
1 23

Cluster Computing
The Journal of Networks, Software Tools
and Applications

ISSN 1386-7857

Cluster Comput
DOI 10.1007/s10586-020-03087-1

GARET: improving throughput using gas
consumption-aware relocation in Ethereum
sharding environments

Sangyeon Woo, Jeho Song, Sanghyeok
Kim, Youngjae Kim & Sungyong Park

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

GARET: improving throughput using gas consumption-aware
relocation in Ethereum sharding environments

Sangyeon Woo1 • Jeho Song1 • Sanghyeok Kim1
• Youngjae Kim1

• Sungyong Park1

Received: 1 December 2019 / Revised: 31 January 2020 / Accepted: 9 March 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Advances in blockchain technology have made a significant impact on a wide range of research areas due to the features

such as transparency, decentralization and traceability. With the explosive growth of blockchain transactions, there has

been a growing interest in improving the scalability of blockchain network. Sharding is one of the methods to solve this

scalability problem by partitioning the network into several shards so that each shard can process the transactions in

parallel. Ethereum places each transaction statically on a shard based on its account address without considering the

complexity of the transaction or the load generated by the transaction. This causes the transaction utilization on each shard

to be uneven, which makes the transaction throughput of the network decrease. This paper formulates this problem as a

multi-dimensional knapsack problem (MKP) and proposes a heuristic algorithm called GARET. The GARET dynamically

relocates the transaction load of each shard based on gas consumption to maximize the transaction throughput. Ethereum

gas is a unit that represents the amount of computational effort needed to execute operations in a transaction. Bench-

marking results show that GARET outperforms existing techniques by up to 12% in transaction throughput and decreases

the makespan of transaction latency by about 74% under various conditions. It is also shown that the relocation overhead is

minimal and does not affect the overall performance.

Keywords Blockchain � Ethereum � Sharding � Scalability � Relocation

1 Introduction

Blockchain is a peer-to-peer (P2P) based distributed ledger

technology that ensures integrity and reliability without an

authorized third party’s involvement. Although the block-

chain was originally developed as part of Bitcoin [22], it

has recently been drawing much attention as an innovative

technology that can support a variety of fields such as

health-care [21], internet of things (IOT) [15] or medical

data management [6].

Despite the worldwide interest in the blockchain,

applying this technology to various areas is sometimes

limited due to the scalability problem [16]. When the

number of transactions increases, the transaction per sec-

ond (TPS) of the blockchain decreases severely because the

time for sharing a block or reaching a consensus is delayed.

For example, when one of the most well-known Ethereum-

based games called CryptoKitties [12] was released, the

amount of pending transactions was sharply increased [3]

and finally broke down the Ethereum network. While

simply increasing the block size or shortening the interval

A preliminary version of this article [17] was presented at the

2019 IEEE 4th International Workshops on Foundations and

Applications of Self* Systems (FAS*W), Umea, Sweden,

June, 2019.

& Sungyong Park

parksy@sogang.ac.kr

Sangyeon Woo

tkddus121@sogang.ac.kr

Jeho Song

oidwin@sogang.ac.kr

Sanghyeok Kim

sangh228@sogang.ac.kr

Youngjae Kim

youkim@sogang.ac.kr

1 Department of Computer Science and Engineering, Sogang

University, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of

Korea

123

Cluster Computing
https://doi.org/10.1007/s10586-020-03087-1(0123456789().,-volV)(0123456789().,- volV)

Author's personal copy

http://orcid.org/0000-0002-0309-1820
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03087-1&domain=pdf
https://doi.org/10.1007/s10586-020-03087-1

to create a block can improve the transaction throughput, it

may also weaken the network security as the newly created

blocks cannot possibly be delivered to all the nodes in the

blockchain network [29].

To solve this scalability problem effectively, several

approaches have been proposed. Those include the mech-

anisms using off-chain payment [23], using byzantine fault

tolerance (BFT) consensus instead of existing proof-of-

work (PoW) algorithm [26], using a permissioned (or pri-

vate) blockchain that requires only authorized clients to

participate in the consensus process [11], and using

sharding [18, 28].

Sharding is a method to increase the transaction

throughput of the network by partitioning blockchain into

several pieces called shards and allowing each shard to

process the transactions in parallel. This mitigates the

amount of data transferred among the nodes as the size of

data within the shard is smaller than that in the entire

blockchain. Consequently, sharding can increase the

transaction throughput. Whereas sharding seems to be a

viable solution for scaling blockchain, it also creates other

challenging issues that needs to be solved such as how to

allocate each transaction to a specific shard, how to reach

consensus between shards, how to access or synchronize

the states in a shard with other shards, etc.

Among those important challenging issues, this paper

attempts to address the problem of transaction allocation to

a shard in Ethereum sharding environments. Ethereum [9]

is a distributed, permissionless (or public) blockchain

platform that can run smart contracts. Due to its decen-

tralized, secure, and flexible nature, Ethereum has been

widely used as a platform for initial coin offering (ICO). In

Ethereum sharding, the client’s accounts are statically

partitioned based on the account address [1] and distributed

to each shard. This scheme is referred as static address-

based placement method (S-ACC) throughout this paper.

The S-ACC causes transaction load imbalance between

shards as it does not consider the complexity of transac-

tions and the load generated from the transactions. When

such imbalance occurs in Ethereum sharding environments,

the number of pending transactions may increase, which in

turn lowers transaction throughput and increases the

makespan of transaction latency.

