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Abstract—This paper presents MOSIQS, a persistent memory
object storage framework with metadata indexing and querying
for scientific computing. We design MOSIQS based on the key
idea that memory objects on shared PM pool can live beyond
the application lifetime and can become the sharing currency
for applications and scientists. MOSIQS provides an aggregate
memory pool atop an array of persistent memory devices to store
and access memory objects. MOSIQS uses a lightweight persistent
memory key-value store to manage the metadata of memory
objects such as persistent pointer mappings, which enables
memory object sharing for effective scientific collaborations.
MOSIQS is implemented atop PMDK. We evaluate the proposed
approach on many-core server with an array of real PM devices.
The preliminary evaluation confirms a 100% improvement for
write and 30% in read performance against a PM-aware file
system approach.

Index Terms—Memory-centric Computing, Persistent Memory
Storage, Scientific Metadata Indexing and Search

I. INTRODUCTION

Large-scale scientific applications, including simulations,

experiments, and observations, generate tens of petabytes of

data objects and are forecasted to grow even further [1], [2].

The critical attributes required by such applications include

parallel I/O for high-performance and minimal I/O latency in

accessing the data objects from storage systems [3]. In addi-

tion, the scientific applications, whether running on a single

server, small clusters, or HPC systems, all deal with creating,

modifying, and processing data objects in memory [4]. The

bottleneck between storage and memory has arisen because

data must be loaded into memory from slow storage.

Memory centric computing (MCC) has recently emerged to

overcome such memory and storage bottlenecks [5]. The HPC

has attempted to adopt MCC by enabling a shared memory

storage abstraction across the hundreds of compute nodes [5],

[6], [7]. Thus, the upcoming construction of larger MCC

infrastructures is expected to be equipped with an array of

persistent memory devices co-located with DRAM on each

node or shared among all the nodes via high-speed intercon-

nects such as Gen-Z [5] and Infiniband to improvise MCC [7],

[6], [5]. However, simply porting scientific applications to

MCC infrastructure is challenging. As, applications are tightly

coupled to the file system interface, i.e., block-addressable,
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limits the performance gain expected from MCC. For instance,

it has been reported that scientific applications spend 64% of

total execution time deserializing file data into memory objects

for further processing and computations [4], [8].

In MCC, the nodes are equipped with non-volatile memories

(NVMs), such as Intel Optane DC Persistent Memory (PM)

which offers high capacity at low cost, byte-addressability,

low idle power, persistence, and performance closer to DRAM

than SSD or disks [9], [10], [11]. A single machine can be

equipped with up to 6 TB of PM providing an opportunity to

build rack-scale shared memory pools for scientific computing

applications [10], [12]. Recently, several studies have shown

PM as a full or partial substitute for DRAM [13], [14]. For

instance, pVM [13] employs NVRAM to seamlessly expand

virtual memory for memory-intensive applications. Similarly,

[15] proposed a data-centric OS based on PM. Due to such

properties, they are considered a major contender for future

main memory fabric and MCC [9].

Therefore, PM given its properties, offers an opportunity to

store and manage the millions and billions of objects beyond

the lifetime of application in shared memory pool [16], [17],

[18]. Such management of application memory objects on

shared PM pool enables multiple benefits, i.e., i) low access

latency, ii) low serialization and deserialization overhead, and

iii) efficient computation via direct byte-addressability. We

refer application objects on PM as Persistent Memory Objects

(PMO1). Such PM application model also brings us the

opportunity to enable PM level object sharing across different

users/scientists and applications to facilitate effective scientific

collaborations.

Unfortunately, the PM application model stated above cre-

ates new data and metadata management challenges. First,

there is a need to ensure data and metadata consistency, i.e.,

data is modified atomically when moving from one consistent

state to another. Applications should be able to access PMOs

after a crash or ungraceful shutdowns [19], [20], [21], [22].

