
Received September 30, 2020, accepted October 22, 2020, date of publication October 28, 2020,
date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034443

PhantomFS-v2: Dare You to Avoid This Trap
JIONE CHOI 1, HWIWON LEE1, YOUNGGI PARK1, HUY KANG KIM 1, (Member, IEEE),
JUNGHEE LEE 1, (Member, IEEE), YOUNGJAE KIM 2, (Member, IEEE), GYUHO LEE 3,
SHIN-WOO SHIM 3, AND TAEKYU KIM 3
1School of Cybersecurity, Korea University, Seoul 02841, South Korea
2Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea
3Cyber Warfare Research and Development Laboratory, LIG Nex1, Seongnam 13488, South Korea

Corresponding author: Junghee Lee (j_lee@korea.ac.kr)

ABSTRACT It has been demonstrated that deception technologies are effective in detecting advanced
persistent threats and zero-day attacks which cannot be detected by traditional signature-based intrusion
detection techniques. Especially, a file-based deception technology is promising because it is very difficult
(if not impossible) to commit an attack without reading and modifying any file. It can play as an additional
security barrier because malicious file access can be detected even if an adversary succeeds in gaining
access to a host. However, PhantomFS still has a problem that is common to deception technologies. Once a
deception technology is known to adversaries, it is unlikely to succeed in alluring adversaries. In this paper,
we classify adversaries who are aware of PhantomFS according to their knowledge level and permission of
PhantomFS. Then we analyze the attack surface and develop a defense strategy to limit the attack vectors.
We extend PhantomFS to realize the strategy. Specifically, we introduce multiple hidden interfaces and
detection of file execution. We evaluate the security and performance overhead of the proposed technique.
We demonstrate that the extended PhantomFS is secure against intelligent adversaries by penetration testing.
The extended PhantomFS offers higher detection accuracy with lower false alarm rate compared to existing
techniques. It is also demonstrated that the overhead is negligible in terms of response time and CPU time.

INDEX TERMS Deception technology, file system, honeypot.

I. INTRODUCTION
A honeypot is a fake host that allures adversaries so that
their activities can be observed and analyzed [1]. It has been
extended as the concept of deception technology and applied
to various entities of systems [2]. Fake database [3], [4],
password [5], account [3], and patch [6] are used to allure
adversaries [7]. They can play as an additional security barrier
to thwart adversaries who succeed in invading a host evading
intrusion detection or prevention systems. They are known to
be more effective in insider threats, social engineering, and
0-day attacks than traditional perimeter or signature-based
intrusion detection and anomaly detection techniques [7].

The file-based deception technology is one of such decep-
tion technologies. If malicious users or applications access
fake files, it is reported as a potential intrusion to adminis-
trators. It is very hard (if not impossible) to commit attacks
without accessing a single file. Adversaries often read sys-
tem files to gather information about the host and make

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhitao Guan .

changes to system files as a result or an intermediate step
of an attack. Therefore, monitoring file access is expected
to be very effective in detecting misbehavior of malicious
users. It can be located close to those files under protection,
and detects/prevents malicious file access even if traditional
signature-based intrusion detection systems fail to detect
them.

The file-based deception technology, however, may suffer
from false alarms [8]. Legitimate users may access fake
files by mistake and so do legitimate applications (e.g. file
indexing). PhantomFS [9] addresses this issue by introducing
a hidden interface. The hidden interface is known only to
legitimate users and applications. Alarms are not generated
if files are accessed via the hidden interface. Adversaries,
who do not know the hidden interface and use the regular
interface, generate alarms if they access fake files. In contrast,
legitimate users do not generate false alarms because they use
the hidden interface.

PhantomFS, however, still has a limitation. It is effective
in alluring adversaries who are not aware of it. However,
if adversaries know about it, they will try to avoid or nullify

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 198285

https://orcid.org/0000-0002-1441-164X
https://orcid.org/0000-0002-0760-8807
https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-9842-5549
https://orcid.org/0000-0003-0959-9200
https://orcid.org/0000-0003-1268-027X
https://orcid.org/0000-0003-0901-8621

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

it. In fact, this is a common issue across all kinds of decep-
tion technologies. Once adversaries become aware of them,
adversaries can find a way to avoid them [7]. In order for
deception technologies to be used in practice, there must be
countermeasures to those who are aware of them.

To address this concern, we proposed PhantomFS-v2,
an extension of PhantomFS. It offers countermeasures to
intelligent adversaries who are aware of the existence of
PhantomFS-v2. To achieve this goal, we analyze the attack
surface of the original PhantomFS in this paper. We dis-
cuss what adversaries would do if they know the existence
of PhantomFS. From this analysis, we identify potential
attack vectors. We add countermeasures to prevent them,
such as multiple hidden interfaces, flagging executables,
modification to proc file system, etc. By the penetration
testing, we demonstrate the effectiveness of PhantomFS-v2.
PhantomFS-v2 covers wider range of attack scenarios with no
false alarms than the original PhantomFS and existing similar
techniques.

This paper is organized as follows. We briefly introduce
the original PhantomFS and discuss the related works in
Section II. After defining the threat model and analyzing
the attack surface in Section III, we present our defense
strategy in Section IV and illustrate it with an example in
Section V. In Section VI, we explain how to realize the
defense strategy by extending PhantomFS. The experimental
results are presented in Section VII, followed by conclusions
in Section VIII.

II. BACKGROUND AND RELATED WORKS
A. PhantomFS
The goal of PhantomFS [9] is to allure adversaries who have
already gained access to a host without being detected by
traditional intrusion detection systems. PhantomFS offers an
additional security barrier to thwart such adversaries.

PhantomFS offers a hidden interface besides the regular
interface. As illustrated in Figure 1, the legitimate users and
applications use the hidden interface, while adversaries, who
are not aware of PhantomFS, access files through the regular

FIGURE 1. PhantomFS deceives adversaries by providing a hidden
interface. Accessing flagged files via the regular interface is reported as a
symptom of intrusion. Reprinted from [9], Copyright 2020 by IEEE.

interface. If adversaries access a flagged file through the
regular interface, it is reported as a potential intrusion to the
administrator. Administrators can hide sensitive files from
the regular interface , which can be accessed only via the
hidden interface. Through the hidden interface, legitimate
users can access files without triggering an alarm, which
reduces the chance of false alarms.

The original PhantomFSmaintains four additional flags for
each file, as shown in Table 1. Flag h is to hide a file from the
regular interface. Sensitive files can be hidden by using this
flag. If flag r or w is set, it is reported to the administrator
if the file is read or modified through the regular interface.
Flag f is to hide a file from the hidden interface. The flags
can also be used for directories.

TABLE 1. Four additional flags used for the original PhantomFS.

PhantomFS works independently from the existing access
control mechanisms. Even though a file with flag h is not
shown, it is still accessible if its path is known. Flags r and w
are orthogonal to the access permission. Setting those flags
does not prevent adversaries from accessing the file.

The four flags are checked by their corresponding system
calls. In Linux, the list of files is read through getdents
system call, and a file is read and modified by read and
write system calls. Before getdents returns the list of
files, it removes those files with flag h to hide them. The
read and write system calls send an alarm if the requested
file has flag r or w.
The hidden interface is implemented by using the read

system call. The caller provides a pointer to a buffer, which
is originally used to receive data from the kernel. When
the read system call is used as a hidden interface, a data
structure is stored in the buffer. When the read system call
is called, it reads the first four words of the buffer. If they
match with the pre-defined signature, it means the system
call is called as a hidden interface. Otherwise, it is called as a
regular read system call.
The hidden interface supports getdents, read, and

write requests, which correspond to the system calls.
In addition, it also processes the request of reading or chang-
ing PhantomFS flags. The information required to process the
request is stored in the buffer after the signature. In summary,
the pseudocode of the modified system calls is given in
Algorithm 1.

The legitimate applications need to be modified to use the
hidden interface. Applications usually call wrapper functions
in the library instead of directly calling system calls. Most of
Linux applications use the standard glibc library to access
files. Thus, a modified library is provided, which uses the
hidden interface, and the legitimate applications need to be

198286 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

Algorithm 1 Pseudocode of the Hidden Interface and Modi-
fied System Calls
1: procedure GETDENTS

2: call the original getdents system call
3: remove files whose flag h is set
4: procedure READ

5: if the signature matches then
6: call the hidden_interface function
7: return
8: if flag r is set to this file then
9: send a report
10: call the original read system call
11: procedure WRITE

12: if flag w is set to this file then
13: send a report
14: call the original write system call
15: procedure HIDDEN_INTERFACE

16: if the request type is reading or changing flags then
17: process the request
18: if the request type is getdents then
19: call the original getdents system call
20: remove files whose flag f is set
21: if the request type is read then
22: call the original read system call
23: if the request type is write then
24: call the original write system call
25: erase the signature

linked with it. The standard library is usually linked dynami-
cally. In this case, the library can be changed by changing the
path of the library.

