
A NUMA-aware NVM File System Design for
Manycore Server Applications

June-Hyung Kim, Youngjae Kim, Safdar Jamil, and Sungyong Park

Nov 17, 2020

MASCOTS’20

NVM File System on Manycore Server

Non-Volatile Memory (NVM) devices

NVM File System

– Byte-addressable

– Persistent

– Low Latency

Applications Core Core…
100s of CPU cores

File IO

Storage

(Memory)

• NOVA [FAST’16]

• Strata [SOSP’17]

• SplitFS [SOSP’19]

• …

Parallel I/O Bottleneck in Non-Scalable File System

NVM File System

Applications

File IO

Mainly due to..

• File System Lock

• Non-scalable File System Data StructureNVM

SpanFS [ATC’15], FxMark [ATC’16], ScaleFS [SOSP’17], FLEX [ASPLOS’19] …

“File systems that are not intended for a many-core
environment cannot actively utilize (i) I/O parallelism
and (ii) bandwidths of high-speed storage devices.”

Motivation

NOVA, a representative NVM file system, also has a scalability bottleneck.

• The performance does not scale when parallel shared file I/Os perform, due to

• coarse-grained Readers-Writer(RW) lock on inode.

0

1

2

3

4

1 7 15 21 30 45 60 75 90 105 120

G
B

/S

OF CORES

NOVA

<Write Only Workload>

Preliminary result based on NVM

emulation on DRAM [APSYS’19]
Page 0 Page 1 Page 2 …File

Reader Writer Reader Writer

< Parallel Shared File I/Os>

Motivation

NOVA, a representative NVM file system, also has a scalability bottleneck.

• The performance does not scale when parallel shared file I/Os perform, due to

• coarse-grained Readers-Writer(RW) lock on inode.

0

1

2

3

4

1 7 15 21 30 45 60 75 90 105 120

G
B

/S

OF CORES

Improved NOVA

NOVA

<Write Only Workload>

In our previous work, a fine-grained range-based RW lock
was proposed and applied to NOVA.

• This solution increases the max I/O throughput, but still does
not scale after 15 cores(NUMA boundary).

Page 0 Page 1 Page 2 …File

Reader Writer Reader Writer

< Parallel Shared File I/Os>

Preliminary result based on NVM

emulation on DRAM [APSYS’19]

Motivation

NOVA, a representative NVM file system, also has a scalability bottleneck.

• The performance does not scale when parallel shared file I/Os perform, due to

• coarse-grained Readers-Writer(RW) lock on inode.

0

1

2

3

4

1 7 15 21 30 45 60 75 90 105 120

G
B

/S

OF CORES

Improved NOVA

NOVA

<Write Only Workload>

In our previous work, a fine-grained range-based RW lock
was proposed and applied to NOVA.

• This solution increases the max I/O throughput, but still does
not scale after 15 cores(NUMA boundary).

Preliminary result based on DRAM

to bypass the overhead of NVM.

(to find out the bottleneck of the filesystem only)

Page 0 Page 1 Page 2 …File

Reader Writer Reader Writer

<Concurrent Shared File I/Os>

The fine-grained lock solution does not scale

on Non-Uniform Memory Access (NUMA) architecture.

This is because NOVA is not design for NUMA.

Content

• Introduction and Motivation

• Background and Problem Definition

• NVM File System: NOVA

• NVM File System’s Scalability Limitation on NUMA Environment

• NUMA-aware NVM File System Design

• Evaluation Result

• Conclusion

Non-Uniform Memory Access (NUMA) architecture

* In 2019, Intel Optane Direct Connect (Optane DC) Persistent Memory became commercially available.

Manycore servers are mostly based on NUMA architecture.

• Local memory(DRAM or NVM) access is faster than remote memory access.

System applications need to be aware of the NUMA architecture.

• But, existing NVM file systems are unaware of the NUMA architecture.

• Ex) NOVA place all file data and metadata on a single NUMA node.

NUMA node 1

Core

N

Cache

Core

N+1

Cache

Core

2N-1

Cache

⋮

L3 Cache

Memory

Controller

NVM

Controller

DRAM NVM

NUMA node 0

Core 0

Cache

Core 1

Cache

Core

N-1

Cache
⋮

L3 Cache

Memory

Controller

NVM

Controller

DRAM 𝑁𝑉𝑀∗

Interconnect

NVM File System: NOVA [FAST’16]

• NOVA is a well-designed NVM file system.