Second, scientific application data objects are self-described

and packed in versatile scientific data formats, i.e., metadata

is embedded inside the data object [23], [24], [25]. Without

additional descriptive metadata, PMO may become unidenti-

1PMO refers to application memory objects resident on persistent memory.
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fiable, siloed, and in general, not useful to either scientists

who own the data or the broader scientific community. Third,

where and how to manage, store, and associate object metadata

along with user-defined custom metadata is challenging. It

is a common standard in the scientific community to tag or

annotate data objects with additional descriptive metadata for

a better understanding of data for collaborators [2], [26], [24].

Fourth, to select a subset of PMOs from millions of PMOs

in a shared PM pool based on metadata or user-defined tags

without additional indexing becomes highly challenging [27],

[28], [26], [29].

To address the aforementioned challenges, we propose to

build MOSIQS, an application framework that enables appli-

cations, scientists, and researchers to create, modify, search,

and delete memory objects on a large shared PM pool. A PMO

is a self-described object, i.e., an object can contain a single

value, multi-dimensional array or composite value similar to

scientific data formats such as HDF5 and netCDF data objects.

We design MOSIQS based on the key idea that memory objects
on PM pool can live beyond the application lifetime and can
become the sharing currency for applications and scientists.

Moreover, providing controls and annotations to memory

objects will bring more friendly storage model in scientific

computing environments. Such attractive properties drive the

scientists and research communities to have a new memory

object style management system which offers scalability, high-

performance, easy and flexible data sharing controls.

Our key contributions in this paper are:

• We propose an application framework for PM to store

and access memory objects via persistent pointers beyond

the application lifetime and to share objects across ap-

plications, scientists, and collaborators with flexible data

sharing controls (Section III).

• For effective storage and easier data sharing, we provide

namespace abstraction. Such an abstraction enables a

process to share its PMOs with other processes accessing

the namespace. We also provide post-storage attribute

tagging and annotation to PMO and enable indexing

on such application or user-defined metadata attributes

annotations(Section III).

• We develop a prototype implementation of the proposed

PM application framework using Intel’s PMDK [19].

We conduct preliminary evaluations on a Intel many-

core server equipped with 1.5 TB real Intel Optane DC

3D-XPoint PM. (Section IV). Experimental results show

that MOSIQS gains a 100% performance improvement

compared to the PM-aware file system approach.

II. BACKGROUND AND MOTIVATION

In this section, we present the background on emerging

persistent memory (PM) and elaborate a need for object

storage abstraction to manage scientific data objects on PM

pool.
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Fig. 1: Traditional scientific computing model vs PM-aware com-
puting model.

A. Memory Centric Computing

The memory centric computing (MCC) has emerged re-

cently to satisfy the requirements of memory-intensive sci-

entific computing applications [30], [31]. MCC architecture

benefits scientific applications in many ways. First, MCC

provides a high storage capacity and can store large scientific

datasets that could not traditionally fit in the memory. Second,

MCC mitigates the performance gap between storage and

memory, i.e., fast computation is provided on in-memory large

datasets. Third, MCC enables in-memory data sharing across

the applications and processes. In particular, MCC operates

on the principle of memory-first, i.e., the data resides in

memory to provide in-memory speeds to deliver tremendous

performance. In MCC, each node is equipped with a storage-

class non-volatile such as Intel Optane DC PM. The PM

technology can potentially reduce latency and increase band-

width of I/O operations by many orders of magnitude, but

fully harnessing the device capability requires overcoming the

legacy IO stack of disk-based storage systems [10]. A few

studies have enabled the use of PM in scientific applications,

e.g., NV-Process [32] proposed a fault tolerance process model

based on PM and provides an elegant way for the applications

to tolerate system crashes. Similarly, [16] evaluates different

fault-tolerance approaches for porting scientific applications

to use PM. DAOS-M [17] employs PM to store metadata and

small writes, whereas larger writes are redirected to NVMe

SSDs. Similarly, [15] proposed a data-centric OS based on

PM. There are also a few other applications of PM hosting

key-value stores and various index data structures to accelerate

performance of applications [33], [34].