This paper formulates this problem as a multi-dimen-

sional knapsack problem (MKP) and proposes a gas con-

sumption-aware account relocation mechanism in the

Ethereum called GARET. The GARET is dynamic in the

sense that the accounts between shards can be relocated to

improve the transaction throughput and minimize the

makespan of transaction latency by periodically checking

the gas consumption in each shard. To summarize, this

paper makes the following specific contributions:

– The method proposed in this paper uses the gas

consumption as an indicator for the complexity of

transaction load that changes over time. The gas in the

Ethereum is a unit of fee that is paid for the

computation resources consumed to execute operations

in a transaction. Therefore, the amount of gas con-

sumption in a transaction represents the transaction load

more accurately than the number of transactions since

each transaction may have different complexity.

– The GARET consists of two sub-components: transac-

tion load prediction algorithm and account relocation

algorithm. Instead of using transient load in the

Ethereum, the amount of gas consumption requesting

to the account group is predicted. Based on the

prediction, the account relocation algorithm dynami-

cally relocates the account groups of each shard. This

balances the transaction load of each shard and

minimizes the makespan of the transaction latency.

– To evaluate the performance of the proposed technique,

we have conducted various experiments with the

OMNeT?? 5.4.1 simulator [25]. Because of the

difficulty of using real workloads, we generated a

variety of synthetic workloads that mimic the real

workload as much as possible by analyzing the real

trace log from the Etherscan [2]. The performance

results showed that the transaction throughput is

improved by up to 12%, while the makespan of the

transaction latency is decreased by up to 74%.

– To analyze the overhead incurred by account reloca-

tion, we developed another version of account reloca-

tion algorithm called GARET-PS (GARET with partial

shuffling). We also showed that the GARET-FS

(GARET with full shuffling) still outperforms the

GARET-PS although the GARET-PS reduces the

relocation count under relatively little traffic conditions.

The rest of the paper is organized as follows. Section 2

presents an overview of Ethereum sharding and the moti-

vation behind the proposed mechanism. Section 3 defines

the problem. Section 4 discusses the design issues of

GARET and Sect. 5 evaluates the performance of the

proposed method. Chapter 6 introduces previous research

approaches to scale blockchain network and Chapter 7

concludes the paper.

2 Background and motivation

This section briefly introduces the Ethereum and its

sharding mechanism, and discusses the motivation for the

proposed approach.

Cluster Computing

123

Author's personal copy

2.1 Overview of Ethereum

Ethereum is a permissionless blockchain platform for cre-

ating and executing Dapps through the smart contract [9].

Smart contract is an application executed on all partici-

pating blockchain nodes, which ensures integrity and reli-

ability of its execution results.

Ethereum provides users with the Turing-complete pro-

gramming language andEthereumvirtualmachine (EVM) to

enable them to create various smart contracts. Ethereum

users create a smart contract using the Turing-complete

programming language. The smart contracts created by users

are compiled into the bytecode to be deployed in the

blockchain network. As a deployed smart contract is con-

sidered as an account, the contract can be executed in the

similar way that users send a transaction to the account. The

EVM is a 256-bit virtual machine (VM) that can execute the

deployed smart contract. All nodes can execute the deployed

smart contract by using the EVM. Therefore, based on the

information in the smart contracts that are deployed through

blockchain, all nodes can execute all smart contracts and

validate the results executed by other nodes.

Due to the inherent scalability limitation on the per-

missionless blockchain networks, Ethereum proposed a

mechanism called sharding. The Ethereum sharding parti-

tions the Ethereum network into several shards so that each

shard executes the transactions in parallel as shown in

Fig. 1. Each shard contains a collation chain (collation is a

block in a shard), which is a data structure to process and

store transactions. The validator in each shard is respon-

sible for validating all transactions within the shard and

generating a collation at appropriate intervals. Therefore,

one of the challenging issues in Ethereum sharding is how

to allocate transactions to each shard. Ethereum assigns

each account to a shard statically according to its address

prefix (we call this as S-ACC). This leads to a load

imbalance problem as the complexity of each transaction

and the load condition in each shard are not properly

considered.

2.2 Motivation

2.2.1 Transaction complexity

Ethereum uses a unit called gas that represents the amount

of computational effort needed to execute operations in a

transaction. For example, if we need to run transactions

that require more execution cycles, more gas consumption

is expected. As shown in Table 1, the amount of gas

required to execute a transaction is calculated based on the

gas consumption defined for the operation code executed in

the transaction.

In order to confirm that transactions have different gas

consumption, we analyzed the gas consumption trace of

about 1400 transactions collected from the real Ethereum

network. As shown in Fig. 2, the gas consumption of

transactions varies from a minimum of 13,678 to a maxi-

mum of 2,315,546. Considering that a gas limit in a single

block is set in advance, the number of transactions that can

be included in a single block largely depends on the

amount of total gas consumption from all transactions.

