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Abstract—Memory subsystem contributes 28-40% of total en-
ergy consumption. Several studies investigated energy prediction
and consumption via profiling memory object access patterns.
However, such profiling leads to higher energy consumption due
to intense memory object-level profiling to achieve high prediction
accuracy. Further, memory object access pattern prediction
has been considered through analyzing the variation between
memory object access patterns, referred to as scaling rate. The
existing techniques for scaling rate prediction, such as Linear
Scaling Rate (LSR), suffer from a high error rate in prediction
with changes in access patterns, which leads to a high error rate
of energy consumption prediction. In this paper, we compare and
evaluate several memory object access pattern prediction models
including LSR and machine learning (ML) models. Further, we
propose SCALEML, a heap memory object scaling rate prediction
mechanism that employs an ML model to achieve high access
pattern prediction accuracy with variations in memory object
access patterns. We evaluate SCALEML using various application
benchmarks. The experimental results show that SCALEML
achieves about 20% higher accuracy than the LSR model for
predicting the scaling rate of object access patterns and energy
estimation.

Index Terms—Scaling Rate, Memory Object Access Patterns,
Machine Learning

I. INTRODUCTION

In recent years, the volume of data has grown exponentially.
To entertain such data growth, organizations are deploying
well-provisioned data centers [1]. A recent study stated that the
volume of data being processed by data center has increased
by 173% every year [2]. So, storing and analyzing such data
at data centers also lead to high energy consumption and
the emission of a tremendous mass of greenhouse gases.
There are two major factors for the energy dissipation in
data center systems, i.e., CPU and main memory. On a single
server, CPUs account for 30%-60% of energy consumption,
while main memory accounts for 28%-40% [3], [4]. Various
works have been proposed to reduce the energy dissipation
of CPU [5]-[7] and such techniques as powering down the
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memory banks and controlling base memory voltage and
frequency [8], [9], are also adopted for memory-level energy
consumption optimization.

In a hybrid memory system, software-based solutions to im-
prove the memory-level energy efficiency have been proposed
by considering the fine-grained object-level access patterns,
such as size, lifetime, accessed volume, and last-level cache
misses, of the applications [10]-[13]. However, object-level
memory profiling of the applications is challenging as it is a
time-consuming operation and elevates energy consumption.
Further, whenever application workload changes, the object
access patterns also vary [14]. Thus, predictions carried on the
previously profiled access patterns become invalid, requiring
additional time and profiling cycles.

A recent study [15] proposed Linear Scaling Rate (LSR)
model to predict the memory object access patterns while
minimizing the application profiling time. LSR assumes that
object access patterns scale linearly with scaling application
workloads. We refer to this variation as the Scaling Rate of
memory object access patterns. For example, an application
has a N size workload with a lifetime of the object; as L;.
If the workload size scales to double (2 * N), the lifetime
of the object; will also scale linearly (2 = L;). However, the
linear scaling assumption does not hold for several applications
resulting in a high prediction error rate, as discussed in Sec-
tion II-B. A key reason includes variable behavior of memory
objects access patterns towards the workload changes. Further,
such randomness exists even among the memory objects
generated by the same application. Therefore, it is critical to
consider the scaling rate with respect to workload changes
in order to predict access patterns and energy estimations
accurately.

In this paper, we present a methodology of applying ma-
chine learning (ML)-based algorithms, in particular, Linear
Regression (LR), Random Forest Regression (RFR), and K-
Nearest Neighbor (K-NNR) for the prediction of the scaling
rate of memory object access patterns. For this, we proposed
SCALEML, a ML-based memory object access pattern’s scal-
ing rate prediction framework in conjunction with energy
efficiency estimation. SCALEML adopts Two-Pass Memory
Profiler (TPMP) [14] to extract object-level access patterns
for various workloads of the applications and predicts optimal
scaling rate for each memory object. For energy estimation,
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SCALEML utilizes the DRAM energy model proposed in [15].
Extensive evaluation, using two different benchmarks [16],
[17] using different workloads (defined in Table III), shows
that when using SCALEML, especially the RFR ML model
shows a 20.1% higher memory object access pattern scaling
accuracy and an 19.85% higher energy prediction accuracy
than LSR.

II. BACKGROUND AND MOTIVATION

In this section, we present DRAM energy consumption
estimation model and then discuss the motivation of our work.

