pp. 101–114. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026959.3026969

[11] K. Kim, J. Kim, C. Min, and Y. I. Eom, ‘‘Content-based chunk place-
ment scheme for decentralized deduplication on distributed file systems,’’
in Proc. 13th Int. Conf. Comput. Sci. Appl., vol. 1. Berlin, Germany:
Springer-Verlag, 2013, pp. 173–183.

[12] S. Quinlan and S. Dorward, ‘‘Venti: A new approach to archival
storage,’’ in Proc. Conf. File Storage Technol. Berkeley, CA, USA:
USENIX Association, 2002, pp. 89–101. [Online]. Available: http://dl.
acm.org/citation.cfm?id=645371.651321

[13] D. Frey, A.-M. Kermarrec, and K. Kloudas, ‘‘Probabilistic deduplication
for cluster-based storage systems,’’ in Proc. 3rd ACM Symp. Cloud Com-
put. (SoCC). New York, NY, USA: ACM, 2012, pp. 17:1–17:4, doi: 10.
1145/2391229.2391246.

[14] B. Zhu, K. Li, and H. Patterson, ‘‘Avoiding the disk bottleneck in the data
domain deduplication file system,’’ inProc. 6thUSENIXConf. File Storage
Technol.Berkeley, CA, USA: USENIXAssociation, 2008, pp. 18:1–18:14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1364813.1364831

[15] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li, ‘‘Decentralized
deduplication in san cluster file systems,’’ in Proc. Conf. USENIX Annu.
Tech. Conf.Berkeley, CA, USA: USENIXAssociation, 2009, pp. 101–114.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855807.1855815

[16] Y. Fu, H. Jiang, and N. Xiao, ‘‘A scalable inline cluster deduplication
framework for big data protection,’’ in Proc. 13th Int. Middleware Conf.
NewYork, NY,USA: Springer-Verlag, 2012, pp. 354–373. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2442626.2442649

[17] W. Xia, H. Jiang, D. Feng, and Y. Hua, ‘‘Silo: A similarity-locality
based near-exact deduplication scheme with low ram overhead and high
throughput,’’ in Proc. USENIX Conf. USENIX Annu. Tech. Conf. Berkeley,
CA, USA: USENIX Association, 2011, pp. 26–28. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002181.2002207

[18] J. Kaiser, D. Meister, A. Brinkmann, and S. Effert, ‘‘Design of an exact
data deduplication cluster,’’ in Proc. IEEE 28th Symp. Mass Storage Syst.
Technol. (MSST), Apr. 2012, pp. 1–12.

[19] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu, ‘‘Insights for data
reduction in primary storage: A practical analysis,’’ in Proc. 5th Annu.
Int. Syst. Storage Conf. (SYSTOR), 2012, pp. 17:1–17:7, doi: 10.1145/
2367589.2367606.

[20] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, ‘‘Extreme
binning: Scalable, parallel deduplication for chunk-based file backup,’’ in
Proc. IEEE Int. Symp. Modeling, Anal. Simulation Comput. Telecommun.
Syst.Washington, DC, USA: IEEE Computer Society, Sep. 2009, pp. 1–9.

[21] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzelczak,
J. Szczepkowski, C. Ungureanu, and M. Welnicki, ‘‘Hydrastor: A scalable
secondary storage,’’ in Proc. 7th USENIX Conf. File Storage Technol.
San Francisco, CA, USA: USENIX Association, 2009, pp. 197–210.

[22] EMC Data Domain Global Deduplication Array. Accessed: Mar. 1, 2020.
[Online]. Available: https://www.dellemc.com/en-us/collaterals/unauth/
white-papers/products/storage/h12209-vnx-deduplication-compression-
wp.pdf

[23] S. Luo, G. Zhang, C. Wu, S. Khan, and K. Li, ‘‘Boafft: Distributed dedu-
plication for big data storage in the cloud,’’ IEEE Trans. Cloud Comput.,
early access, Dec. 23, 2015, doi: 10.1109/TCC.2015.2511752.