Therefore, if we allocate transactions to each shard stati-

cally based on the account address prefix or simply based

on the number of transactions, the total number of trans-

actions generated at each interval can possibly be

decreased, which lowers the transaction throughput (i.e.,

Fig. 1 Overview of Ethereum Sharding

Table 1 Gas consumption by operation [27]

Name Value Description

Gbase 2 Gas Gas for {ADDRESS, ORIGIN, CALLER...}

Gverylow 3 Gas Gas for {ADD, SUB, NOT...}

Glow 5 Gas Gas for {MUL, DIV, SDIV...}

Gmid 8 Gas Gas for {ADDMOD, MULMOD, JUMP...}

Ghigh 10 Gas Gas for {JUMPI}

Gextcode 700 Gas Gas for {EXTCODESIZE}

Gbalance 400 Gas Gas for {BALANCE}

2x105

5x105

1x106

2x106

 0 200 400 600 800 1000 1200 1400

G
as

 C
on

su
m

pt
io

n

Ethereum Transactions ID

Fig. 2 Variance of gas consumption

Cluster Computing

123

Author's personal copy

low TPS). For this, allocating transactions to each shard

based on the gas consumption can lead to performance

improvement.

2.2.2 Effects of gas consumption imbalance

We conducted a preliminary experiment with the

OMNeT?? 5.4.1 simulator to identify the load imbalance

problem between shards based on the S-ACC. We mea-

sured the average collation utilization of each shard during

the 50 collation cycle, assuming an environment where

there are 20 shards. The collation utilization of a shard

denotes the actual gas consumption versus the maximum

gas consumption that can be included in the collation (i.e.,

gas consumption/gas limit).

The transaction load used in this experiment was gen-

erated using the workloads summarized in Table 2. Fig-

ure 3 shows the average collation utilization of each shard.

As shown in Fig. 3, only 25% of all 20 shards show the

maximum utilization, while other 25% shards were under

60% utilization. This indicates that placing accounts on

each shard regardless of the complexity of transaction load

may cause imbalance in the transaction load. When the

imbalance in the transaction loads between shards increa-

ses, it is possible that the number of transactions pending at

a particular shard is abnormally larger than those at other

shards. This means that the pending transactions are more

likely to be included at the next collation cycle since the

gas limit that can be included in a collation is defined. This

leads to performance degradation.

3 Problem definition

The basic systemmodel assumed inGARET conforms to the

Ethereum sharding architecture presented in Fig. 1, where

the number of shards is fixed. As Ethereum sharding uses the

proof-of-stake (PoS) consensus algorithm, every shard has

the same collation cycle. Therefore, we can applyGARET to

all shards simultaneously. We also assume that the size of

collation is limited according to the amount of gas con-

sumption and no malicious attack occurs on the sharding

network. All accounts belong to one account group that each

account group includes the same number of accounts.

Let us assume that Ai refer to the i-th account group and Si
refer to the i-th shard, respectively. Also, assume that Nag

refers to the number of account group and the number of

shards composing the sharding network is defined as Nsh.

Unlike traditional systems, which create and manage user

accounts in the central server, the GARET manages the

accounts by dividing their addresses into Nag groups. More-

over,GasusedSi
andUSi are the amount of gas consumption per

shard and the collation utilization per shard, respectively.

Figure 4 shows a pictorial representation of the problem

in this study. As shown in Fig. 4, the problem is to assign

account groups to Nsh shards so that the sum of USi is

maximized, while the sum of GasusedSi
does not exceed the

Gaslimit assigned to each shard. This is a multi-dimensional

knapsack problem (MKP) [13] and can be formulated with

the following Eqs. from 1 to 4.

GasusedSi
¼

X
GasusedAj

; for all Aj 2 Si ð1Þ

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
ol

la
tio

n
U

til
iz

at
io

n(
%

)

Ethereum Shards ID

Fig. 3 Collation utilization of 20 shards Fig. 4 Problem definition

Table 2 Summary of Ethereum workloads (1400 transactions)

Type Value (gas) Ratio (%)

Gas G-Low 20742 30

G-Medium 51857 40

G-High 105153 30

Type Volume ratio (%) Ratio (%)

Transaction T-Small 20 80

T-Large 80 20

Cluster Computing

123

Author's personal copy

USi ¼
GasusedSi

Gaslimit
; i ¼ 1; . . .;Nsh

ð2Þ

Maximize
XNsh

i¼1
USi

ð3Þ

subject to GasusedSi
�Gaslimit; i ¼ 1; . . .;Nsh ð4Þ

Since this problem is considered as NP-complete [13],

we propose a heuristic algorithm to solve this problem in

the following section.

4 Design of GARET

This section presents an overview of the GARET archi-

tecture and discusses its components in detail.

4.1 Overview

Figure 5 depicts the overall architecture of GARET. In the

proposed architecture, we assume that each shard has a

validator connected both to the main blockchain and the

collation chain, and the GARET is installed within the

validator. The GARET consists of two algorithms: trans-

action load prediction algorithm and account relocation

algorithm. The GARET initially places Nag/Nsh account

groups in each shard so that the same number of accounts

can be located in each shard. When the number of gener-

ated collations reaches to the relocation cycle, the GARET

runs the transaction load prediction algorithm for each

account group based on the gas consumption. With the

predicted load, the GARET invokes the account relocation

algorithm to determine whether the accounts should be

relocated or not. If relocation is required, the consensus

protocol is used to synchronize the outcome from valida-

tors and the account state table is updated accordingly.

For example, assume that the time interval between two

consecutive collations is CT and the number of collations

generated in one shard at every relocation cycle is Ncol.

Then, PT , the relocation cycle of GARET, is defined as

Eq. 5. Therefore, if Ncol is 5, the GARET is executed when

5 collations are generated in one shard.

