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ABSTRACT

With the increasing importance of data, the threat of malwarewhich
destroys data has been increasing. If malware acquires the highest
software privilege, any attempt to detect and remove malware can
be disabled. In this paper, we propose DiskShield, a secure storage
framework. DiskShield uses Intel SGX to provide Trusted Execu-
tion Environment (TEE) to the host, implements the file system into
SSD firmware that provides a Trusted Computing Base (TCB), and
uses a two-way authentication mechanism to securely transfer data
from the host TEE to the SSD TCB against data tampering attacks.
This design frees DiskShield from attacks to the kernel. To show
the efficacy of DiskShield, we prototyped a DiskShield system
by modifying Intel IPFS and developing a device file system on the
Jasmine OpenSSD Platform in a Linux environment. Our results
show that DiskShield provides strong data tamper resistance the
throughput of read and write is on average to 28%, 19% lower than
IPFS.
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1 INTRODUCTION

Malware attacks that destroy data can cause very large damages
including data loses to corporations and public organizations as
well as individuals [8, 19, 22]. These attacks include ransomware [7,
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8, 15] and wiper attacks [25]. A ransomware attack encrypts user
files, takes the encrypted files as a hostage and demands a ransom [7,
8, 15]. On the other hand, a wiper attack indiscriminately destroys
files on file systems [25]. Unlike ransomware that holds files for
ransom, the wiper has no direct financial motivation. The wiper
attacks include Petya [1] and Shamoon2 malware [4, 14]. Petya
malware [1], first found in 2016, has the disruptive power that
goes beyond simply encrypting user files, further damaging the
system. Petya malware acquires root privilege, and then, by using
the ioctl() system call, it infects the master boot record (MBR)
region and encrypts the file system table. Even further, it deletes
encryption keys after the encryption process, thus it can destroy
the system permanently. Shamoon2 malware [4, 14], appeared in
2016, operates at the rootkit level. It uses a legitimate kernel driver
to access files in the storage devices by bypassing the OS file system
API. Thus, it can bypass any file system protections to files enforced
by the OS and destroy files while the system is still running.

In order to prevent such ransomware and wiper attacks, various
studies such as IPFS [9], Pesos Object Store [16], and Inuksuk [30]
have been conducted [9, 16, 30]. These systemsmake a process space
a Trusted Execution Environment (TEE) [27] to defend against the
aforementioned data tampering attacks. IPFS [9] is an SGX-based
file system which guarantees confidentiality and integrity of file
data in the protected memory area of a process, called Enclave [6].
Enclave is a TEE, which provides processes with safe area even if
the OS is compromised. In order to guarantee integrity, the IPFS
produces Message Authentication Code (MAC) [29] at a write pro-
cedure and verifies it during the read procedure. Several SGX based
file systems [2, 3, 24] have been implemented by using IPFS to guar-
antee both confidentiality and integrity for file data. However, IPFS
only determines whether data has been tampered with. In other
words, it does not check the MAC when writing data, but verifies
the MAC of data when reading it later. As a result, data tampering
attacks in the OS kernel memory in the middle of overwriting data
can result in the loss of original data if there is no data backup. In
addition, IPFS relies on the native file system of the OS. Malware
can bypass IPFS and directly attack data on file systems or storage
devices.

Unlike IPFS, Pesos [16] and Inuksuk [30] use a host’s side TEE
and a storage device together to protect data. They use a storage
device to perform the authentication procedure internally for writ-
ing files. Therefore, malware such as Wiper that directly attacks
data in the storage device is blocked because the device does not
authorize authentication. However, Pesos is a SGX-based external
third party storage service. Therefore, like other external storage
services, it inevitably requires additional storage space. In addition,
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it involves additional network I/O traffic overhead for external stor-
age services. Also, Pesos requires a special disk, called Kinetic disk
manufactured by Seagate. The kinetic disk provides object-based
authentication to block unauthorized access. However, to use Pesos,
users must purchase commercial Kinetic disks. Users can also only
use the object storage features provided by Kinetic disks. And even
if the user wants to protect the files selectively by creating a secure
zone on the disk, it is not possible because the disk does not provide
that kind of features.