B. Serialization/Deserialization on PM

In the conventional scientific computing model, application

relies on the CPU to handle the task of deserializing file

contents into memory objects. Such an approach requires the

application to first load raw data into the system main memory

from the storage. Then, the CPU parses and transforms the file

data to objects in other main memory locations for the rest of

the computation in the application [4]. Such deserialization

takes up almost 64% of the application’s total execution
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time [4], [8]. Figure 1(a) demonstrates the traditional DRAM-

based computation model. Figure 1(b) provides a conceptual

overview of the scientific computing model based on PM,

where application objects persist in PM address space, and

direct computation is performed, avoiding additional serial-

and deserialization operations. Such usage of PM-based stor-

age and computing model also minimizes the decades-old file

system IO stack overhead (paging, context switching, kernel

code executions), as reported in [12].

C. Object Management on PM

Employing PM directly for legacy scientific applications is

challenging. As, the existing applications are built on notion

of block-based file system interface and are a clear mismatch

with PM hardware, i.e., byte-addressable. A simple solution

is to deploy a PM-aware file system and enable applications

to use PM but as reported in [12], ext4-DAX [35] specially

designed for PM incurs up to 13x overhead compared to raw

PM device write bandwidth. Thus, deploying file system is not

an optimal choice for PM. Whereas, an object storage model

offers much simpler interface but requires additional metadata

book keeping and object sharing controls.

D. Motivation

Arguably, storing application objects directly on PM without

a file system interface provides multiple benefits such as faster

storage without file system overhead and direct computations.

But, it poses several challenges at the same time. First,

sharing/protection semantics of PMOs across applications and

other scientists are an essential requirement of the scientific

community [26], [36]. It is challenging to access, select and

share a PMO without additional descriptive metadata. As,

object access and sharing require object semantics such as

object name, size, and owner provided by the application, user

or scientists, whereas, PMOs are memory allocated objects

and can only be accessed and shared via persistent pointers.

For instance, with Intel’s PMDK libpmemobj API, each

stored object on PM is represented by an object handle of

type PMEMoid as shown in Figure 2.
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Fig. 2: The layout of PM object identifier (PMEMoid) [19], [9].

The PMEMoid value for given object does not change

during the life of an object/application unless a realloc()
operation is invoked. Therefore, accessing and sharing a PMO

requires an additional metadata mapping or index of objects

with user or application provided semantics. Furthermore, self-

describing metadata for scientific files, i.e., metadata embed-

ded inside the scientific data file and tags/annotations to data

objects by the scientist, also needs to be persisted along with

memory objects. Second, a persistent memory object should
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Fig. 3: MOSIQS target architecture and memory object storage
abstraction integrated with scientific discovery service.

be crash consistent, i.e., system should ensure access and

consistency of memory object in case of application crash or

ungraceful power failures.

To this end, we intend to build an application framework

with object storage abstraction on top of the shared PM pool.

The proposed application model employs PMDK provided

transactions to ensure atomicity and consistency. The metadata

is indexed and managed in a lightweight persistent key-value

(KV) store with a persistent B+-tree storage backend. Note

that, our focus is not to provide an optimal PM programming

API. Instead, we focus on building an application model for

the PM to accelerate memory centric scientific computing.

III. MOSIQS: DESIGN AND IMPLEMENTATION

In this section, we present our key design goals, target

architecture and system overview.

A. Design Goals

Our key design goals include:

• Simple and Generic Storage Model: MOSIQS should have

a simple, generic, and schema-less storage model to ensure

the compliance to diverse scientific formats and applica-

tions, i.e., persistent memory objects should be orthogonal

to a domain-specific datatype or format.

• High-Performance and Scalability: One critical goal of

MOSIQS is to meet the performance and scalability re-

quirements of scientific applications by fully exploiting the

underlying hardware architecture, i.e., Shared PM Pool.

Furthermore, MOSIQS should be capable of handling con-

current workloads in a scalable manner while ensuring the

correctness of individual transactions.

• Metadata Indexing and Query Support: Self-described

scientific data formats such as HDF5 and NetCDF contain

additional descriptive metadata. Oftentimes data is retrieved

based on additionally stored metadata. Thus, MOSIQS

should provide a capability to search based on object

metadata.
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Fig. 4: An inner layout of MOSIQS architecture.