PT ¼ Ncol � CT ð5Þ

4.2 Transaction load prediction algorithm

The transaction load prediction algorithm predicts the

transaction load that will occur in the future, based on the

gas consumption of the previous transactions. This algo-

rithm has the following features. First, it predicts the

transaction load with the gas consumption instead of the

number of transactions. This is because the transactions in

the Ethereum are much more complex and the number of

transactions cannot properly reflect the complexity of

transactions. Second, it predicts the future transaction load

using the gas consumption that has been processed in one

cycle before the last cycle. This allows the Ethereum to

have enough time to prepare and validate the collations that

were newly relocated in each shard. When the collations

generated in the previous cycle are invalidated, the vali-

dation may not be finalized. Therefore, if the transaction

load is predicted with the gas consumption obtained from

the previous cycle, it is possible that incorrect gas con-

sumption can be used for the prediction.

Let us assume that Gasusedi;j is the gas consumption of the

i-th account group in the j-th collation and Wj is the weight

value for the j-th collation. Then, Gas
pred
Ai

, the predicted gas

consumption of the i-th account group defined in Eq. 6 is

the sum of product of Gasusedi;j and Wj , where j is increased

from 1 to Ncol. Moreover, the Wj in Eq. 7 is defined such

Fig. 5 GARET architecture

Cluster Computing

123

Author's personal copy

that the nearest past gas consumption value has more

weight. For example, if Ncol is 5, each Wj would be 1/15, 2/

15, 3/15, 4/15, 5/15, respectively when j is increased from

1 to 5. Figure 6 shows the detailed steps of Gas
pred
Ai

cal-

culation in each account group when the Ncol is 5.

Gas
pred
Ai

¼
XNcol

j¼1
ðGasusedi;j �WjÞ ð6Þ

Wj ¼
j

PNcol

k¼1ðkÞ
¼ 2� j

NcolðNcol þ 1Þ ð7Þ

4.3 Account relocation algorithm

The account relocation algorithm uses the predicted

transaction load obtained from the transaction load pre-

diction algorithm described in Sect. 4.2. Figure 7 shows an

overall flow of the account group relocation algorithm.

The account relocation algorithm is composed of two

steps as shown in Algorithm 1. First, it creates a priority

queue based on the information from the Nag account

groups, and puts an account group with the biggest trans-

action load to come first. Then, it selects an account group

from the queue and relocates it to a shard with the mini-

mum gas consumption. That is, the destination shard is the

one with the smallest
P

Aj2Si Gas
pred
Aj

value, where the set of

account groups in the i-th shard is defined as Si. Finally, the

previous steps are repeated until every account group is

relocated. In order to minimize the time complexity of

ordering the account groups in the descending order, we

used a max heap data structure for the priority queue. On

the other hand, we used a min heap data structure for

finding the shard with the smallest
P

Aj2Si Gas
pred
Aj

value to

minimize the time complexity.

5 Performance evaluation

In this section, we evaluate the performance of GARET

and present the comparison with existing approaches using

OMNeT?? 5.4.1 simulator [25]. In order to evaluate the

performance of GARET, we first analyzed the real Ether-

eum workloads and generated similar synthetic patterns as

Fig. 6 Transaction load prediction algorithm

Fig. 7 Account relocation algorithm

Cluster Computing

123

Author's personal copy

much as possible. In addition, we report various perfor-

mance results by varying the amount of gas consumption

and the number of transactions. The overhead incurred by

account relocation is also anaylzed.

5.1 Experiment setup

5.1.1 Real workload analysis

In order to properly generate workloads for the simulation,

we analyzed the amount of gas consumption and the

number of transactions in the Ethereum by using about

1,400 most recent Ethereum transactions from Etherscan

[2].

From the analysis, we found that the number of trans-

actions (i.e., transaction volume) generated by the heaviest

top 20% accounts constitutes almost 80% of the total

transactions. Furthermore, the average gas consumptions of

bottom 30%, medium 40%, and top 30% are 20742,

51,857, and 105,153, respectively. Therefore, we classified

the simulation workloads into two different traffic volumes

(T-Small and T-Large) with three types of gas consump-

tion (G-Low, G-Medium, G-High). Table 2 summarizes

the types and distributions for the amount of gas con-

sumption and the number of transactions. For example,

G-Small includes transactions with the gas consumption of

bottom 30%, while G-Medium and G-High include trans-

actions with the gas consumption of medium 40% and high

30%, respectively. The gas value represents the average

gas consumption of each category.

5.1.2 Workloads and comparison targets

Based on the analysis given above, we generated three

types of gas consumption rate (LGas1 , LGas2 , LGas3) and two

types of traffic volume (LVol1 , LVol2 , LVol3) as shown in

Table 3. For example, LGas3 and LVol2 represent a workload

type that matches with the real Ethereum workload.

We have implemented two different account allocation

schemes for Ethereum sharding environments: S-ACC and

D-TX. The S-ACC is a static address-based placement

method currently proposed for the Ethereum sharding. And

the D-TX is a relocation mechanism based on the number

of transactions such that the number of transactions per

account is evenly distributed between shards without con-

sidering the amount of gas consumption. For the compar-

ison, we measured transaction throughput and makespan of

transaction latency. Another version of GARET called

GARET-PS (GARET with partial shuffling) has also been

developed. The throughput and makespan of GARET-PS

and GARET-FS1 (GARET with full shuffling) were mea-

sured to analyze the effects of account relocation.