Inuksuk [30], on the other hand, creates a secure zone on disk and
allows users to selectively store files in that secure area. In Inuksuk,
the disk can be partitioned into two regions – non-secure and secure
zones. User files are stored in non-secure zone at first and then, files
selected by users can be migrated to the secure zone. The secure
zone provides write protection, so that malware can not tamper
with the data in that zone. However, the problem may become
catastrophic if malware avoids user’s detection and breaks into
the host systems. Because the OS is already compromised, newly
updated secure files from applications are exposed to malware’s
attack. When migrating newly updated files between these zones,
tampering intermediate data by the man-in-the middle attack in
the compromised OS kernel is possible, thus tampered files can be
saved in the secure zone.

To solve the aforementioned problems of existing systems, in
this paper, we propose DiskShield, a new storage framework that
is secure against data tampering attacks. The DiskShield system
is implemented using TEE-based host processes and secure storage
devices, similar to Pesos and Inuksuk. However, instead of using
external storage like Pesos, DiskShield allocates a secure zone to
the local SSD. Therefore, additional space and traffic overheads are
minimized.

The storage device performs file-level authentication and blocks
unauthorized data tampering attacks. Moreover, a lightweight de-
vice file system runs inside the SSD, completely eliminating vul-
nerabilities to metadata attacks of OS file system that can occur in
systems like Inuksuk that relies on the OS file system. DiskShield
allows users to build highly secure zones on disk. This area is safe
from destructive attacks like the Wiper attacks aforementioned
earlier. Also, there is no data movement between disk zones in
DiskShield. Thus, as in Inuksuk, when OS is compromised, man-
in-the-middle attacks that occur during data movement between
disk zones never happen in DiskShield.

Specifically, DiskShield consists of three major components –
𝐷𝑆𝐹𝑆 (Host-TEE), 𝐷𝑆𝑆𝑆𝐷 (SSD-TCB), and 𝐷𝑆𝐴𝐸 (Authentication
Enclave). 𝐷𝑆𝐹𝑆 is a host-side enclave that extends IPFS. 𝐷𝑆𝑆𝑆𝐷 is
an SSD that implements a file system that performs file-based au-
thentication of users. 𝐷𝑆𝐴𝐸 is another enclave that plays a key
management role for secure key sharing and data communication
between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 .
𝐷𝑆𝐹𝑆 is a user level file system like IPFS, which is implemented

as an enclave using Intel SGX. But, the actual file system is im-
plemented on the firmware inside the SSD device (𝐷𝑆𝑆𝑆𝐷 ). 𝐷𝑆𝑆𝑆𝐷
is considered a TCB for the following reasons [26]. First, the SSD
firmware provides much smaller TCB comparing with upper-layer
system including OS, which offers a smaller attack surface. Second,
the SSD firmware is isolated from upper-layer. Therefore, even if
the OS is compromised, SSD is secure. Finally, SSD is the last barrier

to protect data, which cannot be bypassed by malware. DiskShield
does not depend on the OS file system, but when I/O is performed
from the 𝐷𝑆𝐹𝑆 to the 𝐷𝑆𝑆𝑆𝐷 , the data of the files is temporarily
copied into the OS kernel memory. In an environment where the
OS kernel is compromised, if data resides in memory for a while,
malware can destroy the data. This data, which resides in memory
for a while, is called fresh data. If a fresh data attack occurs when
writing to a file in the 𝐷𝑆𝑆𝑆𝐷 from the 𝐷𝑆𝐹𝑆 , the data in the ker-
nel’s memory can be modified by the malware and then written to
the SSD. Moreover, malwares like Wiper attacks can directly attack
persistent data on the disks bypassing the OS’s kernel memory.