[24] F. Guo and P. Efstathopoulos, ‘‘Building a high-performance dedupli-
cation system,’’ in Proc. USENIX Conf. USENIX Annu. Tech. Conf.
Berkeley, CA, USA: USENIX Association, 2011, p. 25. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2002181.2002206

[25] K. Eshghi, M. Lillibridge, D. Bhagwat, and M. Watkins, ‘‘Improv-
ing multi-node deduplication performance for interleaved data via
sticky-auction routing,’’ HP Lab., Tech. Rep. HPL-2015-77, 2015.

[26] M. Ajdari, P. Park, D. Kwon, J. Kim, and J. Kim, ‘‘A scalable HW-based
inline deduplication for SSD arrays,’’ IEEE Comput. Archit. Lett., vol. 17,
no. 1, pp. 47–50, Jan. 2018.

[27] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and A. R. Butt,
‘‘Tagit: An integrated indexing and search service for file systems,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. New York,
NY, USA: ACM, Nov. 2017, pp. 1–12, doi: 10.1145/3126908.3126929.

[28] A. Khan, T. Kim, H. Byun, and Y. Kim, ‘‘SciSpace: A scientific collab-
oration workspace for geo-distributed HPC data centers,’’ Future Gener.
Comput. Syst., vol. 101, pp. 398–409, Dec. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18326025

[29] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shi-
lane, ‘‘Tradeoffs in scalable data routing for deduplication clusters,’’
in Proc. 9th USENIX Conf. File Stroage Technol. Berkeley, CA, USA:
USENIX Association, 2011, p. 2. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1960475.1960477

[30] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone, and G. Wallace,
‘‘Metadata considered harmful. . .to deduplication,’’ in Proc. 7th USENIX
Workshop Hot Topics Storage File Systems (HotStorage). Santa Clara, CA,
USA: USENIX Association, 2015, pp. 1–5.

[31] J. Wang, Y. Wang, H. Wang, K. Ye, C. Xu, S. He, and L. Zeng, ‘‘Towards
cluster-wide deduplication based on Ceph,’’ in Proc. IEEE Int. Conf. Netw.,
Archit. Storage (NAS), Aug. 2019, pp. 1–8.

[32] M. Oh, S. Park, J. Yoon, S. Kim, K.-W. Lee, S. Weil, H. Y. Yeom, and
M. Jung, ‘‘Design of global data deduplication for a scale-out distributed
storage system,’’ in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2018, pp. 1063–1073.

[33] D. Meister, A. Brinkmann, and T. Süß, ‘‘File recipe compression in data
deduplication systems,’’ in Proc. 11th USENIX Conf. File Storage Technol.
San Jose, CA, USA: USENIX, 2013, pp. 175–182.

[34] D. Harnik, E. Khaitzin, and D. Sotnikov, ‘‘Estimating unseen
deduplication—From theory to practice,’’ in Proc. 14th USENIX
Conf. File Storage Technol. Santa Clara, CA, USA: USENIX Association,
2016, pp. 277–290.

[35] H. Wu, C. Wang, K. Lu, Y. Fu, and L. Zhu, ‘‘One size does not fit all: The
case for chunking configuration in backup deduplication,’’ in Proc. 18th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018,
pp. 213–222.

[36] A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim, ‘‘A robust
fault-tolerant and scalable cluster-wide deduplication for shared-nothing
storage systems,’’ in Proc. IEEE 26th Int. Symp. Modeling, Anal., Simula-
tion Comput. Telecommun. Syst. (MASCOTS), Sep. 2018, pp. 87–93.

[37] Z. Chen and K. Shen, ‘‘OrderMergeDedup: Efficient, failure-consistent
deduplication on flash,’’ in Proc. 14th Usenix Conf. File Storage Technol.,
2016, pp. 291–299.