5.1.3 Simulation parameters

For the simulation, we assumed that an Ethereum sharding

environment consists of 20 shards and there exist 100

account groups. The gas limit of each collation and CT are

set to 8,000,000 and 12, as is the case in current Ethereum.

Each experiment was executed over 50 collation generation

cycle, averaging out the values measured from experiments

repeated three times. Table 4 summarizes the paramters

used for the simulation.

5.2 Performance analysis

Figures 8, 9 and 10 compare the performance of S-ACC,

D-TX, and GARET in terms of transaction throughput and

makespan. For the comparison, we varied relocation cycle,

gas consumption rate and traffic volume.

Table 3 Simulation workloads

Type G-Low (%) G-Med (%) G-High (%)

Gas LGas1
10 80 10

LGas2
20 60 20

LGas3
30 40 30

Type T-Small (%) T-Large (%)

Transaction LVol1
90 10

LVol2
80 20

LVol3
70 30

Table 4 Simulation parameters

Parameter Value

CT 12

Collation generation cycle 50

Gaslimit 8,000,000

Number of account group 100

Number of shard 20

Total number of transactions 150,000

1 GARET is also called as GARET-FS.

Cluster Computing

123

Author's personal copy

5.2.1 Performance by varying relocation cycle

Figure 8 shows the throughput and makespan of three

approaches by varying relocation cycle PT (5CT , 10CT ,

15CT). As discussed in Sect. 4.1 (Eq. 5), PT is a value

obtained by multiplying Ncol and CT , where Ncol is the

number of collations generated in one shard at every

relocation cycle and CT is a time interval between two

consecutive collations.

As shown in Fig. 8a, the GARET outperforms other

schemes by about 9% on average and up to 12% to the

maximum. The GARET also shows shorter makespan

value than other schemes by about 55% on average and up

to 74% to the maximum in all relocation cycle PT as shown

in Fig. 8b. Moreover, as we use shorter relocation cycle,

the performance improvement gets bigger. This is because

frequent relocation can balance the workloads better at the

cost of relocation overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5CT 10CT 15CT

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Relocation Cycle

S-ACC D-TX GARET

 0

 0.2

 0.4

 0.6

 0.8

 1

5CT 10CT 15CT

N
or

m
al

iz
ed

 M
ak

es
pa

n

Relocation Cycle

S-ACC D-TX GARET

(a) Normalized Throughput (b) Normalized Makespan

Fig. 8 Performance by varying relocation cycle

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LGas
1 LGas

2 LGas
3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Gas Consumption

S-ACC D-TX GARET

 0

 0.2

 0.4

 0.6

 0.8

 1

LGas
1 LGas

2 LGas
3

N
or

m
al

iz
ed

 M
ak

es
pa

n

Gas Consumption

S-ACC D-TX GARET

(a) Normalized Throughput (b) Normalized Makespan

Fig. 9 Performance by varying gas consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LVol
1 LVol

2 LVol
3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transaction Volume

S-ACC D-TX GARET

 0

 0.2

 0.4

 0.6

 0.8

 1

LVol
1 LVol

2 LVol
3

N
or

m
al

iz
ed

 M
ak

es
pa

n

Transaction Volume

S-ACC D-TX GARET

(a) Normalized Throughput (b) Normalized Makespan

Fig. 10 Performance by varying traffic volume

Cluster Computing

123

Author's personal copy

5.2.2 Performance by varying gas consumption

Figure 9 shows the comparison of throughput and make-

span by varying gas consumption type (LGas1 , LGas2 , LGas3)

given in Table 3. In this case, the relocation cycle and

traffic volume are fixed to 5CT and LVol2 , respectively.

As shown in Fig. 9a, the throughput of GARET is higher

than those of other methods by about 8% on average and up

to 12.3% to the maximum. The makespan of GARET is

also a lot shorter than that of S-ACC as shown in Fig. 9b. It

is worthy to note that as the complexity of transactions

increases from LGas1 to LGas3 , the performance improvement

of GARET compared to S-ACC also increases. Since the

gas consumption is used for balancing the workloads

among shards, the performance of GARET should be better

in the case where the complexity of transactions increases.

5.2.3 Performance by varying traffic volume

Figure 10 shows the comparison of throughput and

makespan by varying traffic volume (LVol1 , LVol2 , LVol3) with

the relocation cycle and traffic volume set to 5CT and LVol2 ,

respectively.

Similarly, as shown in Fig. 10a, b, the GARET outper-

forms other methods in terms of throughput and makespan.

The performance gap widens as we increase the traffic

volume. Especially, the performance improvement in

makespan is significant compared to those of S-ACC and

D-TX when traffic condition is relatively heavy (LVol3). This

explains that the relocation mechanism proposed in this

paper is more effective under heavy traffic conditions.

5.3 Relocation overhead analysis

It has been shown from previous results that the account

relocation based on gas consumption can help improve the

throughput and reduce the latency. However, it is also

important to check how much overhead the account relo-

cation incurs.

This subsection analyzes the relocation overhead of

GARET and discusses the relationship between relocation

count and performance. For this, we have modified the

account relocation algorithm of GARET such that it only

shuffles part of the shards instead of shuffling all shards.

We call this as GARET-PS (GARET with partial shuf-

fling).