To prevent this problem, DiskShield performs file-level authenti-
cation procedures inside the 𝐷𝑆𝑆𝑆𝐷 to prevent unauthorized writes.
Unique keys are given per file. This file key is generated in the
𝐷𝑆𝐹𝑆 . This key must be safely delivered to the 𝐷𝑆𝑆𝑆𝐷 . This is done
with the help of the 𝐷𝑆𝐴𝐸 . 𝐷𝑆𝐴𝐸 manages the SSD’s unique key
to ensure that 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 share the same key securely per
file. DiskShield does not depend on the OS file system. As men-
tioned earlier, systems that rely on the OS file system are not free
from metadata attacks on files residing in kernel memory. Thus,
DiskShield implements a simple file system inside the SSD. This
file system is a device file system that allocates secure zones inside
the SSD and manages files. Because the metadata of files is managed
inside 𝐷𝑆𝑆𝑆𝐷 , they are safe from file system metadata attacks.

We prototyped a DiskShield system by modifying IPFS (for
𝐷𝑆𝐹𝑆 ) in a Linux environment and developing a firmware-based
device file system using the Jasmine OpenSSD Platform [18] (for
𝐷𝑆𝑆𝑆𝐷 ). In particular, we modified the Intel SDK library and the
Linux kernel to develop a secure two-way data communication
mechanism between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 and developed the 𝐷𝑆𝐴𝐸 . In
addition, we have also developed a framework that enables secure
communication between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 through 𝐷𝑆𝐴𝐸 .

To fairly assess the effectiveness of DiskShield, we evaluated it
from a security and performance standpoint. For security evalua-
tion, we have qualitatively proved that DiskShield securely stores
files against various attack scenarios in an environment where
the OS is compromised. We also compared the I/O performance of
DiskShield and IPFS using our own in-house synthetic file system
benchmark. The evaluation results showed that DiskShield had on
average 28% and 19% lower read and write throughput, respectively,
compared to IPFS.

2 BACKGROUND AND MOTIVATION

2.1 Intel SGX and Secure File System

2.1.1 Intel SGX. Intel Software Guard Extension (Intel SGX) pro-
vided by Skylake Intel x86 processor provides an instruction set to
guarantee confidentiality and integrity of a user process, even if
OS is compromised. An isolated and trusted memory region that
Intel SGX provides is called Enclave. In general, a software devel-
oper divides an application into an untrusted part and an enclave
part, and then establishes an interface between these two parts.
The untrusted part uses ECALL to call the enclave and the enclave
uses OCALL to call the untrusted part. OCALL is necessary for the
enclave because the enclave cannot directly use system calls. Intel
Software Developer Toolkit (Intel SDK) is a basic library that Intel
provides for SGX-based applications. It provides developers with
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Figure 1: IPFS Software Architecture and Write I/O Flow.

various toolkits. For example, Intel Protected File System (IPFS) is
a user level file system included in SDK. It provides a file system
API that guarantees confidentiality and integrity of persistent data
in the storage device. Enclave memory is protected by Memory
Encryption Engine (MEE). This protected memory region is limited
to 128 MB. To address this limitation, the SGX driver encrypts the
enclave memory and swaps it out to the system memory if the
enclave is full. However, the swap inevitably incurs overhead due
to frequent encryption and decryption processes. Therefore, as the
size of enclave increases, its performance is likely to degrade.

2.1.2 Secure File System based on SGX. Many researchers study
various file systems that protect persistent data of the disk in the
SGX environment [2, 3, 9, 24]. The Intel Protected File System
(IPFS) is a file system to provide confidentiality and integrity of
files. Intel builds the IPFS into the SGX SDK library. Figure 1 shows
the workflow of an SGX application that stores files using IPFS. The
application builds enclave and uses ECALL to enter the enclave.
In the enclave, the application can use a set of IPFS APIs to store
files. The IPFS employs its own data cache to improve performance.
Also, it manages per-file keys. The IPFS encrypts and signs a file
using this per-file key. For this, IPFS stores file data in the form of
a Merkle hash tree, encrypts and verifies them. When IPFS stores
file to a disk, it calls OCALL to call Untrusted FS Library [2] which
calls a POSIX API instead of IPFS. This is because Intel restricts the
enclave from directly calling system calls related to file operations.
Then, the native file system in OS stores the file to the disk.