[38] F. Douglis, A. Duggal, P. Shilane, T. Wong, S. Yan, and F. Botelho,
‘‘The logic of physical garbage collection in deduplicating storage,’’ in
Proc. 15th USENIX Conf. File Storage Technol. Santa Clara, CA, USA:
USENIX Association, 2017, pp. 29–44.

[39] P. Hamandawana, A. Khan, C.-G. Lee, S. Park, and Y. Kim, ‘‘Crocus:
Enabling computing resource orchestration for inline cluster-wide dedu-
plication on scalable storage systems,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 8, pp. 1740–1753, Aug. 2020.

[40] H. Song, X.-H. Sun, and Y. Chen, ‘‘A hybrid shared-nothing/shared-data
storage architecture for large scale databases,’’ in Proc. 11th IEEE/ACM
Int. Symp. Cluster, Cloud Grid Comput. Washington, DC, USA: IEEE
Computer Society, May 2011, pp. 616–617, doi: 10.1109/CCGrid.2011.
78.

[41] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:
Amazon’s highly available key-value store,’’ in Proc. 21st ACM SIGOPS
Symp. Operating Syst. Princ. New York, NY, USA: ACM, 2007,
pp. 205–220, doi: 10.1145/1294261.1294281.

[42] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang, ‘‘Under-
standing lustre filesystem internals,’’ Oak Ridge Nat. Lab., Oak Ridge, TN,
USA, Tech. Rep. ORNL/TM-2009/117, 2009.

[43] F. Wang, M. Nelson, S. Oral, S. Atchley, S. Weil, B. W. Settlemyer,
B. Caldwell, and J. Hill, ‘‘Performance and scalability evaluation of the
Ceph parallel file system,’’ in Proc. 8th Parallel Data Storage Workshop
(PDSW), 2013, pp. 14–19.

VOLUME 8, 2020 209179

http://dx.doi.org/10.1145/2391229.2391246
http://dx.doi.org/10.1145/2391229.2391246
http://dx.doi.org/10.1145/2367589.2367606
http://dx.doi.org/10.1145/2367589.2367606
http://dx.doi.org/10.1109/TCC.2015.2511752
http://dx.doi.org/10.1145/3126908.3126929
http://dx.doi.org/10.1109/CCGrid.2011.78
http://dx.doi.org/10.1109/CCGrid.2011.78
http://dx.doi.org/10.1145/1294261.1294281


A. Khan et al.: Content Fingerprint-Based Cluster-Wide Inline Deduplication for SN-SSs

[44] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, ‘‘Grid resource
management—CRUSH: Controlled, scalable, decentralized placement of
replicated data,’’ in Proc. ACM/IEEE Conf. Supercomputing. New York,
NY, USA: ACM, 2006, p. 122-es, doi: 10.1145/1188455.1188582.

[45] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, ‘‘File systems unfit as distributed storage backends:
Lessons from 10 years of Ceph evolution,’’ in Proc. SOSP, 2019,
pp. 353–369.

[46] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang,
and Y. Zhou, ‘‘A comprehensive study of the past, present, and future
of data deduplication,’’ Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[47] J. Ma, R. J. Stones, Y. Ma, J. Wang, J. Ren, G. Wang, and X. Liu, ‘‘Lazy
exact deduplication,’’ in Proc. 32nd Symp. Mass Storage Syst. Technol.
(MSST), 2016, pp. 1–10.

[48] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace, ‘‘Nitro: A capacity-optimized SSD cache for primary
storage,’’ in Proc. USENIX Conf. USENIX Annu. Tech. Conf. Berkeley,
CA, USA: USENIX Association, 2014, pp. 501–512. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643686

[49] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, ‘‘iDedup:
Latency-aware, inline data deduplication for primary storage,’’ in Proc.
10th USENIX Conf. File Storage Technol., 2012, pp. 1–4.