5.3.1 GARET with partial shuffling

Unlike GARET-FS (or GARET) that shuffles all shards at

every relocation cycle, the GARET-PS relocates only

account groups that belong to the shards with gas con-

sumption exceeding the pre-defined gas limit as described

in Algorithm 2. It also uses the predicted transaction load

obtained from the load prediction algorithm. Initially, the

GARET-PS creates a priority queue based on Nag account

groups, and finds the shards in which the gas consumption

exceeds the gas limit. Then, it puts the account groups,

which belong to the exceeded shards, into the priority

queue. Next, it selects an account group from the priority

queue and relocates it to a shard with the minimum gas

consumption, repeatedly. This heuristic algorithm

improves collation utilization while decreasing the relo-

cation count as much as possible.

5.3.2 Overhead analysis

Figure 11 compares the throughput and relocation count of

GARET-FS and GARET-PS by varying transaction traffic.

The transaction traffic is defined as the percentage of total

transaction load to total gas limit (i.e., total transaction

load/total gas limit).

As shown in Fig. 11a, b, when the total transaction load

per gas limit is under 70% and the relocation cycle is

relatively short (e.g., 5CT), the difference in relocation

count between GARET-FS and GARET-PS is huge as

Cluster Computing

123

Author's personal copy

expected. As we increase the relocation cycle or the total

transaction load per gas limit exceeds beyond 80%, both

GARET-FS and GARET-PS show similar number of

relocation counts.

Surprisingly, however, the GARET-FS always outper-

forms the GARET-PS in terms of throughput regardless of

the relocation count. For example, in the case where the

total transaction load per gas limit is 60%, the GARET-FS

performs better than the GARET-PS by about 13% on

average and up to 20% to the maximum, although the

GARET-PS reduces the relocation count by up to 87%. As

the transaction traffic increases, the gap in the number of

relocation count and throughput between GARET-FS and

GARET-PS gradually decreases as shown in Fig. 11c, d.

The aforementioned results indicate that the benefits

obtained by relocation seem to overwhelm the overhead

incurred by frequent account relocation. That is, the relo-

cation cost does not significantly affect the throughput. The

main reason for this is that relocating accounts requires

only a change in the data structure managed by the val-

idator in each shard. For example, when an account relo-

cation is requested by the account relocation algorithm, the

changes are broadcasted to other validators to reach a

consensus as shown in Fig. 5. Although a small amount of

network traffic is generated for the consensus, this would

not make a large impact on the Ethereum throughput.

6 Related work

There have been numerous solutions to scaling blockchains

by replacing consensus protocol [7, 10, 19], limiting net-

work membership [11], and modifying network topology

[8, 23]. Among them, this section introduces various

research efforts related to blockchain sharding.

RSCoin [14] proposed a blockchain sharding protocol

using the central bank authorized monetary supply. A set of

validators, called Mintette, delegated by the central bank

are responsible for the maintenance of disjoint ledger.

Since the whole transaction validation processes are exe-

cuted by entrusting Mintettes, and each Mintette validates

disjoint transactions, RSCoin prototype shows 2,000 TPS,

which is about 300 times higher than Bitcoin with strong

auditability guarantees. However, RSCoin is not an ideal

solution for sharding protocol, since its architecture is

centralized.

Luu et al. [20] proposed Elastico, the first sharding

protocol for public blockchains. Elastico statically splits

the blockchain network into multiple smaller groups called

the committee using the identity. Each established com-

mittee runs Byzantine consensus protocols independently

and reconfigures in every epoch using generated random-

ness, which is modified epochrandomness for better fault

tolerance and scalability. However, Elastico can only tol-

erate up to a 1/4 fraction faulty with high failure

probabilities.

 0

 0.2

 0.4

 0.6

 0.8

 1

5CT 10CT 15CT 30CT 0

 400

 800

 1200

 1600

 2000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R
el

oc
at

io
n

C
ou

nt

Relocation Cycle

GARET-FS
GARET-PS

GARET-FS reloc count
GARET-PS reloc count

 0

 0.2

 0.4

 0.6

 0.8

 1

5CT 10CT 15CT 30CT 0

 400

 800

 1200

 1600

 2000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R
el

oc
at

io
n

C
ou

nt

Relocation Cycle

GARET-FS
GARET-PS

GARET-FS reloc count
GARET-PS reloc count

(a) Total Transaction Load per Gas Limit = 60% (b) Total Transaction Load per Gas Limit = 70%

 0

 0.2

 0.4

 0.6

 0.8

 1

5CT 10CT 15CT 30CT

 400

 800

 1200

 1600

 2000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R
el

oc
at

io
n

C
ou

nt

Relocation Cycle

GARET-FS
GARET-PS

GARET-FS reloc count
GARET-PS reloc count

 0

 0.2

 0.4

 0.6

 0.8

 1

5CT 10CT 15CT 30CT

 400

 800

 1200

 1600

 2000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R
el

oc
at

io
n

C
ou

nt

Relocation Cycle

GARET-FS
GARET-PS

GARET-FS reloc count
GARET-PS reloc count

(c) Total Transaction Load per Gas Limit = 80% (d) Total Transaction Load per Gas Limit = 100%

Fig. 11 Relocation overhead analysis

Cluster Computing

123

Author's personal copy

Kokoris-Kogias et al. [18] proposed OmniLedger,

unspent transaction output (UTXO) [22] based sharding

protocol. To resolve the problems of Elastico. the

OmniLedger considers an atomic cross-shard transaction

that is not addressed by previous protocols. Furthermore,

the OmniLedger applied verifiable random function (VRF)

for leader node election against adversary nodes. Despite

several methods for improvement, the OmniLedger still

tolerates up to a 1/4 fraction faulty and is vulnerable to

denial-of-service (DoS) attacks.