A. DRAM Energy Consumption

For application-level energy consumption model, internal
hardware components of the memory device and detail mem-
ory object access patterns are required to be considered.
DRAM cells are made of capacitors which hold charge in
terms of data and to perform read/write operation DRAM
cells are activated and pre-charged (dE44p). In addition, a
read operation discharges the DRAM cell (destructive na-
ture) and the data needs to be maintained using a refresh
operation (dEggr). These internal memory device operations
can be utilized as the memory commands and the energy
consumption of these memory commands is fixed. On the
other hand, application allocates memory objects and these
memory objects’ access behavior majorly affects the energy
consumption at memory-level. Some of the vital memory
object access patterns include: size (S;), accessed volume
(AV}), cache misses and lifetime (I;). Equation 1 considers all
these details of the energy consumption for application-level at
DRAM. Table I provides the normalized energy consumption
per memory command.

DE; = dEpre - AV; + dErw - AV; + dErer - S; - ;. (1)

B. Motivation

The memory object access patterns include size, accessed
volume, and lifetime which collectively define the character-
istics of an application. These access patterns change with the
change in workload [14]. The rate at which access patterns al-
ter with a varying workload is referred as scaling rate of object
access patterns. Since every object has a different scaling rate
for its all-access patterns and to calculate it, [15] proposed
Linear Scaling Rate (LSR) mode. If an application has 'N’

TABLE I. Energy consumption of memory command per
byte [18]

Notation Memory Command Energy
dEp,. DRAM Precharge 3.07
dEpw DRAM Read/Write 1.19
dERE‘F DRAM Refresh 0.35
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Fig. 1: Memory object patterns accuracy using LSR model

workloads on which it can execute than the access pattern
(ap;) such as size can be calculated using the Equation 2.
N-1
avg_grad = Z {(api+1 — aps)/(init1 —ins)}/ (N = 1)  (2)
i=1

In Figure 1, we evaluated four applications from two
benchmarks (explained in Table II) for the accuracy of the
LSR predicted memory object access patterns using scaling
rate from Equation 2 against the profiled memory object access
patterns using TPMP [14]. The y-axis of Figure 1 represents
the prediction accuracy and 100% represent perfect prediction.
From Figure 1, we observe that all applications suffer from the
error rate of the prediction of memory object access patterns
through scaling rate with worst error rate of 68% for BFS
application from PBBS benchmark. The high error rate in
Figure 1 is due to little correlation between the memory object
access patterns and the scaling workload. As the applications’
workload increases the memory object access patterns do not
scale linearly. Therefore, it is critical to consider the changes
in the memory object access patterns with respect to workloads
in order to accurately predict the scaling rate of the memory
object access patterns. Thus, we evaluate various machine
learning models for accurate scaling rate prediction to be
utilized in the estimation of the energy efficiency.

ITII. MACHINE LEARNING MODELS

In this section, we provide an overview of the machine
learning models including RFR, LR, and k-NNR which are
candidate models for the comparative analysis of the prediction
of scaling rate of the memory object access patterns.

A. Linear Regression (LR)

LR predicts new data by drawing the linear pattern that
exists between the data-set and because of this linear pattern
the accuracy of the prediction is high if there is a linear
pattern. In addition, since the output is predicted based only
on the linear pattern, the relationship between the patterns
is not complicated and has a characteristic of a light-weight
prediction model. In terms of predictive accuracy for the
scaling rate of memory object access patterns, most of the
object access patterns exhibit a linear relationship between
workloads, so it can work well. As there is huge correlation
between the object access patterns of the workload, LR does
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predict the scaling accurately. Therefore, LR is suitable for
predicting various object patterns because it can reflect the
characteristics of object access patterns in prediction.

B. K-Nearest Neighbor Regression (K-NNR)

K-NNR is a method of predicting new data from the average
of the k nearest neighbors among existing data. Therefore, it is
important to select the k neighbors in efficient manner. If k is
small, this should be considered because it may overfitting by
overreflecting the local characteristics of the data. In addition,
when k is large, the learning model tends to be excessively nor-
malized, causing underfitting. In terms of predictive accuracy
for the scaling rate of memory object access patterns, If there
are correlations between objects as neighbors, an accurate
scaling rate can be predicted. K-NNR has selected as one of
the models of ML to verify the correlation between memory
objects within the application and the prediction of scaling
rate. In addition, K-NNR is a light-weight model because it
predicts the output through k neighbors that are not complex
relationships like LR.