• Flexible Data Sharing and Controls: Another important

goal of MOSIQS is to facilitate scientists and researchers

with easier data sharing controls, i.e., ability to export or

publish a particular PMO or a collection of PMOs based on

certain criteria with other scientists and collaborators. Such

PMO sharing also minimizes data movement overhead.

B. Target Architecture

MOSIQS is a PM object storage framework providing a

scalable data management and metadata search service for

scientific applications. MOSIQS’s target architecture is an array

of PM devices distributed across hundreds of compute nodes.

PM on each compute node is shared with other compute

nodes via a shared PM pool abstraction via high-speed fabric

attached memory (FAM) interconnect such as Gen-Z [5],

[30]. Figure 3 depicts a high-level architectural overview of

the MOSIQS. Multiple compute nodes can create a shared

namespace abstraction atop the shared PM pool via the

MOSIQS library and directly store and manage memory objects

on these namespaces. Multiple processes running at these

compute nodes can access and share PMOs via namespace

abstraction. Figure 3 shows that a process running at compute

node 2 accesses two PMOs from namespace 1 and 2. To

enable memory-level object storage abstraction to applications,

we employ Intel’s PMDK provided lipmemobj library, an

open source PM object storage interface [19]. On top of the

shared memory object storage abstraction, MOSIQS provides

applications and scientists with scientific metadata search

service to further accelerate the performance and overcome

the challenge to find a particular PMO or subset of PMOs.

The main motivation behind our work is to provide an

application model for scientific applications to benefit with

emerging persistent memory devices which are fast, persistent,

byte-addressable, higher in capacity and cheaper than DRAM.

C. System Overview

MOSIQS primarily consists of the following key abstrac-

tions: Shared memory pool, Namespace manager, Metadata

extractor, Sharing manager, Group manager, Index manager,

and Query manager. Figure 4 presents the multi-layered ar-

chitecture of MOSIQS. The bottom layer is the shared PM

pool, which aggregates all PM devices and exposes them as a

single PM pool. Next, the PMDK [19] layer provides low-level

primitives, e.g., transactional and reliable object manipulation,

via libpmemobj and libpmem. All the applications attach

and detach memory objects from PM pool via MOSIQS, which

internally relies on libpmemobj interface.

The metadata extraction and storage management layer is

stacked on top of the bottom layer. The metadata extractor

is responsible to extract and populate the object name and

PMEMoid mappings. Furthermore, it extracts the annotations,

user provided tags and other metadata from the object as well.

All the extracted metadata resides in form of key-value paired

metadata objects. The sharing manager is responsible to enable

the data sharing among applications and collaborators. Group

Manager provides logical organization of PMOs defined by

application and/or scientists. The pool KV store is metadata

storage backend for all the metadata of MOSIQS objects. The

namespace manager enables flexible controls via partitioning

large shared PM pool into application or user-defined names-

paces. The main responsibility of query manager is to serve

the query requests from the users/scientists and applications.

D. Data Model

MOSIQS data model consists of three major building blocks.

• Persistent Memory Object (PMO): A PMO is a self-

described entity and represents a single-value, an array or a

compound datatype. It can be created by application or user.

A PMO is placed in a group, and additional annotations

and hints can be specified. In MOSIQS, a PMO is the

minimum sharing currency between applications and users.

A PMO requires several properties to be supported: crash

consistency to ensure consistent state, system naming, and

permission controls to enable PMO to be discovered and

shared with other processes and collaborators.

• Group: A group represents a collection of PMOs that

share common properties and attributes. MOSIQS supports

inclusive relationships between groups, i.e., a group can

have nested groups similar to nested directories in file

systems. Specifically, the group allow users to organize and

share a collection of PMOs.

• Attribute: An attribute is a <key,value> pair which

enables annotations, user-defined tags, and properties of

groups and objects. Our attribute concept is the same with

attributes in scientific data formats, i.e., HDF5 and netCDF.

Listing 1 shows an example application that creates a group

and a PMO with attribute annotations.