The legitimate users should use the legitimate appli-
cations which use the hidden interface. To prevent the
legitimate users from triggering false alarms by mistake,
the following approach is used. The legitimate applications
locate in a hidden directory keeping the same name. For
example, the legitimate ls may locate in a hidden direc-
tory, /PhantomFS_HiddenDir_123qweASD. The orig-
inal ls, which uses the regular interface, still locates in
/bin. If the user runs ls, the original one is used, which
may trigger false alarms. However, if the user changes the
search path to the hidden directory, the user can use ls as if
nothing has changed. The hidden directory should have flag h
so that it can be hidden from the regular interface. Thus, those
users who know the correct path of the hidden directory can
access it, whereas adversaries who do not know it cannot.
The modified library should be also in the hidden directory.
The hidden path plays as a similar role with a password. The
legitimate user should keep it safely.

B. RELATED WORKS
The deception technology stems from a honeypot, which
is a fake host used to allure adversaries [1]. It has been

extended and applied to various entities of systems [3]–[7].
The file-based deception technology is one of them, which
detects adversaries when they access fake files [8]–[12].
Ransomware is a good target for the file-based deception
technology because ransomware is likely to access fake files
while it is searching for victim files [13].

The common issue of deception technologies is that they
are not effective any longer if adversaries become aware of
the deception technologies [7]. One approach to address this
issue can be the moving target defense. This technique is
originally intended to make it harder for adversaries to find
the correct target by constantly changing the configuration
or the attack surface [14]. It has been extensively studied
including randomization of network configuration [15]–[19],
hosts [20], [21], operating system services [22], [23], com-
pilers [24], instruction sets [25], [26], address space [27], and
database queries [28].

In case of the file-based deception technology, HoneyGen
is proposed, which automatically generates decoy files from
the profiles of real files [29] so that decoy files may look
as close as possible to real files. HoneyGen is not specifi-
cally intended to address this issue, but makes it harder for
adversaries to distinguish fake files from real files even if
adversaries become aware of the existence of fake files.

In summary, existing techniques can be used to raise the
bar of successful attacks for those adversaries who know the
deception technology. We also employ this concept partially
in PhantomFS-v2, but our ultimate goal is eliminating possi-
bility of successful attacks even if adversaries become aware
of PhantomFS-v2.

We position the proposed technique as another security
barrier in addition to intrusion detection systems. Even if
adversaries gain access to a host evading traditional intrusion
detection systems (IDSs), they can still be detected when they
access any decoy file. PhantomFS-v2 is a complementary
solution to IDSs.

IDSs can be classified mainly into network-based IDSs
(NIDSs) [30], [31] and host-based IDSs (HIDSs) [32]–[34].
NIDSs detect malicious activities by monitoring network
packets while HIDSs monitors activities on the host.
Typically, their detection algorithms are based on matching
the signature of knownmalicious activities [33] or identifying
abnormal activities deviated from the known normal behav-
ior [34]. Intelligent IDSs often employ intelligent agents, neu-
ral networks, genetic algorithms, fuzzy sets, particle swarm
and soft computing techniques [35]. One of well known
techniques for HIDSs is file integrity checking. It detects
unauthorized modification to files under protection by mea-
suring integrity metric, which is typically a hash value of a
file. The integritymetric of a file ismeasured and compared to
a reference integritymetric which had beenmeasured a priori.
If the integrity metric mismatches, the modification to the file
is detected.

When virtual machines or containers are employed,
different users have different file views. However, their orig-
inal intention is not on deceiving adversaries nor intrusion

VOLUME 8, 2020 198287

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

detection. It is usually not supported to configure individual
files for different file views.

III. ATTACK SURFACE
In this section, we analyze the potential attack surface if
adversaries are aware of PhantomFS-v2. To do so, we first
classify adversaries according to their capability and then we
discuss attack surfaces.

A. THREAT MODEL
PhantomFS-v2 aims at alluring adversaries who have evaded
intrusion detection systems and successfully gained access
to a host. They may acquire the administrative privilege by
taking advantage of vulnerabilities. They may succeed in
launching a shell and execute existing utilities. It is also pos-
sible for them to install a hacking tool on the host. They may
inject malicious code to a legitimate application by exploiting
its vulnerabilities.

We do not assume kernel-level malware (rootkits) because
PhantomFS-v2 is implemented in the kernel. If a rootkit
exists, the correct operation of PhantomFS-v2 cannot be
guaranteed.

The original paper [9] assumes adversaries do not know
anything about PhantomFS. They do not know the existence
of the hidden interface and the location of the hidden path.
Since legitimate applications and the modified library locate
in the hidden path, the adversaries do not know where they
are.

In this paper, we assume adversaries are aware of
PhantomFS-v2. According to the knowledge and permission
of PhantomFS-v2, we further classify attackers into four
categories and name them as follows.

• Outside Attackers are aware of PhantomFS-v2 in general,
but they do not know the specific configurations on the host
they are accessing. The administrator configures flags of
files and hides files to a hidden path. The outside attackers
do not know how the administrator has configured them.

• Impersonation Attackers are aware of PhantomFS-v2
and impersonate a legitimate user. They have stolen cre-
dentials of a legitimate user including the password and
the hidden path. Thus, they have the permission to access
the hidden interface. However, they do not know the
configurations.

• Inside Attackers know all the details of PhantomFS-v2
including the configurations, but do not have the permis-
sion to access the target host. They do not have a legitimate
account and cannot access the hidden interface of the target
host.

• Traitors know all the details and configurations of
PhantomFS-v2 and have the permission. They are those
attackers who access resources under their own control.
They can be administrators or normal users. They may
try to leak secrets, counterfeit or destroy information, and
disable security solutions, which are under their control.

The focus of this paper is on the first three types of attackers
because it is very difficult to distinguish the misbehavior of
traitors from the normal behavior. In addition, we expect the
motivation of traitors is much weaker than that of others.
This is because the traitors cannot be free from the charge,
if it turns out that cyber incident is involved with resources
managed by the traitors.

B. ATTACK SURFACE
We have identified three potential targets of attacks: hidden
path, hidden interface and evasion.

1) HIDDEN PATH
Adversaries may try to figure out the location of the hidden
path. The hidden path is not seen via the regular interface, but
still accessible if its correct path is known. Once it is known,
adversaries can use the legitimate applications which locate
there.

As explained in Section II, the hidden path plays a similar
role with a password. Legitimate users should keep it safely.
There are non-technical ways to steal it (e.g. social engineer-
ing), but they are out of scope from the discussion here.

If adversaries read the command history of legitimate
users, they can find the hidden path. Legitimate users are
required to run a script that changes the default search path to
the hidden path. Since the script itself is hidden in the hidden
path, the command history reveals the path.

Some system utilities (e.g. ps and proc file system) show
the absolute path of running applications. By using one of
them, adversary may figure out where the legitimate applica-
tions locate.

2) HIDDEN INTERFACE
Adversaries may steal the hidden interface that they are not
supposed to use. It can be achieved by reverse engineering
the code of the system calls. If they know which system call
is used to implement the hidden interface, they may figure out
where the code of that system call is in the main memory and
how the system call works. They can also do this by analyzing
the code of legitimate applications or the modified library.

Even if they cannot figure out how the hidden interface
works, they can use it by hijacking legitimate applications.
There may be legitimate system services and applications
continuously running on the host. Some of them may need
to use the hidden interface to avoid false alarm. Adversaries
may inject malicious code to them by exploiting their vulner-
abilities. The injected code can use the hidden interface if the
victim application does.

3) EVASION
The other approach that the adversaries may try is to evade
PhantomFS-v2. The implementation of the original Phan-
tomFS checks flags only when the read, write and
getdents system calls are called because they are stan-
dard interface to access files. If adversaries access files in
a non-standard way, they may succeed without triggering

198288 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

TABLE 2. Summary of the attack vectors and defense strategy.

alarm. For example, they may use mmap which maps files
into memory so that the application can access files as if it
accesses memory. In this way, adversaries can access files
without calling read and write system calls.
Since PhantomFS-v2 is implemented in the file system,

adversaries may try to evade PhantomFS-v2 by accessing the
disk (raw block device) without going through the file system.
If they access the raw block device directly, they can access
files without triggering alarm. To do so, adversaries need to
figure out the file system type and on-disk data structures in
detail.