• Log-structure design to guarantee consistency

• Per-inode logging for high concurrency

• Linked-list log only contains metadata

• Index tree in DRAM to quickly search

corresponding log entry

J. Xu. et. al., "NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories", USENIX FAST 2016

DRAM (Volatile)NVM (Persistent)

Inode table

(2MB)

head

tail

⋮
Inode

(128B)

File Data Data 0 Data 1 Data N⋮

Inode Log (4KB)

head tail

⋮

Index tree

Example: Write I/O Flow in NOVA

DRAM

NVM

log

index tree

0 1 2 3

inode

head

tail

⋮

Data 1Data 0 Data 2

Step 2. Logging

0KB 4KB 4KB 8KB 8KB 12KB

Data 2 Data 3

write range

Step 1. User Data

Allocation

8KB 12KB 16KB(byte offset)

user data

Write 4KB (10KB~14KB):

int fd;

char buf [4096];

…

fd=open(foo.txt);

pwrite(fd, buf, 4096, 10240)

<Copy-On-Write I/O Flow>

Example: Write I/O Flow in NOVA

index tree

0 1 2 3

inode

head

tail

⋮

Data 1Data 0 Data 2 Data 2 Data 3

write range

Step 1. User Data

Allocation

Step 2. Logging

Step 3. Tail Update

0KB 4KB 4KB 8KB 8KB 12KB 8KB 12KB 16KB(byte offset)

user data

Write 4KB (10KB~14KB):

int fd;

char buf [4096];

…

fd=open(foo.txt);

pwrite(fd, buf, 4096, 10240)

<Copy-On-Write I/O Flow>

DRAM

NVM

log

Example: Write I/O Flow in NOVA

Write 4KB (10KB~14KB):

int fd;

char buf [4096];

…

fd=open(foo.txt);

pwrite(fd, buf, 4096, 10240)

<Copy-On-Write I/O Flow>

index tree

0 1 2 3

inode

head

tail

⋮

Data 1Data 0 Data 2 Data 2 Data 3

write range

Step 1. User Data

Allocation

Step 2. Logging

Step 4. Index Tree

Update

0KB 4KB 4KB 8KB 8KB 12KB 8KB 12KB 16KB(byte offset)

user data

DRAM

NVM

Step 3. Tail Update

log

NVM space of NODE 0

NOVA Scalability Limitation on NUMA Environment

NODE 0

Thread #0

on Core 0

Thread #1

on Core 1

Thread #N

on Core N (of node1)

Data 0 Data 1 Data 2

Log
Problem(1): Initial data placement on a single NUMA node

File

• Threads running on other nodes must access the file via

remote memory access.

Problem(2): Shared data structure between different nodes

• Log shared among threads running on different nodes

causes unavoidable remote memory access.

• Competition for the lock leads to huge performance loss.

NVM space of NODE 0

Our Approaches

NODE 0

Thread #0

on Core 0

Thread #1

on Core 1

Thread #N

on Core N (of node1)

Data 0 Data 1 Data 2

Log

File

Problem(1): Initial data placement on a single NUMA node

Problem(2): Shared data structure between different nodes

IDEA(1): NUMA-aware data placement

IDEA(2): Lock-free per-core data structure

Content

• Introduction and Motivation

• Background and Problem Definition

• NUMA-aware NVM File System Design

• IDEA (1): NUMA-aware Data Placement

• IDEA (2): Lock-Free Per-Core Data Structure

• Evaluation Result

• Conclusion

IDEA(1): Virtualizing NVM Devices

The NUMA-aware file system can reduce remote memory accesses by distributing
files over multiple NUMA nodes.

Physical Main Memory Bus Address Space

NODE 0

DRAM NVM

NODE 1

DRAM NVM

NODE N

DRAM NVM⋯

⋯

The physical memory address spaces of NVM devices

attached to different nodes are not contiguous.

• First of all, we have virtualized the non-contiguous NVM address space from
multiple NUMA nodes to a single contiguous virtual address space.

IDEA(1): Virtualizing NVM Devices

The NUMA-aware file system can reduce remote memory accesses by distributing
files over multiple NUMA nodes.

DRAM NVM DRAM NVM DRAM NVM⋯

• First of all, we have virtualized the non-contiguous NVM address space from
multiple NUMA nodes to a single contiguous virtual address space.