E. Shared Persistent Memory Pool

The shared persistent memory pool empowers MOSIQS to

provide applications with collective view and an aggregate

capacity of an array of PM devices. This satisfies the in-

tense capacity desire of scientific applications [14]. Internally,

4
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MOSIQS creates the shared PM pool via libpmempool
API [19], where the device files, i.e., /dev/pmem[1-6]
as shown in Figure 4, are concatenated to form a single PM

pool. Any object inside the PM pool is reachable via Root

object pointer. When an application opens a pool, it is given

a privilege to access the global memory Root pointer, which

allows applications to locate the PMOs by accessing metadata

stored in the pool KV store. The memory allocations and de-

allocations are conducted via libpmem at the lower level

inside libpmemobj.

/** create, initialize and annotate properties to group **/
struct group_info_t my_group;
group_id = create_group("group-name", parent_group|NULL);
my_group.set_groupid(group_id);
my_group.set_scope(SHARE|PRIVATE);
struct mosiqs_attribute_t group_attr[1];
group_attr[1].key = "file"; group_attr[1].value="sim-v0.1";
my_group.set_attr(group_attr, group_attr.size());
my_group.set_split_value(100);
group_init(my_group);

/** create and annotate PMOs **/
struct pmo_info_t my_pmo;
pmo_id = create_pmo("pmo-name", group_id|NULL);
my_pmo.set_objectid(pmo_id);
my_pmo.set_scope(SHARE|PRIVATE);
my_pmo.set_type(String|Int|Float|Struct);
my_pmo.set_pmovalue(fits); // struct FITS fits = {...};
my_pmo.annotate("file=foo.hdf5");
struct mosiqs_attribute_t pmo_attr[2];
pmo_attr[1].key = "timestamp"; pmo_attr[1].value="t4";
pmo_attr[2].key = "iteration"; pmo_attr[2].value="1401";
my_pmo.set_attr(pmo_attr, pmo_attr.size()));
pmo_persist(my_pmo);

Listing 1: An example of group and object creation with metadata
attribute annotations.

1) Namespace Management: MOSIQS provides a names-

pace abstraction atop its data model to enable easier storage

for applications using a shared PM pool. A namespace in our

design is the same as memory address space for a process

except that our namespace is persistent and stays beyond the

application lifetime. Each namespace has its own metadata

KV storage engine to store and locate PMOs inside the

namespace. Applications or scientists using a shared PM pool

can access PMOs in another namespace, provided awareness

of namespace metadata such as name, owner and access

permissions. Such namespace management offers an easier and

simpler storage model per application or scientist.

F. Metadata Extraction and Storage

1) Metadata Extraction: We analyzed that a general design

technique that proved crucial for MOSIQS is simplifying and

minimizing the number of operations in critical I/O path. The

key idea to extract and store PMO metadata and user/applica-

tion annotated tags is to enable sharing and to build indexes for

quick access, efficient retrieval of PMO and to enable future

analysis. The metadata extractor is implemented as a service

by which application or user annotated tags can be extracted

from group or PMO. It creates a single metadata KV object for

each PMO or group and inserts it in pool KV store. MOSIQS

defines its own layout of metadata object for PMO and group.

Figure 5 shows an overview of extracted and stored meta-

data KV object of both types, PMO metadata and group
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Fig. 5: The self-described metadata KV objects in pool KV store.

metadata object in pool KV store. The OID denotes the PMO

object, whereas GID refers to the group metadata object. The

value in <OID|GID,Value> pair as shown in Figure 5 itself

represents an additional self-described entity, i.e., motivated

by scientific data formats [37], [38]. We further partition

the value part into header part and data part, as shown in

Figure 5. For each OID, the header contains the metadata

information such as PMEMoid, whereas the data part contains

associated attributes and annotated values provided by the user

or application to a particular PMO. Note that, each OID points

to a single PMO stored in MOSIQS. For each GID, the header

contains the metadata of group such as annotated attributes

and sharing scope of the group as shown in Figure 5. Whereas,

the data part contains the list of PMOs sharing the same set

of attributes, along with their unique values which can be a

single-valued string or an integer or a complex composite data

structure such as a tree or a mesh. The motivation behind

storing OID and GID as <k,v> metadata objects in pool KV

store provides multiple benefits, i) easier access to PMO, ii)

flexible and extensible tagging, iii) efficient metadata search

queries.