It is also possible for adversaries to disable reporting to
administrators. In fact, it is a general attack surface that can be
used for any security solutions. Though PhantomFS-v2 does
not dictate a specific reporting mechanism, it may be disabled
by adversaries.

IV. DEFENSE STRATEGY
In this section, we discuss how to defend against potential
attacks analyzed in the previous section. Once adversaries
succeed in gaining access to a host, they may run executables
on the host to explore and damage the host. These activities
can be detected by flagging executables. However, they may
run legitimate executables if they succeed in stealing a hidden
interface by impersonation or hijacking legitimate applica-
tions. By employing multiple hidden interfaces, the impact
of stealing can be limited. Even if one hidden interface is
exposed, those files flagged by other hidden interfaces are
still protected. Though the resources available to adversaries
are greatly limited by flagging executables and employing
multiple hidden interfaces, adversaries can still try to nullify
PhantomFS-v2 by using what is available. To further reduce
the risk, we identify potential attack vectors and their defense
strategies. Table 2 summarizes our defense strategy. We dis-
cuss its details in the following subsections.

A. COMMON DEFENSE STRATEGY
1) MULTIPLE HIDDEN INTERFACES
First of all, we need multiple hidden interfaces to defend
against impersonation attackers who can use the hidden inter-
face. If there is only one hidden interface, PhantomFS-v2 can
be easily nullified by them. There must be more than one hid-
den interface, and they should be assigned to users according
to their role or privilege.

As illustrated in Figure 2, the file view is different depend-
ing on the hidden interface. It is allowed to set flags to hidden

FIGURE 2. PhantomFS-v2 provides multiple hidden interfaces and allows
to set flags to hidden interfaces.

interfaces. For example, when a flag is set to a file by a hidden
interface, it means an alarm is triggered if the file is accessed
through other hidden interfaces or the regular interface. Thus,
even if adversaries succeed in impersonating a legitimate
user, they are still limited on accessing files on the host.

In the approach using multiple interfaces, flag f is no
longer necessary, and flags h, r , and w can be set for hidden
interfaces as well. Table 5 shows an example of setting flags
to different interfaces, which will be explained in detail later.

However, multiple hidden interfaces cannot defend against
all types of attacks by impersonation attackers. Since they
can use one of the hidden interfaces, they can still com-
mit those attacks that are permitted by the hidden interface.
To cope with this, the hidden interface should grant the least
permission that is required for the user to perform the given
task. This is the same philosophy with when using sudo.
It should also be applied to applications when a hidden inter-
face is assigned to an application because the application may
be hijacked. In this way, we can limit the impact when one of
the hidden interfaces is taken by adversaries.

2) FLAGGING EXECUTABLES
As discussed in Section II, adversaries may inject a malicious
code to an application, install malware, or launch a shell.
When they succeed in launching a shell, they can execute
existing utilities to commit attacks. If we set a flag to system
utilities that adversaries are likely to execute, we can detect
their attacks. For this, we introduce a new flag, x. When flag x
is set to an executable, an alarm is generated if it is executed.

Legitimate applications, which locate in a hidden directory,
do not have the flag and executing it does not generate an
alarm. Anyone, who knows where the legitimate application

VOLUME 8, 2020 198289

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

is, can execute it without triggering an alarm. Adversaries can
do so, if they figure out the hidden path. In this case, it is
meaningless to check the flag because they can use the hidden
interface by using the modified library.

Therefore, flag x is set to a file regardless of the interface.
If the flag is set, an alarm is generated whenever it is executed
no matter whom it is executed by. Legitimate applications do
not have the flag and can be executed without an alarm by
anyone who knows their location.

Outside attackers do not have permission to use the hidden
interface, which means they do not know the hidden path.
Inside attackers know the PhantomFS-v2 configuration, but
cannot access the hidden interface. They will be detected
if they run any flagged utility which does not locate in the
hidden path. Impersonation attackers have permission to use
one of the hidden interfaces. However, they do not know
which utility is flagged. Since they know running a flagged
utility triggers an alarm, they will be careful to run a utility
unless they figure out flag configurations.

B. ANALYSIS OF ATTACK VECTORS
1) COMMAND HISTORY
The command history file (e.g. .bash_history) and the
utility showing the command history (e.g. history) should
be flagged so that they can be accessed only by legitimate
users. In other words, if outside and inside attackers try to
access them, an alarm is generated. If impersonation attackers
try to access the command history of other users who use
different hidden interfaces, an alarm is generated. The imper-
sonation attackers may access their own history, but not that
of others who use different interfaces.

2) UTILITIES BASED ON PROC
There are utilities (e.g. ps) that show the absolute path
of applications. They are working based on the proc file
system. We may disable or change the path of the proc
file system, but it would cause many utilities not to work.
Our approach is to replace the string of the hidden path
to a special string (e.g. *******). We modify the source
code of the proc file system to find the hidden path
and replace it with the special string. To make it easier
to find the hidden path, we enforce a naming rule for
the hidden directory. If the hidden directory begins with
‘‘PhantomFS_HiddenDir’’, the whole path including
the directory name is replaced by the special string by the
proc file system. For example, flag h is set to /home/
admin/PhantomFS_HiddenDir_123qweASD, the
whole string is replaced by ********.

3) REVERSE ENGINEERING
The hidden interface should be implemented in various ways
to make it harder for adversaries to figure out how the hidden
interface works by reverse engineering. The original paper
implements the hidden interface by modifying the read
system call. It distinguishes whether the read system call is

used as a hidden interface or a regular interface by checking
the signature. It is possible to implement multiple hidden
interfaces by using multiple signatures, but it is weak to
defend against reverse engineering. If adversaries manage
to figure out how the read system call works, they can
figure out all hidden interfaces.

Alternatively, we can use other system calls that take a
user-space pointer as a parameter. The type of the pointer
does not matter because we will use it in a different way.
Once the system call is called, it reads the first few bytes from
the pointer to check the signature. If the signature matches,
it reads the rest from the pointer, which is the data structure
to process the hidden interface. If the signature does not
match, the call is processed in a regular way. There are many
candidate system calls that can be used to implement the
hidden interface in this way.

4) CONTROL FLOW HIJACKING
By exploiting vulnerabilities (e.g. memory corruption and
command injection), adversaries may hijack the control flow
of a legitimate application which uses a hidden interface. If
it happens, they can access resources that the hidden inter-
face is permitted to. This is the same situation with where
impersonation attackers have the permission to use a hidden
interface. However, if the adversaries access forbidden files
while hijacking the control flow, PhantomFS-v2 can detect
it. Even if it cannot do it at the exploitation stage (where
vulnerabilities are exploited to hijack the control flow), it can
detect it at the payload stage (where the malicious code is
executed), if the malicious code accesses forbidden files.

For example, let us suppose adversaries want to access a
specific target file which they are not allowed to, by hijacking
the control flow of a legitimate application. To do this, they
should escalate their privilege horizontally or vertically. Even
if they succeed in privilege escalation, it does not necessarily
mean they take the appropriate hidden interface to access their
target file. They should find and take the hidden interface that
is allowed to access the file they want. Otherwise, adversaries
are detected if they access files that they are not permitted to.

5) MALWARE INSTALLATION
If adversaries cannot figure out which utility is safe to run,
they may try to install their own. Malware installation often
requires information gathering about the application, trans-
ferring or creating files of the malicious code, and installing
the code. All of these steps should be done by running utilities
on the host. Therefore, flagging utilities can prevent malware
installation by outside attackers and inside attackers who
cannot use the hidden interface.

Impersonation attackers, however, can access one of hid-
den interfaces, which means that they know where the mod-
ified library is. Thus, they can install malware and link it
with the modified library so that it can access the hidden
interface. In fact, most of highly secured servers do not have
any development tools such as compilers (e.g. gcc) and
script interpreters (e.g. python). However, casual servers

198290 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

or internal servers used for testing or development may not
follow the strict security policy and may have development
tools. If impersonation attackers have permission to use the
development tools, they may succeed in installing their mal-
ware which uses the hidden interface. This case is same with
the control flow hijacking. Even if they manage to install
malware, it is detected if it accesses forbidden files.