[50] D. T. Meyer and W. J. Bolosky, ‘‘A study of practical deduplica-
tion,’’ in Proc. 9th USENIX Conf. File Stroage Technol. Berkeley, CA,
USA: USENIX Association, 2011, p. 1. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1960475.1960476

[51] EMC. Introduction to the EMC XtremIO Storage Array (Ver. 4.0).
Accessed: Aug. 3, 2018. [Online]. Available: https://www.dellemc.com/el-
gr/collaterals/unauth/white-papers/products/storage-2/h16444-
introduction-xtremio-x2-storage-array-wp.pdf

[52] PureStorage. The Industry Best Data Reduction, Hands Down.
Accessed: Mar. 1, 2020. [Online]. Available: https://www.purestorage.
com/uk/products/purity/purity-reduce.html

[53] Btrfs Wiki. Accessed: Sep. 3, 2018. [Online]. Available: https://btrfs.wiki.
kernel.org/index.php/Main_Page

[54] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey, ‘‘Redundancy elim-
ination within large collections of files,’’ in Proc. Annu. Conf. USENIX
Annu. Tech. Conf. Berkeley, CA, USA: USENIX Association, 2004, p. 5.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247415.1247420

[55] P. T. Corporation. PERMABIT. Accessed: Oct. 23, 2020. [Online].
Available: http://permabit.com

[56] Y. Lu, J. Shu, and W. Zheng, ‘‘Extending the lifetime of flash-based
storage through reducing write amplification from file systems,’’ in Proc.
11th USENIX Conf. File Storage Technol. Berkeley, CA, USA: USENIX
Association, 2013, pp. 257–270.

[57] H. P. Enterprise. HPE 3PAR StoreServ Storage. Accessed: Mar. 1, 2020.
[Online]. Available: https://www.hpe.com/us/en/storage/3par.html

[58] J. Wang, Z. Zhao, Z. Xu, H. Zhang, L. Li, and Y. Guo, ‘‘I-sieve: An inline
high performance deduplication system used in cloud storage,’’ Tsinghua
Sci. Technol., vol. 20, no. 1, pp. 17–27, Feb. 2015.

[59] SolidFire. How Solidfire Data Efficiencies Work. Accessed: Mar. 1, 2020.
[Online]. Available: https://www.netapp.com/us/media/ds-solidfire-data-
efficiencies-breif.pdf

[60] Clustered Data on Tap. Accessed: Mar. 1, 2020. [Online]. Available:
https://www.netapp.com/us/media/tr-4476.pdf

[61] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, and Q. Liu,
‘‘Accelerating restore and garbage collection in deduplication-based
backup systems via exploiting historical information,’’ in Proc. USENIX
Annu. Tech. Conf. Philadelphia, PA, USA: USENIX Association, 2014,
pp. 181–192.

[62] X. Du, W. Hu, Q. Wang, and F. Wang, ‘‘ProSy: A similarity based inline
deduplication system for primary storage,’’ in Proc. IEEE Int. Conf. Netw.,
Archit. Storage (NAS). Boston, MA, USA: IEEE, Aug. 2015, pp. 195–204.

[63] Z. Sun, N. Xiao, F. Liu, and Y. Fu, ‘‘DS-dedupe: A scalable, low network
overhead data routing algorithm for inline cluster deduplication system,’’
in Proc. Int. Conf. Comput., Netw. Commun. (ICNC). Honolulu, HI, USA:
IEEE, Feb. 2014, pp. 895–899.

[64] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, ‘‘A five-year
study of file-system metadata,’’ ACM Trans. Storage, vol. 3, no. 3, p. 9,
Oct. 2007, doi: 10.1145/1288783.1288788.

[65] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sengupta,
‘‘Primary data deduplication—Large scale study and system design,’’
in Proc. USENIX Conf. Annu. Tech. Conf. Berkeley, CA, USA, 2012,
pp. 285–296.