To ensure the consistency of metadata extraction, we

encapsulate each operation as a transaction backed by a

logging approach. To minimize the performance degrada-

tion, we perform metadata extraction in the background

and <OID|GID,Value> pair populates synchronously in

pool KV store. Both metadata extraction operation and

<OID|GID,Value> pair population is executed in parallel. For

data object consistency, we rely on libpmemobj provided

consistency semantics. All the PMOs annotated with bypass

index hint are excluded by metadata extractor from extraction

operations. For such objects, only object mapping, i.e., object

name to PMEMoid is stored.

2) Object Sharing Controls: We design MOSIQS aiming to

make it as simple as possible for scientists and applications to

enable fast memory-level object sharing. PMDK [19] provides

persistent pointers, i.e., PMEMoid and handles an internal

virtual address mapping indirection to the memory base ad-

dress to tolerate application crashes and ungraceful shutdowns.

Therefore, sharing a PMO beyond the application bounds to

other applications or scientists requires storing the persistent

pointer of PMO. Whereas, other applications or scientists are

unaware of such memory pointer addresses and instead use

object naming semantics to share objects. For this reason,

we keep object mapping information in the pool KV store

5

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:13:53 UTC from IEEE Xplore.  Restrictions apply. 



as explained earlier (Subsection III-F). We provide sharing

controls at two levels, i.e., object and group level. For object-

level sharing, an application or scientist requests an object. The

sharing manager receives the request and checks the requested

object mapping in the pool KV store. If the object entry

is found, the sharing manager checks the object scope and

properties. If the object is shareable, then the sharing manager

returns the PMEMoid to requesting application or scientist.
To further ease the sharing controls and bring similarity

closer to POSIX like permissions controls, a group can be

marked as a shared group that minimizes the data sharing

overhead, i.e., sharing a directory in file system compared to

sharing an individual file. An application or a collaborator

initiates a sharing request for a group. In such a case, the

sharing manager validates the group scope and properties from

the pool KV store. If the group is annotated with a global and

shared scope then, returns the list of OIDs enclosed in the

group data part to the requesting application or collaborator.

Note that, the group-level abstraction provides file system like

semantics, e.g., ls -l on a shared group works similar to

ls -l on a shared file system directory.

G. Metadata Search and Query
With the availability of large memory capacities, in- mem-

ory index structures have become an inevitable need. However,

in-memory volatile structures or DRAM-resident indexes have

an inherent limitation, i.e., they cannot survive power failures

and unexpected crashes [39]. A simple power-failure makes

the index unreachable and requires rebuilding or recovering

the whole index. For instance, MIQS [24] is a state-of-

the-art research, offering an effective in-memory metadata

indexing and querying for scientific data formats such as

HDF5 [37] and netCDF [38]. It extracts metadata in the

form of <key,value> pair from scientific data formats and

uses multiple tree hierarchies such as a Self-balancing Search

Tree (SBST) and Adaptive Radix Tree (ART) to maintain

file, location, path, and attributes inside scientific data file for

fast object retrieval. However, a single update to a scientific

object makes the whole MIQS index go stale/inconsistent

and requires reconstruction of the index, which incurs high

recovery overhead.
Therefore, we intend to employ a persistent index data

structure for metadata search and querying. In current scope

of the work, we provide search and query via a fully persistent

B+-Tree, storage backend of PMEMKV [40]. However, it

is not limited to B+-trees only and other persistent indexes

can be integrated atop MOSIQS to further accelerate the

query performance, e.g., NV-Tree [41], LSM-Trees [33] FP-

Tree [39], and CCEH [42].

IV. PRELIMINARY EVALUATION

This section presents MOSIQS performance evaluation.

A. Experimental Setup
Testbed: We perform our experiments on a machine

equipped with Intel Xeon scalable dual-socket 56-core pro-

cessor (hyper-threading enabled) with 1.5 TB Intel Optane
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(a) VPIC (Write IO) (b) BDCATS-IO (Read IO)

Fig. 6: MOSIQS bandwidth analysis via varying PMO size with 4
processes.