6) FILE ACCESS IN A NON-STANDARD WAY
The standard way to read and write a file is calling cor-
responding read and write system calls. However, it is
possible to map the file to the memory and access the file as
if accessing the memory. It can be done by calling the mmap
system call. Thus, PhantomFS-v2 checks the flags when it is
called.

Instead of overwriting a file, which triggers an alarm if
flag w is set, adversaries may delete the file and create a
new file with the same name. It is also possible to delete
the target file and rename an existing file to the target file.
In PhantomFS-v2, the flags are checked for unlinking and
renaming files.

Adversaries may try to access files bypassing the file
system. For example, they may use debugfs to access a
file. Since it requires running existing utilities or install new
executables, above-mentioned defense mechanisms can be
used to mitigate it.

C. LIMITATIONS
Through the analysis of attack vectors, we believe that
PhantomFS-v2 can successfully thwart attempts of outside
and inside attackers who do not have permission to use a
hidden interface. If impersonation attackers try to access
files which are not permitted, PhantomFS-v2 can detect it.
However, it cannot handle the following cases; (1) if imper-
sonation attackers access files which are allowed via its
hidden interface, and (2) if adversaries hijack the control
flow of a legitimate application and access files which are
allowed via the hidden interface of the legitimate application.
To limit the impact of these cases, the least permission should
be granted to each hidden interface.

V. EXAMPLE
In this section, we illustrate how the defense strategy works
with an example.

A. SETUP
Let us suppose a web server as an example. As summarized
in Table 3, it has three accounts. The admin account is for
the system administrator, and the webmaster account is for
the administrator of the website that the web server services.
They use hidden interfaces, Hadmin and Hweb, respectively.
As explained before, to use the hidden interface, they should
run the script to change the default search path to the hidden
path. Their hidden paths are denoted as Padmin and Pweb, for
Hadmin and Hweb, respectively. The nobody account is for

TABLE 3. User accounts of the example system.

the web server. The web server is continuously running with
the modified library that uses the hidden interface Hnobody.
Besides the web server, the system offers executables as

shown in Table 4. According to the previous work [36], they
are among the most executed commands by attackers. ls is
a utility retrieving a list of files in a directory, and vi is a
basic text editor. They typically locate in /bin. Thus, those
in /bin are set with flag x, which triggers an alarm if anyone
runs them. Legitimate users should use another version of
them in their own hidden path, which does not trigger an
alarm. Those in /bin are used to allure adversaries. The ps
command shows the status of processes, which is allowed
only for the administrator. It locates only in the hidden path
of the administrator (Padmin).

TABLE 4. Executables of the example system.

In the example system, there are two data files that need
protection. One is index.html which is serviced by the
web server. As shown in Table 5, flag w is set to it for the all
interfaces except for Hweb. Thus, if an adversary, who uses
the interface other than Hweb, tries to modify it, an alarm is
generated. Flag w is also set for Hnobody because the server
only reads it. Even the administrator cannot access it because
w flags are set for Hadmin. Since the administrator is not sup-
posed to manage the web site, modification to index.html
is not allowed. The administratormay have privilege to access
it (allowed by the conventional access control mechanism),
but PhantomFS-v2 prevents the access. It plays as an addi-
tional barrier when the system is compromised. The other file
under protection issecret.txtwhich is maintained by the
administrator. Thus, flags rw are set for the regular interface
and hidden interfaces except for Hadmin.

TABLE 5. Flag configuration of the example system.

VOLUME 8, 2020 198291

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

B. OUTSIDE ATTACKERS
Outside attackers may succeed in launching a shell by
exploiting the vulnerability of the web server. The shell inher-
its the privilege of the nobody account and uses Hnobody.
Instead, they may inject a malicious code to the web server
by exploiting its vulnerability. In this case, the malicious
code can use Hnobody because the web server is running
by the nobody account. Both are similar to a situation
where the outside attackers impersonate nobody. Through
Hnobody, however, they cannot modify index.html nor
access secret.txt.

C. IMPERSONATION ATTACKERS
Impersonation attackers may succeed in stealing credentials
of a legitimate user, including the location of hidden path. In
this example, let us suppose they steal those of webmaster
and can use Hweb, which means they know Pweb. However,
they do not knowwhich executable is safe to run because they
do not know the configuration. What they know for sure is
that they can use ls and vi in Pweb.

Impersonation attackers may modify index.html
because they know all credentials of the legitimate web
master. This case is similar with that of traitors, and cannot
be handled by PhantomFS-v2. However, if they try to access
secret.txt, PhantomFS-v2 can detect it.

They cannot access it with the privilege of webmaster.
They need to escalate their privilege. Even if they suc-
ceed in privilege escalation, they are still unable to
access secret.txt unless they figure out Hadmin. Thus,
PhantomFS-v2 plays an additional security barrier. In addi-
tion, PhantomFS-v2 limits resources available to imperson-
ation attackers. Since they do not know which executable is
safe to run and which file is safe to access, they can only
use what are available in their own hidden path. Furthermore,
the attempt of privilege escalation may trigger an alarm if
flagged files are accessed while the attempt is being made.
Therefore, they only have very limited attack vectors for
privilege escalation and acquiring the hidden interface.

D. INSIDE ATTACKERS
Though inside attackers know details of PhantomFS-v2, they
do not have the permission to access the web server. Thus,
they are in a similar situation with outside attackers. What
they can do is to attack the web server by exploiting its vul-
nerability. However, as discussed above, they cannot succeed
in accessing protected resources unless they figure out the
hidden interface.

VI. ADDITIONAL FEATURES
In this section, we present how we implement the addi-
tional features to realize the defense strategy discussed in
Section IV.

A. FLAG CHECKING IN MORE SYSTEM CALLS
Table 6 shows which flags are checked in which system calls.
We check flags in all system calls that can be potentially used
to access files.

TABLE 6. Flags checked in system calls.

In the case of pread and pwrite, they are system calls
that read or write a file counting bytes from the offset posi-
tion of the file. Adversaries may read or write files without
triggering an alarm in the original PhantomFS. Therefore,
in PhantomFS-v2, the code to check flags r and w is added in
pread and pwrite, respectively.

As discussed in Section IV, we add a new flag, x, to detect
running executables. The execve system call in the exec
family is modified so that an alarm will be triggered when a
file with flag x is executed.With PhantomFS-v2, it is possible
to detect if an unauthorized user runs a flagged executable
file.

Adversaries can use the mmap system call to read, write,
and execute files without the conventional read, write,
and execve system calls. In this way, the file with the flag
can be accessed without alarm. In PhantomFS-v2, we modify
the mmap system call to prevent it. The mmap system call
takes prot argument which indicates the mapped file is to
be read, written or executed. Therefore, mmap system call
is modified to check the prot argument in PhantomFS-v2
to check the access to the file according to each flag. In
the case of reading, if prot_read flag of prot is set,
an alarm is triggered for a file with the r flag. In the same
way, by checking prot_write for flagw and prot_exec
for flag x, it is possible to detect access to a file using mmap
system call rather than the usual system calls. The legitimate
user can use the mmap system call implemented in the hidden
interface through a library modified to use the legitimate
hidden interface.

And we modify the memfd_create system call. This
system call can also access files through memory mapping
like mmap. So we add r flag and w flag check code to detect
them.

Instead of directly modifying the contents of a file, adver-
saries may overwrite the file by cp and mv. The use of these
commands can also be detected with PhantomFS-v2. Since
the cp command uses the write system call, it can be
detected if the w flag is set. This can also be detected by the
original PhantomFS, but in the case of mv command, it calls
another system call rename. Therefore, in PhantomFS-v2,
we modify the rename system call to detect the overwriting
of an existing file using the mv command if the r flag is set
on the file. The legitimate user can use the rename system

198292 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

call implemented in the hidden interface through themodified
library.

Finally, the original PhantomFS was unable to detect file
deletions. However, since an attacker can delete the file,
we modify the unlink system call to detect the deletion of
the file. It is possible to detect when an attacker deletes a file
with flag r .

B. MULTIPLE HIDDEN INTERFACES
To implement multiple hidden interfaces, we assign different
signature to each interface. However, if we use one system
call for multiple interfaces, it may be vulnerable to reverse
engineering, as discussed before. Thus, we use multiple exist-
ing system calls to support multiple hidden interfaces. There
are system calls that take a pointer to the user space as a
parameter. The pointer is originally used to exchange data
between the user-level application and the kernel. The orig-
inal PhantomFS implements the hidden interface using the
read system call. For multiple hidden interfaces, we imple-
ment them using other system calls that also use a pointer to
the user space. In this section, we illustrate them with read,
write and pread system calls.