C. Random Forest Regression (RFR)

RER is a learning method that uses ensemble techniques
to predict regression. During the learning process, multiple
decision trees are constructed and each tree consists of dif-
ferent data values and the output is the averaged values of
the predicted values. The features of RFR makes it a suitable
candidate for the prediction of the relatively accurate scaling
rates for memory objects as RFR can independently learn
the change in each access pattern of memory object as the
workload changes. The special properties of RFR include:
1) Each tree gets random samples that are different from
the whole data when it is split, so it has a randomness to
avoid over-fitting. 2) Each tree is divided into different data-set
which does not interact with each other, so we get independent
results. These features make the model more accurate by
reflecting the unique scaling rate of various object access
patterns in the training phase. For instance, when the size
of the workload changes, the number of trees that make up
the RFR also changes according to the pattern of the change
in scaling rate. The more irregular the object access pattern,
the more trees are learnt to increase accuracy. Therefore, the
number of trees constituting the RFR according to the object
access pattern is learnt and reflected in the prediction.

IV. SCALEML DESIGN

This section provides an overview of the proposed
ScALEML’s design and describes the methodology for the
prediction of the scaling rate of memory object access patterns.

A. Overview

Figure 2 shows the workflow of SCALEML for extracting
memory object access patterns and the prediction of the scaling
rate of memory objects for the workload that are not profiled.
The workflow of SCALEML is composed of profiling phase,
Figure 2(a), and training and prediction phase, Figure 2(b).
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Fig. 2: SCALEML.: scaling rate prediction workflow

Figure 2(a) shows how we extract the memory object access
patterns and characterize them using the TPMP [14]. In the
profiling phase, we adopted the TPMP [14] and extract the
fine-grained object access information for each dynamically
allocated memory object. Whereas, Figure 2(b) shows an
applied ML model to train on the extracted memory object
access patterns and obtain a scaling rate of each memory
object for training and prediction phase. In the training and
prediction phase, we use the ML model such as RFR to train
on the extracted memory object access patterns and predict
the optimal scaling rate of memory objects for new scaled
workloads of the applications.

SCALEML can be utilized not only in a memory system
composed of DRAM, but also in a memory system composed
of other types of memory, i.e., Non-Volatile Memory (NVM).
ScALEML predicts the optimal scaling rate, through which the
object access patterns of an application can be predicted and
by using Equation 1, the estimated energy consumption can
be calculated. In addition, by utilizing the energy model of
other memory devices such as NVM, estimation of energy
consumption can be predicted as well.

B. Profiling Phase

The memory-level energy consumption of an application
can be estimated using the detailed memory object access
patterns of the application. Specifically, accessed volume,
lifetime, and size of the memory objects play a vital role in
the energy consumption. To extract the required information
of memory objects, we adopted TPMP [14] which profiles the
application’s heap memory objects and gives all the necessary
information required to estimate the energy consumption.
Figure 3 shows the working flow of the TPMP. TPMP consists
of two operational phases, Fast Pass and Slow Pass. Both passes
are executed before the actual execution of the application. In
the fast pass, the object identifiers and preliminary information
of the objects such as lifetime and size are extracted. In the
slow pass, the detailed profiling of the application is done to
extract all the required information with the help of customized
Pin-Tool [19].
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Fig. 3: Workflow of TPMP [14]

TPMP provides a wrapper library to hook the dynamic
memory (de)allocation calls, such as malloc, calloc, realloc
and free, and uses the call stack of the application to create
object identifiers in terms of hash values. Fast pass creates
these hash values while the slow pass identifies the target
memory objects using the hash identifiers. In addition, TPMP
also provides a customized Pin-Tool library so that the required
information can be extracted at the instruction level. Using the
customized Pin-Tool, one can extract only those information
that is necessary and skip other unrelated access patterns. On
one hand, profiling applications using the TPMP gives the
required object-level access pattern but on the other hand,
the TPMP consumes a huge amount of time to profile due to
instruction-level profiling which leads to higher performance
overhead and energy consumption. Therefore, to increase the
efficiency and reduce the profiling time, we collect object
access patterns and predict the scaling rate using the RFR
model of ML for scaled workloads of applications that are
not profiled.