Mahdi Zamani et al. [28] proposed RapidChain that

solves the problems of the aforementioned protocols with

additional contributions. RapidChain shows better resi-

liency and throughput than other protocols. Furthermore, it

suggests decentralized bootstrapping, a routing protocol for

sharding that is not mentioned in any other protocols, and

other optimization methods [5, 24].

Chainspace [4] is a state-based smart contract platform

with sharding protocol. The main challenging issue is to

synchronize the state of shards with cross-shard transac-

tions. Chainspace tries to resolve this issue using sharding-

byzantine agreement and atomic commit (S-BAC) based

on state lock-unlock protocol. However, the locking pro-

tocol on smart contract requires methods for the attacks

that lock entire state.

Ethereum [9], one of the most popular state-based

blockchain platform, also suggested its own sharding pro-

tocol. Although the detailed protocol is still under devel-

opment up to now, the overall architecture has initially

been proposed. In Ethereum sharding, a special node called

validator in each shard is responsible for the validation and

execution of transactions within the shard. In order for the

validator to generate a sequence of collations, all account

groups are initially assigned to each shard statically by

using address prefix. This causes each shard to have uneven

transaction loads, which may degrade the overall

performance.

Although several proposals have been made for block-

chain sharding, the dynamic management of account

groups has not been addressed in any research efforts.

7 Conclusion

This paper proposed a gas consumption-aware dynamic

account relocation mechanism called GARET in the

Ethereum sharding environments. The GARET selects gas

consumption as a metric to measure the complexity of a

transaction and uses this metric to balance the workload of

each shard by relocating account groups dynamically. We

formulated this problem as a multi-dimensional knapsack

problem (MKP) and proposed a heuristic algorithm to

maximize the throughput and minimize the makespan of

transaction latency. Through the simulation, it was shown

that the GARET outperforms other allocation mechanisms

such as S-ACC and D-TX by 12% and 74% in terms of

throughput and makespan, respectively. We also analyzed

the relocation overhead and showed that the relocation cost

does not significantly affect the throughput.

Although the GARET is currently targeted only at

Ethereum, its design principle can also be applied to the

sharding mechanism for other blockchains as well. Since

sharding is a mechanism to partition a network into several

pieces and maintaining balanced transaction load among

shards is crucial to improve throughput, the formulation of

the problem and its application to real systems should not

be much different.

Acknowledgements This research was supported by the MSIT

(Ministry of Science and ICT), Korea, under the ITRC (Information

Technology Research Center) support program (IITP-2020-2017-0-

01628) supervised by the IITP (Institute for Information & commu-

nications Technology Promotion)

References

1. Ethereum sharding faq. https://github.com/Ethereum/wiki/wiki/

Sharding-FAQs. Accessed 15 Oct 2018

2. Etherscan: The ethereum block explorer. https://etherscan.io/.

Accessed 24 May 2018

3. Pending ethereum transactions after cryptokitties’ realse. https://

www.theatlas.com/charts/rkt8jKMZz

4. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis,

G.: Chainspace: A sharded smart contracts platform. arXiv pre-

print arXiv:1708.03778 (2017)

5. Alon, N., Kaplan, H., Krivelevich, M., Malkhi, D., Stern, J.:

Scalable secure storage when half the system is faulty. In:

International Colloquium on Automata, Languages, and Pro-

gramming, pp. 576–587. Springer (2000)

6. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using

blockchain for medical data access and permission management.

In: 2016 2nd International Conference on Open and Big Data

(OBD), pp. 25–30. IEEE (2016)

7. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity:

Extending bitcoin’s proof of work via proof of stake. IACR

Cryptol. ePrint Arch. 42, 34–37 (2014)

8. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: an intro-

duction. R3 CEV 1, 15 (2016)

9. Buterin, V.: Ethereum: A next-generation smart contract and

decentralized application platform (2014). https://github.com/

ethereum/wiki/wiki/White-Paper. Accessed: 33 Aug 2016

10. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv

preprint arXiv:1710.09437 (2017)

11. Cachin, C.: Architecture of the hyperledger blockchain fabric. In:

Workshop on distributed cryptocurrencies and consensus ledgers,

vol. 310, p. 4 (2016)

12. Cai, W., Wang, Z., Ernst, J.B., Hong, Z., Feng, C., Leung, V.C.:

Decentralized applications: The blockchain-empowered software

system. IEEE Access 6, 53019–53033 (2018)

13. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidi-

mensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)

14. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies.

arXiv preprint arXiv:1505.06895 (2015)

Cluster Computing

123

Author's personal copy

https://github.com/Ethereum/wiki/wiki/Sharding-FAQs
https://github.com/Ethereum/wiki/wiki/Sharding-FAQs
https://etherscan.io/
https://www.theatlas.com/charts/rkt8jKMZz
https://www.theatlas.com/charts/rkt8jKMZz
http://arxiv.org/abs/1708.03778
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1505.06895

15. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain

for iot security and privacy: the case study of a smart home. In:

2017 IEEE international conference on pervasive computing and

communications workshops (PerCom workshops), pp. 618–623.