The process of using the hidden interface is basically
same with the original PhantomFS: the application should
allocate a buffer and write the signature, request type, and
parameter in the buffer, and then call the system call, which
is used for the hidden interface. PhantomFS-v2 supports
12 types of requests: (1) change flags, (2) read flags, (3) read,
(4) write, (5) pread, (6) read a directory, (7) pwrite, (8) execve,
(9) mmap, (10) memfd_create, (11) rename and (12) unlink.
The first five types are supported by the original PhantomFS,
and the remaining types are added in v2.

If the signature matches for each system call in kernel,
it means it is called as a hidden interface. To implement
multiple hidden interfaces, an interface index is given, when
the signature matches, to identify which hidden interface is
being used. For details, the pseudocode of themultiple hidden
interfaces is given in Algorithm 2.

For example, the read system call is used for one of the
hidden interfaces. When it is called, the signature is checked
first. If it matches, IF_READ is assign to the IF_INDEX
number and the hidden_interface function is called to
process the request.IF_INDEX indicates which hidden inter-
face is called. The actual value of IF_READ, IF_WRITE and
IF_PREAD is randomized to make reverse engineering hard.
If the signature does not match, it means the read system
call is called as a regular interface. Then, IF_REG is assigned
to the IF_INDEX number. If its flag r is set, a report is
sent to the administrator. This is handled by send_report
function. It sends a report to the administrator if any of flags
(FLAGS) is set to the file for the interface (IF_INDEX).
Finally, the original read system call is called. The write
and pread system calls work in the same way.
Function hidden_interface is used to process the

requests of the hidden interface with the IF_INDEX number.
If the request type is changing flags, the IF_INDEX and

Algorithm 2 Pseudocode of a Hidden Interface Implemen-
tation With Examples of the Read, Write and Pread System
Calls
1: procedure READ

2: if the signature matches then
3: call hidden_interface function(IF_READ)
4: return
5: call send_report(IF_REG, r)
6: call the original read system call
7: procedure WRITE

8: if the signature matches then
9: call hidden_interface function(IF_WRITE)
10: return
11: call send_report(IF_REG, w)
12: call the original write system call
13: procedure PREAD

14: if the signature matches then
15: call hidden_interface function(IF_PREAD)
16: return
17: call send_report(IF_REG, r)
18: call the original pread system call
19: procedure PWRITE

20: call send_report(IF_REG, w)
21: call the original pwrite system call
22: procedure SEND_REPORT (IF_INDEX, FLAGS)
23: if FLAGS are set to the file for IF_INDEX then
24: send a report
25: procedure HIDDEN_INTERFACE(IF_INDEX)
26: if the request type is read then
27: call send_report(IF_INDEX, r)
28: call the original read system call
29: if the request type is write then
30: call send_report(IF_INDEX, w)
31: call the original write system call
32: if the request type is pread then
33: call send_report(IF_INDEX, r)
34: call the original pread system call

. . . process other request types . . .
35: erase the signature

flags are stored accordingly. If the request type is reading
flags, flag information of the file for IF_INDEX is returned.
If the request type is read, write or pread, the flags are
checked by callingsend_report. Then the original system
call is called. Finally, the signature is erased to prevent the
hidden interface is triggered unintentionally.

Other system calls shown in Table 6 are also modified to
check the flags. Ingetdents system call, its original system
call is called to read the list of files. Then flags of the files in
the list are checked. If any file has flag h, the file is removed
from the list so that the file should be hidden from the regular
interface. In system calls pwrite, execve, mmap, and
rename, flags are checked. The checked flags vary with

VOLUME 8, 2020 198293

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

system calls as shown in Table 6. Since they are not used
as a hidden interface, however, the signature is not checked.
In the hidden_interface function, if the request type is
getdents, the original getdents system call is called,
and then the files with flag h for IF_INDEX are removed
from the list. For other system calls, their corresponding flags
are checked by calling IF_INDEX and their original system
calls are called.

The data structure storing the flags is maintained individu-
ally for each hidden interface, as illustrated in Figure 3. Flags
are stored per file and per interface. The stored flags of a file
are checked when the file is accessed through other interfaces
including the regular interface. Let us consider the example
of Figure 3. Let us suppose user 1 is using hidden interface 1.
User 1 sets flags rx to file 1. This means if file 1 is read or
executed through other interfaces, an alarm is triggered. At
the same time, w flags is set to the same file through hidden
interface 2. Thus, if user 1 tries to overwrite file 1, an alarm
is triggered. Since the data structure is maintained separately,
user 1 cannot modify nor read flag w of hidden interface 2.

FIGURE 3. Illustration of the data structure maintained to store flags.
Flags of a file are checked when the file is accessed through other
interfaces.

We modify the glibc code to use the hidden interface.
To process 12 types of requests, we modify their wrapper
functions. In these functions, we create signature, request
type and parameter in a buffer and call the corresponding
system call, as illustrated in Figure 4. The hidden interface
implementation by using the read system call is illustrated
in Figure 4. When the application calls the write wrapper
function, glibc’s write wrapper function creates a buffer
that makes a write request to PhantomFS-v2 for using the
hidden interface and calls the read system call.

VII. EXPERIMENTS
In this section, we demonstrate that PhantomFS-v2 can
detect adversaries who are aware of PhantomFS-v2, which
cannot be detected by the original PhantomFS. We demon-
strate it by penetration testing. We also measure the perfor-
mance overhead caused by PhantomFS-v2 and show it is
negligible.

FIGURE 4. Hidden interface implementation by using the read system
call.

TABLE 7. Machine specification used for experiments.

A. EXPERIMENTAL SETUP
We use a similar setup with the example given in Section V.
We install Ubuntu Server 18.04 as a virtual machine on a
host machine. Their spec is given in Table 8. We install
GoAhead [37] as a web server running on the virtual machine.
This server is one of the most popular embedded web server
which is efficient for developers to host embedded web appli-
cations. We utilize CVE-2017-17562 [38], a severe vulner-
ability which allows remote code execution for GoAhead
before 3.6.5, as the capability of some type of attackers
for our scenarios. This vulnerability enables the attackers to
obtain the privilege which allows for execution of arbitrary

TABLE 8. Comparison against existing techniques. [Detection: O means
detected, X means not detected, and

a
means potentially detected (but

not guaranteed)] [False alarm: O means false alarm may be generated
and X means no false alarm is generated].

198294 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

commands remotely through the GoAhead web server. The
open ports are 22 and 80, which are for the secure shell (SSH)
and the web server, respectively. No development tools are
installed.

We created three accounts as like in Table 3. The hid-
den path for the administrator (Padmin) is /home/admin/
PhantomFS_HiddenDir_q1W2e3 and that for the
web master (Pweb) is /home/web/PhantomFS_
HiddenDir_789uioJKL. The modified library and the
script to change the search path are placed in the hidden path.
Flag h is set to the hidden directory for all interfaces except
for the corresponding hidden interface. Specifically, h is set
to Padmin for the regular interface, Hweb and Hnobody; and to
Pweb for the regular interface, Hadmin, and Hnobody.
All executables in /bin, /sbin, /usr/bin, and

/usr/sbin are flagged with x. They are copied to Padmin
without the flag so that the administrator can use them. Those
in Padmin are linked with the modified library by changing the
path of the library. For the web master, only essential utilities
are copied to Pweb. They are ls and vi in this penetration
testing.

B. PENETRATION TESTING
In this subsection, we validate the security of PhantomFS-
v2 by penetration testing.

1) ATTACK GOALS
We place index.html and secret.txt as the targets of
attacks. Flags are set to them as shown in Table 5.

The goal of outside attackers and inside attackers is tomod-
ify index.html without triggering an alarm. We assume
the impersonation attackers succeed in stealing the creden-
tials of webmaster, which include its login password and
hidden path. The goal of impersonation attackers is to read
secret.txt without being detected by PhantomFS-v2.

2) COMPARISON WITH ALTERNATIVES
We compare the detection capability and false alarm of
PhantomFS-v2 against the original PhantomFS, file integrity
checking, and honeyfile [8]. The file integrity checking tech-
nique is a very well-known technique that detects unautho-
rized modification to files. It maintains the integrity metric
(typically hash) of files, and detects modification by com-
paring the integrity metric. The honeyfile technique is a
file-based deception technology that detects intrusion when
adversaries access decoy files.

