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Immense Energy Consumption

▪ Internet service servers & large-scale HPC applications running in 

data center consume tremendous energy

• 173% increase in data throughput per year [1]

• 1.8 Mega-Ton of CO2 emission by Google data center [2]

▪ Considerable portion is consumed in memory!

• 20 ~ 48% of total machine’s energy consumption [3]

20 ~ 48%
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[1] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing data  analysis workloads in data centers,” in Proceedings of the IEEE International

Symposium on Workload Characterization (IISWC), pp. 66–76,

2013.https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/
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[3] M. Dayarathna, Y. Wen and R. Fan, "Data Center Energy Consumption Modeling: A Survey," in IEEE Communications Surveys & Tutorials, vol. 18, 

no. 1, pp. 732-794, Firstquarter 2016.
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Immense Energy Consumption

▪ Software-based solutions to improve the memory-level 

energy efficiency have been proposed.

• Previous studies have been conducted on energy-efficient object placement 

into DRAM by analyzing memory object access patterns.

• However, profiling the access pattern of the memory object consumes a lot of 

energy.
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Existing Studies

▪ Studies have been conducted to predict profiling pattern of 

the memory object and skip the profiling process.

• To predict profiling pattern of the memory object, memory access patterns of 

various workload sizes are used. 

• But, whenever application workload changes, the object access patterns also 

vary.
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Existing Studies

▪ Linear Scaling Rate (LSR) is one of the solutions to address 

the energy-efficiency.

• When the application workload size increases, the memory object access 

patterns also increase proportionally [4].

• Existing energy-efficient object placement study [5] proposed LSR.
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[4] Xu Ji, Chao Wang, Nosayba El-Sayed, Xiaosong Ma, Youngjae Kim, Sudharshan S. Vazhkudai, Wei Xue, and Daniel Sanchez. 2017. 

Understanding object-level memory access patterns across the spectrum. In Proceedings of the International Conference for High Performance 

Computing, Networking, Storage and Analysis (SC ’17). 

[5] T. Kim, S. Jamil, J. Park and Y. Kim, "Optimizing Heap Memory Object Placement in the Hybrid Memory System With Energy Constraints," in IEEE 

Access, vol. 8, pp. 130323-130339, 2020.
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Existing Studies

▪ Linear Scaling Rate (LSR) is one of the solutions to address 

the energy-efficiency.

• When the application workload size increases, the memory object access 

patterns also increase proportionally [4].

• Existing energy-efficient object placement study [5] proposed LSR.
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Motivation : Experiment Setup
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▪ ML Tool : ASCENDS [6]

▪ Benchmark

• Problem Based Benchmark Suite (PBBS) : Breadth First Search (BFS), 

Spanning Forest (SF)

• NAS Parallel Benchmark (NPB) : Conjugate Gradient (CG) and 3D fast 

Fourier Transform (FT) 

[6] S. Lee, J. Peng, A. William, D. Shin, ASCENDS: Advanced data science toolkit for non-data scientists, Journal of Open Source Software, 5 (2020)

1656. https://doi.org/10.21105/joss.01656.

https://doi.org/10.21105/joss.01656


Existing Studies: Limitations

▪ Linear Scaling Rate (LSR) is one of the solutions to address 

the energy-efficiency.

• When predicting the memory object access through LSR, the predicted value 

and the actual value showed a difference of about 32%.
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Existing Studies: Limitations
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▪ Linear Scaling Rate (LSR) is one of the solutions to address 

the energy-efficiency.

• When predicting the memory object access through LSR, the predicted value 

and the actual value showed a difference of about 32%.

• Moreover, the scaling rate is different for each memory object pattern in the a

pplication, so it does not follow the LSR.
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Existing Studies: Limitations

▪ Linear Scaling Rate (LSR) is one of the solutions to address 

the energy-efficiency.

• When predicting the memory object access through LSR, the predicted value 

and the actual value showed a difference of about 32%.

• Moreover, the scaling rate shown is different for each memory object pattern 

according to the application.
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Existing Studies: Limitations

▪ Which memory object pattern should be predicted?

• Since different objects have different patterns, it should be analyzed the 

access patterns for each memory object.

• Among memory object access patterns, a pattern related to energy 

consumption of memory should be used.
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Our Solution: SCALEML

▪ SCALEML: ML-based memory object access pattern’s scaling 
rate prediction framework

➢ How can we profile the Memory object access pattern?

➢ Which ML model to use?

➢ What input/output fits the Memory object access pattern?
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Our Solution: SCALEML

▪ SCALEML

• How can we profile the Memory object access pattern?

- Use Two-Pass Memory Profiler

• Which ML method to use? 

- Compare Linear Regression (LR), Random Forest Regression (RFR), and K-Nearest 

Neighbor (K-NNR) to find the most suitable ML method.

• What input/output fits the Memory object Access pattern?

- Consider the Accessed volume, Lifetime, Size among various memory object patterns.
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Our Solution: SCALEML

▪ SCALEML

• How can we profile the Memory object access pattern?