C. Training and Prediction Phase

In this phase, we train our compared ML models using
the object access patterns extracted from the profiling phase
to calculate the scaling rate of each memory object for the
scaled workloads of the application. We train candidate ML
models such as LR, RFR, K-NNR. The input data used for
training is information about each memory object’s hash value
(object identifier), accessed volume, size, lifetime, and scaling
rate. The input data-set for training has fields like, hash value
(object identifier), accessed volume, size, lifetime, and LSR-
based scaling rate.

In addition, the correlation between memory object access
patterns is also considered and reflected in the training phase.
The correlation between memory objects access patterns
means if the change in one access pattern affects the other
access pattern information. For example, among all the object
access patterns being considered, there is a positive correlation
between the accessed volume and the lifetime of the objects
as the increase in one will increase the other automatically. On
the other hand, the size of the memory objects of application
does not have correlation with other memory object access

TABLE II: Experimental setup

Parameter Configuration

CPU Intel Core i7 8700 CPU, 6 core, 3.2GHz
Main Memory | 16GB DDR4 1340MHz

Interface PCIe 3.0 x8

Benchmark PBBS [16], NPB [17]

TABLE III: Application workload configurations of Bench-
marks [16], [17]

BFS(Vertex) SF(Vertex)

CG(Num of row) FI(Grid size)

25 % 10% 25 % 10% 14*102 64 x 64 x 64

50 % 10% 50 % 10% 70 % 102 128 x 128 x 32
10 % 10° 10 % 10° 14 % 103 256 x 256 x 128
20 % 10° 20 % 105 75 % 103 512 x 256 x 256
40 % 105 40 % 105 15 * 10% 512 x 512 x 512

patterns so while predicting the scaling rate of the memory
object’s size correlation is not taken into account.

In addition, for RFR, for the accuracy of the training model,
the number of trees constituting the RFR are also being
considered. Since the accuracy of the model varies depending
on the number of trees, each application finds a point where
the accuracy is saturated according to the number of trees and
reflects it in the training process. Models with high accuracy
are selected and used in the prediction phase. Details on
changing the accuracy are described in Section V.

In last, from the compared ML models, the model that
obtains the highest prediction accuracy of the scaling rate of
the memory object access patterns is chosen. Once the scaling
rate is predicted, the workload access patterns can be estimated
using the scaling rate for each memory object and the energy
consumption can be approximated using the Equation 1 from
section II-A.

V. EVALUATION

This section provides the experimental setup followed by
an extensive evalnation of the proposed methodology.

A. Experimental Setup

The experimental setup and benchmark are listed in Ta-
ble II. We used two scientific application benchmarks, Problem
Based Benchmark Suite (PBBS) [16] and NAS Parallel Bench-
mark (NPB) [17]. Breadth First Search (BFS) and Spanning
Forest (SF) are the applications from PBBS while Conjugate
Gradient (CG) and 3D fast Fourier Transform (FT) are from
NPB benchmark. Additionally, for ML, we adopted the AS-
CENDS Tool [20]. Table IIT shows five different workload
metrics for each application. We used four workloads for
training the ML models, whereas, last workload metric is used
for prediction accuracy estimation.

B. Prediction Accuracy of ML Models

Figure 4 shows the accuracy of the scaling rate of the model
trained through RFR, K-NNR, LR, and LSR. Figure 4(a)
shows the comparison result for PBBS benchmark where
RF_BFS, LR_BFS, LRS_BFS, KNN_BFS, RE_SE, LR_SEF,
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Fig. 4: Comparative analysis of prediction accuracy of various
ML models

LSR_SF and KNN_SF, represents RE, LR, LSR, and KNN
models being applied for the prediction of BFS and SF
applications scaling rate. Figure 4(b) shows the comparison
result for NPB benchmark where RF_CG, LR_CG, KNN_CG,
LSR_CG RF_FT, LR_FT, LSR_FT, and KNN_FT represents
RF, LR, and KNN models being applied for the prediction
of CG and FT applications scaling rate. When predicting the
patterns of all considered memory objects, the accuracy using
the RFR is highest. In particular, when predicting the accessed
volume in Figure 4(b), the RFR_FT shows a difference of up to
16% accuracy compared to the LR_FT. Also, when predicting
the lifetime in Figure 4(b), RFR_CG shows a difference of up
to 23.6% compared to K-NNR_FT. In BES application, the
RFR showed an average accuracy of 2.2% and 11.6% higher
than the LR and K-NNR, and the SF application averaged
11.8% and 8.3% higher. The RFR of CG applications showed
an average of 9.7% and 21.2% higher accuracy than the LR
and K-NNR, and the average of 0.3% and 16.1% of accuracy
in the FT application. For all the applications, we observed
that RFR outperforms other ML models. RFR is more accurate
than other ML models because it independently predicts object
patterns with irregular scaling rates. Therefore, RFR is used
as a learning model for predicting memory object patterns.