For comparison, we use the following two attack scenarios.
There could be other scenarios to achieve the two attack goals.
We test other scenarios at the end of this subsection.
Scenario 1: The outside and inside attackers are enabled to

obtain code execution privilege on the target host by exploit-
ing the vulnerability of the web server.

• The attackers exploit a vulnerability in the web server to
obtain remote command execution.

• Despite of knowing existence of PhantomFS-v2, the attack-
ers inadvertently modify index.html with /bin/vi
executable.

Scenario 2: Impersonation attackers have the credentials
of the webmaster account and can access hidden inter-
face Hweb, which enables they can make use of executables
from Pweb. However, they are not conscious of exact flag
configurations for executables, whichmeans they are unlikely
execute any binaries other than vi and ls in Pweb.

• The impersonation attacker gets access to Hweb
interface.

• The attacker reads secret.txt by using vi in Pweb.

For the original PhantomFS,we set flagw toindex.html
and r to secret.txt. All users (administrator, webmaster,
and web server) use the hidden interface. Recall that there is
only one hidden interface in the original PhantomFS.

For file integrity checking, we calculate and keep the hash
values of index.html and secret.txt a priori. After
executing the attack scenarios, we calculate their hash values
again and compare them to the stored values.

For the honeyfile, we cannot use the real files as decoy
files. Thus, we place fake decoy files with confusing file
names. We place index.htm as a decoy file for the first
scenario, and confidential.txt as a decoy for the
second scenario.

PhantomFS-v2 successfully detects both scenarios,
whereas the original PhantomFS cannot. This is because
there is only one hidden interface in the original PhantomFS.
Since the outside and inside attackers gain access to the
web server, they can use the hidden interface and access
index.html without triggering the alarm. In a similar
vein, the impersonation attackers can access secret.txt
without being detected. If we employ file integrity checking,
file modification (scenario 1) can be detected, but file read
(scenario 2) cannot. When decoy files are placed, the success
of detection depends on whether the attackers are deceived
or not. If they are confused and access decoy files, they are
detected. However, if they do not access decoy files but only
the target files, the honeyfile technique cannot detect the
unauthorized file access.

Both PhantomFS-v2 and original PhantomFS do not gen-
erate false alarms because they use the hidden interface to
prevent legitimate users from triggering alarms accidentally.
File integrity checking may generate false alarms if the legit-
imate user updates target files. The false alarm is one of the
biggest concern of the honeyfile because the legitimate users
may access the decoy files by mistake and the legitimate
background process (e.g. indexing and file searching) may
access them as well.

The performance overhead of PhantomFS-v2, original
PhantomFS and honeyfile is lower than that of the file
integrity checking. This is because the file integrity checking
technique checks the integrity by reading all target files and
computing the integrity metric whereas other techniques only
detect access to target files.

VOLUME 8, 2020 198295

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

3) VALIDATION OF DEFENSE STRATEGY
Once attackers gain access to a host by exploiting a vul-
nerability (scenario 1) or impersonating a legitimate user
(scenario 2), they may try to find the hidden interface or
the hidden path, or to evade PhantomFS-v2. We discuss
possible attack vectors and develop defense mechanisms as
summarized in Table 2. By penetration testing, we validate
the defense mechanisms.

The following scenarios are used to validate the defense
mechanisms. They are of the impersonation attackers who
have stolen the credentials of webmaster and try to access
secret.txt.
Scenario 3 (Command History): Impersonation attackers

are aware of the fact that they can access secret.txt
without being detected if they can figure out Padmin. They
may try to do this by looking at the command history of the
administrator.

• The administrator set flag r to .bash_history.
• The impersonation attacker logins as webmaster.
• The attacker reads .bash_history of admin by using
vi in Pweb.

Even though the attacker uses vi in Pweb, the attacker is
detected because .bash_history has flag r . The attacker
may also try to retrieve the command history by using
lastcomm, but it does not reveal the command line argu-
ment nor the absolute path of the command.
Scenario 4 (Utilities Based on proc): Impersonation

attackers may try to find the absolute path of legitimate
applications located in Padmin..

• The impersonation attacker logins as webmaster.
• The attacker reads /proc/1522/cmdline using vi in
Pweb.

In this scenario, PID 1522 is of the legitimate application
located in Padmin. To find its absolute path, the attacker
reads /proc/1522/cmdline, but the path is replaced
with ********, which prevents the attacker from finding the
absolute path.
Scenario 5 (Reverse Engineering): The attackers can fig-

ure out how PhantomFS-v2 works by analyzing binaries
related to hidden interface. They know which functions are
called to handle hidden interface requests and find some
signatures used to identify if the request is correct. Knowing
hidden interface signatures, the attackers expect that they
can modify flag configurations on any files by calling file
related system calls with fabricated user-space pointer as an
argument.

• The impersonation attacker logins as webmaster.
• The attacker crafts fake memory pointer with hidden

interface signature values to request read or write on
secret.txt.

Since the attacker requests file related system calls by
forging memory pointer as an argument with all hidden
interface signature values but an interface identifier which

is generated randomly at run-time, PhantomFS-v2 alerts an
alarm on account of interface inconsistency.
Scenario 6 (Control flow hijacking): This scenario is

already covered by scenario 1.
Scenario 7 (Malware installation): The attackers may try

to bring malware into the host. It can be detected when the
file is transferred, when the malware is compiled or installed,
or when it is executed. In this scenario, it is detected at the
moment when it is transferred.

• The impersonation attacker logins as webmaster.
• Since the attacker cannot bring a file by using the utilities

available in Pweb, he inadvertently runs wget to copy a
file from a remote host.

Since x flag is set to wget, the attacker is detected when
it is executed.
Scenario 8 (File access in a non-standard way): The

attackers may try to destroy secret.txt instead of reading
it.

• The impersonation attacker logins as webmaster.
• The attacker creates a file whose name is secret.txt

in his own local directory.
• The attacker copies it to the administrator’s directory

by using the cp command to overwrite the target
secret.txt file.

The attacker is detected not only by executing cp which
has flag x, and also by the unlink system call being called,
which checks flag r of secret.txt.

C. PERFORMANCE EVALUATION
We measure the performance overhead of 10 system calls
we modified. We create a script that calls each system call,
and record the response time 100 times. Figure 5 shows
the average of 100 experiments by a thick histogram bar,
and the maximum and minimum by a narrow error bar. We
compare the response time of the unmodified file system
without PhantomFS-v2 (‘Unmodified’), the response time of
PhantomFS-v2 using the regular interface (‘Regular’), and
that of PhantomFS-v2 using the hidden interface through the
read system call (‘Hidden’).

The overhead of the read system call occurs when it is
used as a regular interface (‘Regular’) because the signature
is checked and the flag is checked. As shown in Figure 5(a),
we measure the response time of Regular varying the size of
requests. When the request size is small, the relative overhead
is high. When the request size is 4K, the response time is
increased by 103.00 % on average. This may look excessive,
but the absolute increase is only 4.12 ms. When the request
size is 4M, the response time is increased by 19.55 % on
average.

When the read system call is called as a hidden interface,
the overhead occurs by checking the signature, processing the
request and checking the flag. When the request size is 4K,
it is 85.00% and when the size is 4M, it is 21.06%.

198296 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

FIGURE 5. Comparison of response time in system calls. The response time is measured through the system call of the unmodified kernel
(‘Unmodified’), the modified regular interface of PhantomFS-v2 (‘Regular’), and the hidden interface of PhantomFS-v2 (‘Hidden’).

VOLUME 8, 2020 198297

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

It should be noted that the overhead experienced by the user
is much lower than this experimental result. The experimental
result is the overhead of one system call, but the system call
is only a part of a utility. Thus, the ratio of the increased
response time of a utility must be lower than that of a system
call.

To demonstrate this, we compare the throughput of the
dd utility in Figure 6. The utility reports the throughput of
accessing a disk. Note that the y-axis is throughput, where the
higher is the better. As shown in this figure, there is no signifi-
cant difference in the throughput of Unmodified, Regular, and
Hidden, because the read system call is only a part of the dd
utility. The overhead of Regular is 3.35% – 8.21% and that of
Hidden is up to 0.58%. In case of Hidden, the throughput is
sometimes higher than Unmodified. It means that the slight
increase of the response time in the read system call does
not have significant impact on the overall performance of the
dd utility.

FIGURE 6. Comparison of throughput measured by dd.