- Use Two-Pass Memory Profiler

• Which ML method to use? 

- Compare Linear Regression (LR), Random Forest Regression (RFR), and K-Nearest 

Neighbor (K-NNR) to find the most suitable ML method.

• What input/output fits the Memory object Access pattern?

- Consider the Accessed volume, Lifetime, Size among various memory object patterns.
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Memory Energy Consumption Model

▪ Why consider Accessed volume, Lifetime, Size?

• DRAM sense amplifier acts as row buffer. 

- DRAM operates destructive read. 

- Sense amplifier maintains sensed data and restore it after operation.

• i-th object energy estimation on DRAM

- DRAM energy components : Activate and Precharge (dEACT+PRE), 

Read/Write (dERW), Refresh (dEREF)

▪ Then, how to estimate the energy consumption?

- DRAM energy consumption : 𝐷𝐸𝑖 = 𝑑𝐸𝐴𝐶𝑇+𝑃𝑅𝐸 ∙ 𝐴𝑉𝑖 + 𝑑𝐸𝑅𝑊 ∙ 𝐴𝑉𝑖 + 𝑑𝐸𝑅𝐸𝐹 ∙ 𝑆𝑖 ∙ 𝑇𝑖

(AVi : Accessed volume, Si : Size, Ti : Lifetime of i-th object)
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SCALEML: Overview

Profiling Phase

Training & Prediction Phase
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SCALEML: Memory Object Profiling

▪ Two Pass Memory Profiler 
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…
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SCALEML: Machine Learning Models

▪ Which of the various ML models should be used?

• Linear Regression (LR) 

- The accuracy of the prediction is high if Memory object patterns have linear pattern.

• K-Nearest Neighbor Regression (K-NNR)

- The accuracy of the prediction is high if Memory object patterns have relationship(linear, 

exponential, non-linear, etc…).

• Random Forest Regression (RFR)

- RFR can independently learn the change in each access pattern of memory object as the 

workload changes.

- Each tree gets random samples that are different from the whole data when it is split, so it has a 

randomness to avoid over-fitting.

• Common property of each considered ml models

- Light-weight to execution
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Comparison of ML Models

▪ Comparative analysis of prediction accuracy of various ML 

models

• Compared to LR, RFR is up to 16% higher in the NPB benchmark and up to 

6.8% higher in PBBS benchmark.
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Comparison of ML Models

▪ Comparative analysis of prediction accuracy of various ML 

models

• Compared to K-NNR, RFR is up to 23.6% higher in the NPB benchmark and 

up to 19.8% higher in PBBS.
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SCALEML: Energy Prediction Phase

▪ Predict Memory object access patterns & energy 

consumption

• Use trained model through RFR

• Use energy consumption model of DRAM
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Evaluation: Experiment Setup
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▪ System Configuration

• CPU : Intel Core i7 8700 CPU, 6 core, 3.2GHz

• Main Memory : 16GB DDR4 1340MHz

• Interface : PCIe 3.0 x8

▪ Benchmark & Dataset

• We used two applications from each benchmark NPB, and PBBS

• NPB Benchmark: CG, FT…

• PBBS Benchmark: BFS, SF…

• For each application, we profiled the 4 different workloads to train the 

ML models by varying the size of workload.

▪ Training Ratio 

• Training : 80%, Test : 20%



Evaluation: Experiment Setup
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▪ Benchmark workload sizes

BFS(Vertex)          SF(Vertex)       CG(Num of Row)     FT(Grid Size)

25 ∗ 104 25 ∗ 104 14 ∗ 102 64 ∗ 64 ∗ 64
50 ∗ 104 50 ∗ 104 70 ∗ 102 128 ∗ 128 ∗ 32
10 ∗ 105 10 ∗ 105 14 ∗ 103 256 ∗ 256 ∗ 128
40 ∗ 105 40 ∗ 105 75 ∗ 103 512 ∗ 256 ∗ 256



Evaluation : Energy Consumption Comparison

▪ Energy Consumption Comparison

• In SF application, the prediction accuracy of RFR model is up to 19.84%

higher than that of the LSR method

Comparison of prediction 

accuracy with ML model
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Evaluation : Energy Consumption Comparison

▪ Energy Consumption Comparison

• The accuracy of the memory object access pattern predicted using the RFR 

model is 92.85% on average, and the accuracy of estimated energy 

consumption is 91.3%.
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Summary

▪ ScaleML is a ML-based memory object access pattern’s scaling rate prediction 
framework in conjunction with energy efficiency estimation.

• Bridges the existing prediction accuracy gap by 91.3%

• Profiling object pattern information that directly affects energy consumption 

by using the Two Pass Memory profiler

• Among various ML methods, RFR suitable for memory object pattern 

prediction is used.
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Question?

Parkjoongeon@gmail.com

Laboratory for AI System Software

Sogang University, Seoul,
Republic of Korea
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