[66] SQLite: SQLite Home Page. Accessed: Oct. 23, 2020. [Online]. Available:
https://www.sqlite.org/

[67] J. Axboe.Flexible I/O Tester. Accessed: Oct. 23, 2020. [Online]. Available:
https://github.com/axboe/fio

[68] Ceph Architecture: Scrubbing Documentation. Accessed: Oct. 23, 2020.
[Online]. Available: http://docs.ceph.com/docs/master/architecture/?
highlight=scrub

[69] B. K. Debnath, S. Sengupta, and J. Li, ‘‘Chunkstash: Speeding up inline
storage deduplication using flash memory,’’ in Proc. USENIX Annu. Tech.
Conf., 2010, pp. 1–16.

[70] Y. Tsuchiya and T. Watanabe, ‘‘Dblk: Deduplication for primary block
storage,’’ in Proc. IEEE 27th Symp. Mass Storage Syst. Technol. (MSST),
May 2011, pp. 1–5.

[71] R. Koller and R. Rangaswami, ‘‘I/O deduplication: Utilizing content sim-
ilarity to improve I/O performance,’’ ACM Trans. Storage, vol. 6, no. 3,
pp. 13:1–13:26, 2010.

[72] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and
K. E. Zadok, ‘‘A long-term user-centric analysis of deduplication patterns,’’
in Proc. 32nd Symp. Mass Storage Syst. Technol. (MSST), 2016, pp. 1–7.

[73] A. Khan, C. Lee, S. Park, and Y. Kim, ‘‘Tagged consistency and garbage
identification in deduplication-enabled storage systems,’’ in Proc. 16th
(WiP) USENIX FAST. Oakland, CA, USA: USENIX Association, 2018,
pp. 1–2.

AWAIS KHAN (Member, IEEE) received the
B.S. degree in bioinformatics from Mohammad
Ali Jinnah University, Islamabad, Pakistan. He is
currently pursuing the M.S. and Ph.D. degrees
(integrated program) with the Department of Com-
puter Science and Engineering, Sogang Univer-
sity, Seoul, South Korea. He was with Digital
Research Laboratories as a Software Engineer
from 2012 to 2015. He is currently a member with
the Laboratory for Advanced System Software,

Department of Computer Science and Engineering, Sogang University. His
research interests include cloud computing, cluster-scale deduplication, and
parallel and distributed file systems.

PRINCE HAMANDAWANA received the B.Sc.
degree (Hons.) in computer science with the
National University of Science and Technology,
Bulawayo, Zimbabwe. He is currently pursuing
the M.S. and Ph.D. degrees (integrated program)
withAjouUniversity, Suwon, SouthKorea. He had
the privilege to work on some of the Zimbab-
wean leading service providers, including Econet
Wireless from 2008 to 2011 and Liquid Telecom
from 2011 to 2016. He is currently a member of

the Database and Dependable Systems Laboratory, Department of Computer
Engineering, Ajou University. His research interests include distributed and
parallel storage systems and GPU-assisted cluster-wide data deduplication.

YOUNGJAE KIM received the B.S. degree in
computer science from Sogang University, Seoul,
Republic of Korea, in 2001, the M.S. degree from
KAIST in 2003, and the Ph.D. degree in com-
puter science and engineering from Penn State
University, University Park, PA, USA, in 2009.
He was a Staff Scientist with the Oak Ridge
National Laboratory, U.S. Department of Energy,
from 2009 to 2015 and an Assistant Professor
with Ajou University, Suwon, Republic of Korea,

from 2015 to 2016. He is currently an Associate Professor with the Depart-
ment of Computer Science and Engineering, Sogang University. His research
interests include distributed file and storage, parallel I/O, operating systems,
emerging storage technologies, and performance evaluation.

209180 VOLUME 8, 2020

http://dx.doi.org/10.1145/1188455.1188582
http://dx.doi.org/10.1145/1288783.1288788