For system calls write, pread, and pwrite,
we observe a similar trend. The overhead is 2.40% –
24.64% (Regular) and 1.23% – 19.20% (Hidden) in case of
the write system call. It is 2.66% – 199.05% (Regular)
and 6.67% – 111.32% (Hidden) for pread; and it is
0.25% – 91.89% (Regular) and 0.89% – 95.25% (Hidden)
for pwrite.

In the getdents system call, the overhead is caused by
an additional memory copy. The getdents system call gets
a list of all files in that directory. Then files with h flag are
removed from the list while being copied to another memory
location, which incurs the additional memory copy overhead.
Thus, the overhead decreases as the number of hidden files
increases.

The figure 5(d) shows the response time of the getdents
system call. We create 100 files and measure the response
time when the 0%, 25%, 50%, 75%, and 100% of files have
h flag. It can be seen that as the number of hidden files
increases, the overhead decreases. When the percentage of
hidden files is 100%, the response time of Regular and Hid-
den is even shorter than that of Unmodified. Except for this,
the overhead is 40.01% – 191.80% (Regular) and 39.25% –
191.80% (Hidden).

The execve system call is used to execute a file. We
measure its response time varying the number of requested
files. The response time of Regular and Hidden is sometimes

lower than that of Unmodified, but the difference is within the
noise margin. In other cases, the overhead is 7.30% – 23.38%
(Regular) and 5.38% – 23.38% (Hidden).

In the case of mmap system call, overhead occurs when
checking the prot argument and flag. Once a file is mapped
to the memory, it is accessed directly from the memory.
Thus, the overhead occurs only when the file is mapped
and it is constant regardless of request size, as shown in
Figure 5(g). The overhead is 98.56% – 143.11% (Regular)
and 92.08% – 128.44% (Hidden). However, the absolute
value is only 1.15ms – 1.60ms (Regular) and 1.13ms – 1.54ms
(Hidden).

The memfd_create system call is used when an anony-
mous file is created. Thus, we measure its overhead varying
the number of requested files. The overhead is caused only
by checking the flag. The overhead is 114.28% – 166.66%
(Regular) and 107.14% – 185.71% (Hidden), but the absolute
value is only 2.14ms – 2.66ms (Regular) and 2.07ms – 2.85ms
(Hidden).

Inrename andunlink system calls, the overhead occurs
only for checking the flag. We measure the response time
varying the number of requested files. The overhead is
0.68% – 24.59% (Regular) and 1.54% – 22.95% (Hidden)
for rename and it is 1.66% – 6.38% (Regular) and 2.38%
– 4.25% (Hidden) for unlink.
We also compare the CPU time,measured byiozone util-

ity. We compare the CPU time of read and write system
calls because they are used to implement hidden interfaces.
The results are shown in Figure 7. Since the CPU time is
relatively very short compared to the total response time,
we use larger file sizes than Figure 5.

FIGURE 7. Comparison of CPU time of read and write system calls
measured by iozone.

198298 VOLUME 8, 2020

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

VIII. CONCLUSION
The file-based deception technology has been demonstrated
to be effective in thwarting malicious users who have gained
access to the host evading intrusion detection systems [9].
However, if adversaries become aware of the deception
technology, the deception technology is unlikely to succeed
in alluring adversaries. In this paper, we analyze the attack
surface of the file-based deception technology and propose
PhantomFS-v2 which offers countermeasures to intelligent
adversaries who are aware of the file-based deception tech-
nology. By penetration testing, we demonstrate that even if
adversaries are aware of PhantomFS-v2, they cannot fig-
ure out the hidden interface, and even if adversaries can
access one of hidden interfaces, they cannot access other
hidden interfaces. Though the response time of system calls
increases a little, it does not have significant impact on the
user’s experience because the response time of a system call
is only a part of user’s applications. As a result, we expect
that PhantomFS-v2 would be an effective countermeasure to
those adversaries who are aware of the file-based deception
technology. PhantomFS-v2 provides an additional protection
mechanism for important files, which may not be fully pro-
tected by conventional intrusion detection systems.

ACKNOWLEDGMENT
(Jione Choi and Hwiwon Lee are co-first authors.)

REFERENCES
[1] L. Spitzner, ‘‘The honeynet project: Trapping the hackers,’’ IEEE Secur.

Privacy, vol. 1, no. 2, pp. 15–23, Mar. 2003.
[2] Wikipedia. Honeypot (Computing). Accessed: 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Honeypot_(computing)
[3] D. Fraunholz, D. Krohmer, F. Pohl, and H. D. Schotten, ‘‘On the detection

and handling of security incidents and perimeter Breaches–A modular and
flexible honeytoken based framework,’’ in Proc. 9th IFIP Int. Conf. New
Technol., Mobility Secur. (NTMS), Feb. 2018, pp. 1–4.

[4] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and
Y. Elovici, ‘‘HoneyGen: An automated honeytokens generator,’’ in Proc.
IEEE Int. Conf. Intell. Secur. Informat., Jul. 2011, pp. 131–136.

[5] A. Juels and R. L. Rivest, ‘‘Honeywords: Making password-cracking
detectable,’’ in Proc. 2013 ACM SIGSAC Conf. Comput. Commun. Secur.,
2013, pp. 145–160.

[6] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, ‘‘From
patches to honey-patches: Lightweight attacker misdirection, deception,
and disinformation,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2014, pp. 942–953.

[7] D. Fraunholz, S. Duque Anton, C. Lipps, D. Reti, D. Krohmer,
F. Pohl, M. Tammen, and H. Dieter Schotten, ‘‘Demystifying decep-
tion technology:A survey,’’ 2018, arXiv:1804.06196. [Online]. Available:
http://arxiv.org/abs/1804.06196

[8] J. Yuill, M. Zappe, D. Denning, and F. Feer, ‘‘Honeyfiles: Deceptive files
for intrusion detection,’’ in Proc. from 5th Annu. IEEE SMC Inf. Assurance
Workshop, Jun. 2004, pp. 116–122.

[9] J. Lee, J. Choi, G. Lee, S.-W. Shim, and T. Kim, ‘‘PhantomFS: file-based
deception technology for thwarting malicious users,’’ IEEE Access, vol. 8,
pp. 32203–32214, 2020.

[10] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, ‘‘Baiting
inside attackers using decoy documents,’’ in Security and Privacy in Com-
munication Networks. Berlin, Germany: Springer, 2009, pp. 51–70.

[11] B. Whitham, ‘‘Canary files: generating fake files to detect critical data loss
from complex computer networks,’’ in Proc. 2nd Int. Conf. Cyber Secur.,
Cyber Peacefare Digital Forensic (CyberSec), Mar. 2013.

[12] M. Lazarov, J. Onaolapo, and G. Stringhini, ‘‘Honey sheets: What happens
to leaked google spreadsheets?’’ in Proc. 9th Workshop Cyber Secur.
Experimentation Test(CSET), 2016, pp. 1–8.

[13] C. Moore, ‘‘Detecting ransomware with honeypot techniques,’’ in Proc.
Cybersecurity Cyberforensics Conf. (CCC), Aug. 2016, pp. 77–81.

[14] R. Zhuang, S. A. DeLoach, and X. Ou, ‘‘Towards a theory of moving target
defense,’’ in Proc. 1st ACM Workshop Moving Target Defense (MTD),
2014, pp. 31–40.

[15] Q. Jia, K. Sun, and A. Stavrou, ‘‘MOTAG: Moving target defense against
Internet denial of service attacks,’’ in Proc. 22nd Int. Conf. Comput.
Commun. Netw. (ICCCN), Jul. 2013, pp. 1–9.

[16] T. E. Carroll, M. Crouse, E. W. Fulp, and K. S. Berenhaut, ‘‘Analysis of
network address shuffling as a moving target defense,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2014, pp. 701–706.

[17] M. Christodorescu, M. Fredrikson, S. Jha, and J. Giffin, End-to-End Soft-
ware Diversification of Internet Services. New York, NY, USA: Springer,
2011, pp. 117–130.

[18] P. Kampanakis, H. Perros, and T. Beyene, ‘‘SDN-based solutions for
moving target defense network protection,’’ inProc. IEEE Int. Symp.World
Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[19] E. Al-Shaer, ‘‘Toward network configuration randomization for moving
target defense,’’ inMoving Target Defense. 2011, pp. 153–159.

[20] H. Okhravi et al., ‘‘Creating a cybermoving target for critical infrastructure
applications,’’ in Proc. 5th Int. Conf. Crit. Infrastruct. Protection (ICCIP),
Hanover, NH, USA, Mar. 2011, pp. 107–123.