DC 3D-XPoint PM, and 768 GB DRAM. PM is configured

in 100% App direct mode, so that application has direct byte-

addressable access to the PM. We used PMDK 1.7 and Linux

Kernel version 5.4.30 (Ubuntu 18.04.2). Note that our target

architecture is a distributed shared PM pool. However, for

evaluation, we consider a single PM device as a shared PM

pool where it is shared multiple processes on the Intel Xeon

scalable server. The peak write and read throughput of 28 cores

measured via Intel’s MLC tool [43] is 6.6 GB/s and 23 GB/s

respectively.

Benchmark and Workloads: We use two PIOK [23]

benchmark provided kernels, i.e., VPIC-IO and BDCATS-

IO to show the read and write performance. VPIC-IO is

an extracted kernel that simulates the particle data write

behavior by the real VPIC scientific application [23]. Similarly,

BDCATS-IO demonstrates the data read patterns of a parallel

program that analyze the particle data generated by VPIC [23].

We modified the two kernels using MOSIQS object storage

abstraction API.

We compare our approach with the following systems:

• MIQS+: We implement and emulate MIQS [24] on top

of ext4-DAX file system mounted PM and refer to it

as MIQS+. MIQS [24] implements various DRAM-based

indexes such as ART and SBST trees to maintain HDF5

file indexes for querying on scientific datasets, stored in

parallel file systems. The metadata indexing is conducted

after the data is written successfully.

• MOSIQS-NoIndex: MOSIQS with no metadata indexing

and search service, but includes the software implementa-

tion overhead of MOSIQS on top of PMDK [19].

• MOSIQS-Sync: MOSIQS with metadata extraction enabled

in inline synchronous mode, i.e., metadata populates in pool

KV store and write operation finishes.

• MOSIQS-Async: MOSIQS with metadata extraction enabled

in inline asynchronous mode, i.e., metadata populates in

pool KV store after the write I/O. We use separate ded-

icated threads executing concurrently, one for processing

application I/O and another for metadata extraction.

B. Bandwidth Analysis

Figure 6 (a) & (b) show the peak bandwidth of read and

write operations with varied PMO sizes on 4 processes. The
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Fig. 7: MOSIQS performance analysis by varying number of processes using 256B and 512KB PMO size.
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Fig. 8: Analysis of serialization and deserialization overhead.

reason to use 4 processes is to enable a realistic, moderate

contention among processes. The peak write bandwidth of

MOSIQS-NoIndex is 63% of 6.6 GB/s due to PMDK’s internal

transaction management, atomic memory allocations, pointer

assignments and MOSIQS’s object to persistent pointer map-

pings. Its peak read bandwidth is 40% of 23GB/s with 512KB

PMO size. It is mainly due to iMC’s cache misses, accessing

object’s persistent pointer and PMDK’s internal persistent

pointer to memory address translation.

Figure 6 (a) presents the write bandwidth with varying

number of processes. All MOSIQS variants outperform MIQS+

in varied PMO sizes. With small PMO size (i.e., ≤ 4KB),

MOSIQS shows significant performance gain compared to

MIQS+. For instance, with 512B PMO, MOSIQS-NoIndex

achieves 100% higher bandwidth than MIQS+ respectively.

Further, with varied PMO sizes, there is slight performance

degradation in MOSIQS-Sync and Async till performance

gets saturated at 512KB PMO. It is because all MOSIQS

variants internally rely on PMDK provided libpmemobj for

memory object allocation [19]. For large memory allocations

(such as ≥1 MB), we observed a high thread contention

inside the global heap of libpmem (PMDK’s memory space

management library). We believe that such overhead can be

amortized by adopting pre-memory allocation techniques.

Figure 6 (b) presents the read bandwidth with varying

number of processes. As expected, we observe a scalable read

performance trend in all MOSIQS variants. The difference

in read and write throughput of MOSIQS and its variants is

mainly derived from PM device characteristics, i.e., the read

and write performance of PM is highly asymmetric. Hence,

shows a big throughput difference.