C. Prediction Accuracy with Varying RFR Trees

In this experiment, we evaluated the RFR model with
varying number of trees to find the optimal number of trees
for high prediction accuracy. The accuracy represents the
difference between the actual profiled object access patterns
using TPMP and the predicted object access patterns using
scaling rate.
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Fig. 5: Prediction accuracy with varying number of trees in
RFR model. X_Size, X_Acc and X_Life depicts application
with specific object property, i.e., size, access, and lifetime.

Figure 5 shows the point of saturation of accuracy through
changes in the tree that composes the RFR for four applica-
tions from two benchmarks and their object access patterns.
The BFS_Size and BFS_Acc are saturated when the number
of trees are 80 as shown in Figure 5(a) as these object access
patterns do not scale linearly. Besides, the BFS_life saturates
at 60 number of trees as some of the object’s lifetime scales
linearly, while some object’s lifetime do no scale linearly. This
is the reason that BFS_life saturates at less number of trees
than BFS_Size and BFS_Acc. Furthermore, the object access
patterns of SF and CG applications also saturate at 60 decision
trees of RFR. On the other hand, memory object access pat-
terns of FT application and CG_life show a constant accuracy
regardless of the number of trees due to linear scaling rate of
memory object access pattern. This means that even if we train
the data-set randomly, it is irrelevant to the number of trees
because all object access patterns show the similar scaling
rate. When training the BES_Size, it showed up to 11.8%
accuracy improvement, and when learning the CG_Acc, the
accuracy improved by at least 3.6% over other memory object
access patterns of the applications, respectively. Therefore, for
accurate object access pattern prediction, training is performed
with 80 number of trees.

D. Energy Consumption Comparison

In this experiment, we compared the accuracy of the scaling
rate and estimated energy consumption of predicted memory
object access patterns by ML and LSR approach. As shown in
the 6(a), The goal is to estimate the energy consumption with
high accuracy by using the accurate memory object pattern
predicted through the scaling rate.
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Fig. 6: Prediction accuracy and estimated energy consumption
of RFR and LSR model.

Figure 6(a) shows the comparison between the estimated
energy efficiency computed using the RFR model and the LSR
model. In particular, it shows that the RFR model has higher
prediction accuracy of energy estimation than the LSR method.
In SF application, the prediction accuracy of RFR model is
up to 19.84% higher than that of the LSR method. The reason
why estimated energy consumption accuracy of RFR model
is higher than LSR model is shown in Figure 6(b). It shows
the prediction accuracy comparison of memory object access
patterns computed using the scaling rate predicted by RFR and
the LSR. It indicates that the RFR prediction is more accurate
than the LSR method. In particular, when predicting the
accessed volume in SF applications, the RFR model prediction
is 20.1% higher than the scaling rate predicted through the
LSR method. The accuracy of the memory object access
pattern predicted using the RFR model is 92.85% on average,
and the accuracy of estimated energy consumption is 91.3%
on average higher than LSR, respectively. Therefore, the
prediction of the memory object access pattern and estimated
energy consumption using the RFR model is highly efficient
than the LSR method.

VI. CONCLUSION

Memory object access patterns define the characteristics of
the application and can be utilized to estimate the object-level
energy consumption. The estimation of the energy dissipation
requires fine-grained profiling information of memory object
access patterns. Memory object access patterns vary with the
workload of the application which leads to additional profiling
overhead and huge energy consumption. In this paper, we have
proposed SCALEML, which provides a comparative analysis of
LSR, LR, K-NNR, and RFR for the prediction and accuracy of

the scaling rate of memory object access patterns. SCALEML
predicted the accuracy of scaling rate of the memory object
access patterns and estimated energy consumption and showed
that it has 20.1% and 19.85% higher than the LSR and other
ML models, respectively.
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