IPFS has a simple and efficient per-file key management pol-
icy [9]. When IPFS creates a file, the file key can be provided by the
processor or the user. The processor derives a key from the enclave’s
identity (MRSIGNER) [10]. Therefore, other applications or enclaves
can not write or read the files locked by the key. The user can also
provide the key using IPFS API (sgx_fopen()). This is efficient when
multiple enclaves have to share a single secure file. Also, IPFS
provides API (sgx_fexport_auto_key(), sgx_fimport_auto_key()) to
change the owner of files from one enclave to another [9]. To guar-
antee the confidentiality and integrity of data in the disk, when a
file is written, the file is encrypted and a file’s MAC is generated.
When reading the file, file integrity is checked through MAC verifi-
cation, and then the file is decrypted. Many SGX based file systems
follow the IPFS to guarantee the confidentiality and integrity of the
data in a disk. However, in this way, data cannot be protected from

Persistent Data

SGX
Request

OCALL

New Data

Enclave

Storage Device
(Disk)

User Space

System
Call

Kernel SpaceUser Space

Intel TXT Normal Partition

Secure Partition

(a) Persistent Data and Fresh Data Attack in IPFS

(b) Fresh Data Attack in Inuksuk

Application

Ext4 File System

Storage Device
(Disk)

Fresh Data

Kernel Space
Ext4 File System

Figure 2:Description of Vulnerabilities in Data Tampering Attacks

in IPFS and Inuksuk [30].

data tampering attacks of malware. Integrity checking only shows
whether the data has been tampered or not, but it is unable to block
the data tampering attack.

2.2 Motivation

Previous researches using the host process as a TEE [2, 3, 9, 24] can
not defend against data tampering attacks. Figure 2(a) depicts an
attack scenario for persistent data and fresh data in IPFS. Persistent
data refers to data stored on disk. Fresh data, on the other hand, is
newly updated data that is temporarily stored in kernel memory
before storing on disk. If OS is compromised, malware can attack
the persistent data. Also, if malware evades user’s detection and
invades in host system, it can intercept and corrupts fresh data.
Then, from user’s point of view, all the newly updated information
is lost after malware invasion.

When a file write request is called using IPFS APIs inside an
enclave, IPFS encrypts the file data, and its MAC is generated. En-
crypted data leaves the enclave through OCALL and is conveyed to
the user space system call (write()). Then, it is finally stored in the
storage device through a native file system in OS. The data in the
enclave is safe because SGX protects it. However, malware can use
a “man-in-the-middle” attack, which threatens the data (①) that is
created by the enclave but not yet stored in the storage device (Fresh
Data). For example, malware can hijack the write system call of the
native file system in OS, which IPFS calls through OCALL. In this
way, malware can obtain the data when the system call is made and
corrupt it. In addition, malware can directly attack the data that is
persistently stored on the disk (persistent data) (②). Malware with
a root privilege can use system calls, such as pwrite(), to files in
the native file system (Ext4) in OS, making it possible to overwrite
them. It can also use the ioctl() system call after discovering the
file layout information (LBA list), thus making it possible to write
directly to LBAs by opening a storage device. IPFS may detect the
data tampered when reading it, but cannot prevent it.

Figure 2(b) shows the fresh data attack surface in Inuksuk [30].
Secure Encryption Disk (SED) in Inuksuk is composed of normal
partition and secure partition. An application updates a file in
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Table 1: Attack Surface of Data Tampering Attack.

Attack Attack Vector Description

Malicious Firmware Update Data, Metadata in Storage Malware can update malicious code to the firmware to corrupt data stored on SSD.