IEEE (2017)

16. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng:

A scalable blockchain protocol. In: 13th {USENIX} Symposium

on Networked Systems Design and Implementation ({NSDI} 16),

pp. 45–59 (2016)

17. Kim, S., Song, J., Woo, S., Kim, Y., Park, S.: Gas consumption-

aware dynamic load balancing in Ethereum sharding environ-

ments. In: 2019 IEEE 4th International Workshops on Founda-

tions and Applications of Self* Systems (FAS* W), pp. 188–193.

IEEE (2019)

18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta,

E., Ford, B.: Omniledger: a secure, scale-out, decentralized led-

ger via sharding. In: 2018 IEEE Symposium on Security and

Privacy (SP), pp. 583–598. IEEE (2018)

19. Larimer, D.: Delegated proof-of-stake (dpos). Bitshare whitepa-

per (2014)

20. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S.,

Saxena, P.: A secure sharding protocol for open blockchains. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pp. 17–30. ACM (2016)

21. Mettler, M.: Blockchain technology in healthcare: the revolution

starts here. In: 2016 IEEE 18th International Conference on

e-Health Networking, Applications and Services (Healthcom),

pp. 1–3. IEEE (2016)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system

(2009). http://www.bitcoin.org/bitcoin.pdf

23. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-

chain instant payments (2016)

24. Rabin, M.O.: Efficient dispersal of information for security, load

balancing, and fault tolerance. J. ACM (JACM) 36(2), 335–348
(1989)

25. Varga, A.: The omnet?? discrete event simulation system. In:

Proceedings of the European Simulation Multiconference

(ESM’01) (2001)

26. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-

work vs. BFT replication. In: International workshop on open

problems in network security, pp. 112–125. Springer (2015)

27. Wood, G.: Ethereum: a secure decentralised generalised trans-

action ledger eip-150 revision (759dccd - 2017-08-07) (2017).

https://ethereum.github.io/yellowpaper/paper.pdf. Accessed: 03

Jan 2018

28. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling

blockchain via full sharding. In: Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Secu-

rity, pp. 931–948. ACM (2018)

29. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain

challenges and opportunities: a survey. Int. J. Web Grid Serv.

14(4), 352–375 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Sangyeon Woo is a Master can-

didate of Computer Science and

Engineering Department a

sogang University, Korea. He

has received B.S degrees from

the Computer Science and

Engineering, Sogang University

Korea, in 2018. His research

interests include Blockchain,

Distributed System.

Jeho Song is a Master candidate

of Computer Science and Engi-

neering Department a sogang

University, Korea. He has

received B.S degrees from the

Computer Science and Engi-

neering, Sogang University

Korea, in 2018. His research

interests include Blockchain,

Distributed System.

Sanghyeok Kim is an employee

of TmaxSoft, Korea. He

received her B.S. and M.S.

degrees in computer science

from Sogang University. Now

he works for TmaxSoft as a

cloud programmer.

Youngjae Kim received his

Ph.D. degree in Computer Sci-

ence and Engineering from

Pennsylvania State University,

University Park, PA, USA in

2009. He is currently an asso-

ciate professor in the depart-

ment of computer science and

engineering at Sogang Univer-

sity, Seoul, Republic of Korea.

Before joining Sogang Univer-

sity, Dr. Kim was a staff scien-

tist in the U.S. Department of

Energy’s Oak Ridge National

Laboratory (2009-2015) and an

assistant professor in Ajou University, Suwon, Republic of Korea

(2015-2016). Dr. Kim received the B.S. degree in computer science

from Sogang University, Republic of Korea in 2001, and the M.S.

Cluster Computing

123

Author's personal copy

http://www.bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

degree from KAIST in 2003. His research interests include distributed

file and storage, parallel I/O, operating systems, emerging storage

technologies, and performance evaluation.

Sungyong Park is a professor in

the Department of Computer

Science and Engineering at

Sogang University, Seoul,

Korea. He received his B.S.

degree in computer science

from Sogang University, and

both the M.S. and Ph.D. degrees

in computer science from Syra-

cuse University. From 1987 to

1992, he worked for LG Elec-

tronics, Korea, as a research

engineer. From 1998 to 1999, he

was a research scientist at Tel-

cordia Technologies (formerly

Bellcore), where he developed network management software for

optical switches. His research interests include cloud computing and

systems, virtualization technologies, high performance I/O and stor-

age systems, and embedded system software.

Cluster Computing

123

Author's personal copy

	GARET: improving throughput using gas consumption-aware relocation in Ethereum sharding environments
	Abstract
	Introduction
	Background and motivation
	Overview of Ethereum
	Motivation
	Transaction complexity
	Effects of gas consumption imbalance

	Problem definition
	Design of GARET
	Overview
	Transaction load prediction algorithm
	Account relocation algorithm

	Performance evaluation
	Experiment setup
	Real workload analysis
	Workloads and comparison targets
	Simulation parameters

	Performance analysis
	Performance by varying relocation cycle
	Performance by varying gas consumption
	Performance by varying traffic volume

	Relocation overhead analysis
	GARET with partial shuffling
	Overhead analysis

	Related work
	Conclusion
	Acknowledgements
	References