[21] E. Al-Shaer, Q. Duan, and J. Jafarian, ‘‘Random host mutation for moving
target defense,’’ in Proc. 8th Int. ICST Conf. Secur. Privacy Commun.
Netw., 2012, pp. 310–327.

[22] X. Jiang, H. J. Wangz, D. Xu, and Y. Wang, ‘‘Randsys: Thwarting
code injection attacks with system service interface randomization,’’ in
Proc. 26th IEEE Int. Symp. Reliable Distrib. Syst. (SRDS), Oct. 2007,
pp. 209–218.

[23] M. Chew and D. Song, ‘‘Mitigating buffer overflows by operating system
randomization,’’ Tech. Rep., Apr. 2009.

[24] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, and M. Franz, Compiler-Generated Software
Diversity. New York, NY, USA: Springer, 2011, pp. 77–98.

[25] G. S. Kc, A. D. Keromytis, and V. Prevelakis, ‘‘Countering code-injection
attacks with instruction-set randomization,’’ in Proc. 10th ACM Conf.
Comput. Commun. Secur. (CCS), 2003, pp. 272–280.

[26] A. N. Sovarel, D. Evans, and N. Paul, ‘‘Where’s the FEEB? The effective-
ness of instruction set randomization,’’ in Proc. 14th Conf. USENIX Secur.
Symp., vol. 14. New York, NY, USA: USENIX Association, 2005, p. 10.

[27] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
‘‘On the effectiveness of address-space randomization,’’ inProc. 11th ACM
Conf. Comput. Commun. Secur. (CCS), 2004, pp. 298–307.

[28] S. W. Boyd and A. D. Keromytis, ‘‘SQLrand: Preventing SQL injection
attacks,’’ in Applied Cryptography and Network Security, M. Jakobsson,
M. Yung, and J. Zhou, Eds. Berlin, Germany: Springer, 2004, pp. 292–302.

[29] B. Whitham, ‘‘Automating the generation of enticing text content for high-
interaction honeyfiles,’’ in Proc. 50th Hawaii Int. Conf. Syst. Sci., 2017,
pp. 1–10.

[30] S. Ganapathy, P. Yogesh, and A. Kannan, ‘‘An intelligent intrusion detec-
tion system for mobile ad-hoc networks using classification techniques,’’
in Advances in Power Electronics and Instrumentation Engineering,
V. V. Das, N. Thankachan, and N. C. Debnath, Eds. Berlin, Germany:
Springer, 2011, pp. 117–122.

[31] D. S. Vijayakumar and S. Ganapathy, ‘‘Machine learning approach to
combat false alarms in wireless intrusion detection system,’’ Comput. Inf.
Sci., vol. 11, no. 3, pp. 67–81, 2018.

[32] G. Creech and J. Hu, ‘‘A semantic approach to host-based intrusion detec-
tion systems using contiguousand discontiguous system call patterns,’’
IEEE Trans. Comput., vol. 63, no. 4, pp. 807–819, Apr. 2014.

[33] S. N. Chari and P.-C. Cheng, ‘‘BlueBoX: A policy-driven, host-based
intrusion detection system,’’ ACM Trans. Inf. Syst. Secur., vol. 6, no. 2,
pp. 173–200, May 2003, doi: 10.1145/762476.762477.

[34] D.-Y. Yeung and Y. Ding, ‘‘Host-based intrusion detection using dynamic
and static behavioral models,’’ Pattern Recognit., vol. 36, no. 1,
pp. 229–243, Jan. 2003.

[35] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi,
P. Yogesh, and A. Kannan, ‘‘Intelligent feature selection and classifica-
tion techniques for intrusion detection in networks: A survey,’’ EURASIP
J. Wireless Commun. Netw., vol. 2013, no. 1, p. 271, Dec. 2013.

[36] J. Briffaut, J.-F. Lalande, and C. Toinard, ‘‘Security and results of a large-
scale high-interaction honeypot,’’ J. Comput., vol. 4, no. 5, pp. 395–404,
May 2009.

VOLUME 8, 2020 198299

http://dx.doi.org/10.1145/762476.762477

J. Choi et al.: PhantomFS-v2: Dare You to Avoid This Trap

[37] EMBEDTHIS. (2020). Goahead: Simple, Secure Embedded Web Server.
Accessed: May 5, 2020. [Online]. Available: https://www.embedthis.
com/goahead/

[38] NIST. (2017). Goahead Web Server Before 3.6.5: HTTPd LD_PRELOAD
Remote Code Execution. Accessed: May 5, 2020. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2017-17562

JIONE CHOI received the B.S. degree in computer
science from Dongduk University, in 2019. She
is currently pursuing the M.S. degree in cyberse-
curity with Korea University, South Korea. From
May 2018 to July 2019, she worked as an Intern
for an AI company called Furiosa AI, as a Profiler
Programmer for neural processing unit chip. Her
research interests include Linux kernel, file sys-
tems, and security, such as intrusion detection and
honey pot.

HWIWON LEE received the B.S. degree in cyber
defense from Korea University, in 2017. He is cur-
rently pursuing the Integrated Ph.D. (by Program)
degree in cybersecurity with Korea University. His
research interests include embedded system secu-
rity, software testing, and binary analysis. He won
the DEFCON CTF, a worldwide hacking competi-
tion, in 2015 and 2018.

YOUNGGI PARK received the B.S. degree in
cyber defense from Korea University, in 2018,
where he is currently pursuing the M.S. degree in
cybersecurity. His research interests include vul-
nerability analysis, automated root cause analysis,
and reverse engineering.

HUY KANG KIM (Member, IEEE) received the
B.S. and M.S. degrees in industrial engineering
and the Ph.D. degree in industrial and systems
engineering from the Korea Advanced Institute of
Science and Technology (KAIST), in 1998, 2000,
and 2009, respectively. He is a Serial Entrepreneur.
He founded A3 Security Consulting, in 1999, and
AI Spera, in 2017. He is currently a Professor with
the School of Cybersecurity, Korea University.

JUNGHEE LEE (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
from Seoul National University, in 2000 and 2003,
respectively, and the Ph.D. degree in electrical
and computer engineering with the Georgia Insti-
tute of Technology, in 2013. From 2003 to 2008,
he worked at Samsung Electronics on electronic
system level design of mobile system-on-chip.
From 2014 to 2019, he was with the Department
of Electrical and Computer Engineering, The Uni-

versity of Texas at San Antonio, as an Assistant Professor. He has been
with the School of Cybersecurity, Korea University, since 2019. His research
interests include secure design or hardware-assisted security of processor,
non-volatile memory, storage, and dedicated hardware.

YOUNGJAE KIM (Member, IEEE) received the
B.S. degree in computer science from Sogang Uni-
versity, Seoul, South Korea, in 2001, the M.S.
degree in computer science from KAIST, in 2003,
and the Ph.D. degree in computer science and
engineering from Pennsylvania State University,
University Park, PA, USA, in 2009. From 2009 to
2015, he worked as a Research and Develop-
ment Staff Scientist with the U.S. Department of
Energy’s Oak Ridge National Laboratory. From

2015 to 2016, he was with Ajou University, as an Assistant Professor. He has
been an Associate Professor with the Department of Computer Science and
Engineering, Sogang University, since 2016. His research interests include
operating systems, file and storage systems, parallel and distributed systems,
and computer systems security.

GYUHO LEE received the B.S. and M.S. degrees
in computer engineering and information commu-
nication from Inha University, in 2004 and 2012,
respectively. He has been with LIG Nex1 Corpora-
tion, South Korea, since 2007. His research inter-
ests include software security of weapon systems,
anti-tampering platform, secure development
process, and cyber kill chain.

SHIN-WOO SHIM received the B.S. degree
in computer science and engineering from
POSTECH, in 2007, and the M.S. degree in infor-
mation security from Korea University, in 2019.
He has beenworkingwith LIGNex1, South Korea,
since 2007. His research interests include com-
mand and control in cyber warfare, mission impact
analysis, and course of action in cyber warfare.

TAEKYU KIM received the B.S. degree in com-
puter science and engineering from Jungang Uni-
versity, in 2000, and the M.S. and Ph.D. degrees
in electrical and computer engineering from The
University of Arizona, in 2006 and 2008, respec-
tively. He was working at SK C&C software tech-
niques team, in 2008. He has been working with
LIG Nex1, South Korea, since 2010. His research
interests include cyber operation systems, training
systems, and cyber infra systems.

198300 VOLUME 8, 2020