File based Attack Data in Storage Malware with root privilege can overwrite or delete the file that resides in the native filesystem (Ext4) at the user
level, by using the system calls like pwrite().

LBA based Attack Data, Metadata in Storage Malware can open the device directly, bypassing the filesystem, with functions like ioctl(), and modify persistent
data by accessing the device’s LBA.

System Call Hijacking Data in OS Malware can hijack systemcall(write()) to corrupts data buffer.
Malicious Device Driver Data, Metadata in

OS
Malware can modify device driver to store sensitive data in hidden storage space.

Malicious Enclave Data, Metadata in Storage Malware can builds malicious enclave to overwrite existing files generated from authorized enclave.
User Authentication Bypass Data, Metadata in Storage Malware can impersonate authorized users to connect correct application which can write the secure files.
Malicious Security Manager Data, Metadata in Storage Malware can attack the Security Manager (Authentication Enclave) which makes the secure channel between

application and SSD.

the normal (non-secure) partition through the native file system
in OS. In Intel TXT, the trusted updater is implemented. Trusted
updater copies the user-selected files from the normal partition to
the secure partition. This design firmly protects the persistent data
already stored inside the secure partition. That is because nothing
except the trusted updater can overwrite the data in the secure
partition. However, malware can use a “man-in-the-middle” attack,
which threatens the data (①, ②) that is created or updated by the
application but not stored in the secure partition of the storage
device yet. This is because the path between the application and the
normal partition (①), and the path between the normal partition
and the Intel TXT (②) are vulnerable to the malware. It is because
these paths are made through a compromised OS kernel.

Also, neither IPFS nor Inuksuk can protect files from file meta-
data attacks as both systems rely on the native file system in OS.
For example, malware like Wiper [25] can destroy file metadata of
file systems in OS. If the file system metadata is attacked in this
way, even if the contents of the file are not attacked, file access
may be completely impossible. Therefore, in this study, we develop
a secure storage framework, called DiskShield that can protect
against persistent data and fresh data attacks mentioned above and
can block file metadata attacks.

3 THREAT MODEL

Malware can invade host computers and elevate privileges to the
highest level (Ring 0 level). Thus, it can compromise the user space
and the whole kernel space, including the VMM, OS file systems,
and kernel drivers. When the malware invades host, malware can
tamper or delete data, metadata and even super block resulting in
loss of data forever. Table 1 shows the possible attack surface.

Enclave codes can not be compromised because SGX protects the
TEE in hardware level. Also, SSD firmware is a TCB of DiskShield,
so the vulnerability of SSD firmware is out of scope in this paper
(e.g., malicious firmware update). And, we assume that the SSD
firmware update process is secure by a digital signature and secure
boot [20]. Malwaremay attempt to attack the persistent data already
stored in the disk (file based attack and LBA based attack). Second,
malware can enter the OS in advance, and attempt to tamper fresh
data that enclave creates or updates in the OS kernel memory
(system call hijacking and malicious device driver). Third, although
existing host enclave can not be attacked, the malware can succeed
in building another malicious enclave. The malware’s enclave can
try to overwrite secure files generated from the host’s authorized
enclave (malicious enclave). Also, the malware can impersonate as
a security manager (user authentication bypass) and give wrong

APP
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User Space

Operating 
System

Storage 
Device

Secure Two-way
CommunicationF2FS

Untrusted 
FS Lib

P1 P2 S1

General FTL Device FS

APP APP

IPFS IPFS

Untrusted 
FS Lib

Trusted 
DS Lib

DS-FTL

Enclave

DSFS

(DSSSD)

Figure 3: Comparing the software architecture of a DiskShield

system to existing OS file systems. P1&P2 are normal partitions

whereas S1 is a secure partition where DiskShield is formatted.

file keys to the host (malicious security manager). How to defend
against these types of attacks are presented in Section 6.3.