Virtualized Multiple NVM Devices

Logical Address Space (linearly mapped)

NODE 0 NODE 1 NODE N

Physical Main Memory Bus Address Space

IDEA(1): Memory Allocation Policy “Local Write First”

• To mitigate the remote memory access, we adopt a “Local Write First” policy,
where threads give preference to write files to a local NVM device.

1. An entire logical address space is divided into the number of CPU cores.

2. Data and log pages for each thread are allocated from the region allocated
to the core on which the thread is running.

Each I/O thread allocates data or log pages in local NVM.

IDEA(2): Lock-Free Per-Core Data Structure

File data structures shared among various threads become a major cause of
scalability bottleneck for the file system in a NUMA-based system.

We propose per-core data structures for scalable file system.

• We extend the NOVA’s per-inode log structure to be a lock-free per-core log.

IDEA(2): Per-Core Log Structure in NOVA

Per-inode Log structure in NOVA

Head Tailinode

Data 0 Data 2 Data 4 Data 1

Log

Global Loginode

Core 0 Core 1 Core 2 ⋯

Pointer array

Data 0 Data 1 Data 2 Data 3 Data 4 Data 5

Log

Core 0 Core 1 Core 2

Head Tail

Local Log

Head Tail Head Tail

Per-Core Log structure

thread #0 on core 0: Write “data 0” then “data 1”

thread #1 on core 1: Write “data 2” then “data 3”

thread #2 on core 2: Write “data 4” then “data 5”

Content

• Introduction and Motivation

• Background and Problem Definition

• NUMA-aware NVM File System Design

• Evaluation

• Conclusion

Performance Evaluation

• Testbed CPU Intel(R) Xeon(R) Platinum 8280M v2 2.70GHz

CPU Nodes (#): 2, Cores per Node (#): 28

Memory DRAMs per Node (#): 6, DDR4, 64 GB * 12 (=768GB)

NVM Intel Optane DC Persistent Memory

NVMs per Node (#): 6, 128 GB * 12 (=1.5TB)

<Testbed NUMA-architecture>

Node 1

Core

28

Cache

Core

29

Cache

Core

55

Cache

⋮

L3 Cache

Memory

Controller

NVM

Controller

DRAM NVM

Node 0

Core 0

Cache

Core 1

Cache

Core

27

Cache

⋮
L3 Cache

Memory

Controller

NVM

Controller

DRAM 𝑁𝑉𝑀∗

Interconnect

Performance Evaluation

• Parallel I/O workloads in FxMark benchmark

Shared File Write (N-to-1 write): Multiple threads write private regions on a single file.

Private File Write (N-to-N write): Multiple threads write to their private files.

Private File Read (N-to-N read): Multiple threads read the files after writing the files.

FxMark[ATC’16]: C. Min. et. al., "Understanding Manycore Scalability of File Systems", USENIX ATC 2016

Scheme Description

NOVA(V) Vanilla NOVA.

NOVA(FL) NOVA using a fine-grained lock.

NOVA(FL+NUMA) NOVA using a fine-grained lock with NUMA-aware design.

• Comparing Schemes

This talk contains only the result of this workload.

Evaluation: Shared File Write (N-to-1 Write)

Fine-grained lock slightly

improved performance but

high bandwidth loss.0

5

10

15

20

25

1 4 8 16 28 32 40 48 56

G
B

/S

of Cores

NOVA(V) NOVA(FL) NOVA(FL+NUMA)

NVM Max Bandwidth (ideal)

X18.7
Scale beyond the

NUMA boundary

• The “local write first“ policy

and lock-free data structure

improved the scalability.

Evaluation: Shared File Write (N-to-1 Write)

0

5

10

15

20

25

1 4 8 16 28 32 40 48 56

G
B

/S

of Cores

NOVA(V) NOVA(FL) NOVA(FL+NUMA)

NVM Max Bandwidth (ideal)

• The “local write first“ policy

and lock-free data structure

improved the scalability.

X18.7
• We suspect the Optane DC

memory controller be highly

congested.

Conclusion

• NVM file system need to be aware of the NUMA architecture for scalability.

• We proposed a NUMA-aware NVM file system design.

1. Virtualized the NVM modules of several NUMA nodes

2. “Local Write First” Memory allocation policy to reduce remote

memory access

3. Lock-free per-core file system data structure

Thank you!

QnA
• June-Hyung Kim

• junehyung@sogang.ac.kr

• Sogang University, South Korea

mailto:mdh38112@sogang.ac.kr