C. Throughput Analysis

Figure 7 (a) & (b) show the peak throughput of read

and write operations with varied number of processes us-

ing a fixed PMO (i.e., 256 Bytes). As, observed from the

Figure 7 (a) and (c), MIQS+ performs poorly compared to

the proposed MOSIQS variants. MIQS+ access data in the

block size granularity exposed to the OS, which is typically

4KB. Further, MIQS+ always needs to go through the I/O

stack to fetch data, adding extra system call overheads. We

observed that in MIQS+, the IO stack overhead has a much

higher impact than the write amplification due to block size

mismatch, i.e., MIQS+ wastes I/O bandwidth if the required

I/O size is smaller than the block size. If the block size

is bigger, MIQS+achieve better bandwidth, but I/O stack

overhead remains the same. On the other hand, this overhead

can be easily amortized in MOSIQS variants as there is no

file system or kernel involved. However, throughput difference

in MOSIQS variants is mainly attributed to the additional

metadata extraction and management in the critical I/O path.

MOSIQS-NoIndex shows a consistent performance trend with

varied processes. It reaches the peak write bandwidth including

our software implementation overhead. It incurs a single

metadata insertion operation per I/O to populate a mapping

entry in pool key-value store compared to MOSIQS-Sync and

Async approach. Therefore, with varying processes we can

see performance drop in MOSIQS-Sync and Async. For read

throughput, we observe a scalable performance trend as shown

in Figure 7 (b) and (d).

D. Serialization and Deserialization (S/D) Overhead Analysis

We perform a small set of experiments with several sci-

entific utilities provided by middleware I/O libraries such as

HDF5 [37] and netCDF [38] to validate the S/D time of

MIQS+, as shown in Figure 8. We observe that, on average, the

application’s 70% of the execution time is spent on file system

level cumulative serialization and deserialization operations.

Few other studies have made such observations as well [4], [8].

Even with PM-aware file systems such as ext4-DAX and XFS-

DAX, the serialization and deserialization overhead cannot be

omitted, which drives the need for an object storage abstraction

atop PM devices.

E. Metadata Search Query Performance

To analyze the query performance using realistic scientific

HDF5 datasets, we download NASA’s GLAS/ICESat L2 Sea
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# Query MIQS+ MOSIQS
kQPS EE kQPS EE

Q1 Locate PMO with name
containing ‘9610/Inf’.

28184 1.25 25478 0.10

Q2 Find PMOs under group
‘GLAH_634_2121’.

37766 8.25 30590 0.19

Q3 Count attributes
annotated to group
‘GLAH_634_2121’.

37756 12.25 29827 1.1

TABLE I: MOSIQS multi-attribute query throughput. EE shows an
end-to-end query and data retrieval time in seconds.

Ice Altimetry real HDF5 dataset [44] and populated PMO

metadata mappings in pool KV store. The dataset contains

4137 HDF5 files (Total size 101GB, Avg. File size 25MB,

Avg. objects/File 2167, and Avg. attributes/Object 37). we

define three realistic PMO metadata based queries, as shown

in Table I. For this experiment, we compare MIQS+ with

MOSIQS. Table I shows the average query throughput and

end-to-end time (query time + time to read the data object).

In real scientific usecases, such queries are used to find and

retrieve the data items. Therefore, we measure end-to-end

time because MIQS+ caches the indexes in DRAM, whereas

data object retrieval requires accessing disk storage system.

We read varied number of PMOs against each query for

MIQS+ and MOSIQS. On average, MOSIQS shows 27% query

throughput degradation compared to MIQS+. However, for

end-to-end time, MOSIQS outperforms the MIQS+ due to

dataset storage location, i.e., PM pool vs parallel file system.

V. CONCLUSION

In this paper, we present MOSIQS, a persistent memory

object management system to accelerate scientific computing.

MOSIQS provides application to efficiently attach and detach

memory objects into their address space and enables effective

sharing of persistent memory resident objects across different

applications and collaborators. The proposed PM-based appli-

cation model not only allows effective metadata extraction and

tagging of memory objects but is also equipped with indexing

and querying service to further accelerate scientific experi-

ments, simulations and analysis. The preliminary evaluation

confirms a 100% improvement for write and 30% in read

performance against a PM-aware file system approach.
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