We restrict the situation to a remote adversary that uses soft-
ware to seize the victim’s privileges and attack the user. Therefore,
DiskShield cannot defend against physical attacks such as power
analysis or chip modification [5, 17]. Also, if malware pretending as
a user successfully authenticates with the enclave, it can try to cor-
rupt secure files protected by an enclave. However, the success of
this attack depends on the user authentication and file management
policies provided by SGX application. Therefore, this attack is out of
scope in this work because it is an SGX application implementation
issue. Existing SGX file systems also do not address attacks that
pass authentication between user and enclave [2, 9]. The purpose
of the existing SGX based file system and DiskShield is to protect
the data generated by SGX application. Finally, DiskShield cannot
detect or remove malware. It also cannot defend DDOS and side-
channel attacks. DiskShield aims to protect the user’s sensitive
data from being tampered with by malware.

4 DISKSHIELD STORAGE SYSTEM

4.1 Overview of DiskShield

DiskShield is a secure storage framework. Especially, it extends
IPFS to implement 𝐷𝑆𝐹𝑆 , a user-level DiskShieldfile system, and
implements 𝐷𝑆𝑆𝑆𝐷 , a file system with firmware inside the SSD
to completely block attacks from malware tampering with users’
files. DiskShield provides a highly secure partition on SSDs from
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Table 2: Notations for DiskShield Problem Formulation.

Component Description

𝐷𝑆𝐹𝑆 Extension of IPFS implemented as an Enclave on a host
𝐷𝑆𝑆𝑆𝐷 Updated SSD that performs file-level authentcation
𝐷𝑆𝐴𝐸 Process that performs key management
rqFi File related request parameters which should be transferred to 𝐷𝑆𝑆𝑆𝐷

𝑃𝐾𝐿𝑖𝑠𝑡 List of public keys from all manufacturers
Key Description

𝐾𝐹𝑖 File key generated by 𝐷𝑆𝐹𝑆
𝐾𝑆𝑆𝐷 Unique Device Key
𝐾𝑀𝐹 The manufacturer key

Function Description

EK(M) Encrypt the message (M) using Key (K)
DK(M) Decrypt the message (M) using Key (K)

MACK(M) Generate Message Authentication Code generated from message (M)
using key (K)

data tampering attacks, allowing users to selectively store files in
their secure areas. Figure 3 illustrates DiskShield’s software stack.
DiskShield allows users to create normal and secure partitions on
SSDs (P1, P2, S1). P[1-2] can be formatted using the OS file system.
DiskShield, on the other hand, can be used by formatting S1 as
𝐷𝑆𝑆𝑆𝐷 . Users can safely read and write files selected in this secure
area on 𝐷𝑆𝑆𝑆𝐷 .

4.1.1 Problem Formulation. DiskShield consists of a mix of hard-
ware and software components. The first component is the user-
level DiskShieldFile System (𝐷𝑆𝐹𝑆 ). 𝐷𝑆𝐹𝑆 is an extension of IPFS
that is a user-level file system implemented as an enclave on a host.
The second component is the DiskShieldSSD (𝐷𝑆𝑆𝑆𝐷 ). 𝐷𝑆𝑆𝑆𝐷
implements the file system inside the SSD and performs file-level
authentication inside the device. The third component is the Authen-
tication Enclave (𝐷𝑆𝐴𝐸 ). 𝐷𝑆𝐴𝐸 is a process that mainly performs
reliable key management implemented as an enclave to share file
keys 𝐾𝐹𝑖 between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 . DiskShield uses three types
of keys: The file key (𝐾𝐹𝑖 ) generated by 𝐷𝑆𝐹𝑆 , the unique device
key (𝐾𝑆𝑆𝐷 ) of 𝐷𝑆𝑆𝑆𝐷 , and the manufacturer key (𝐾𝑀𝐹 ) assigned by
the SSD manufacturer to the 𝐷𝑆𝐴𝐸 . 𝐷𝑆𝐹𝑆 internally generates a file
key (𝐾𝐹𝑖 ). Each SSD is assigned a unique (𝐾𝑆𝑆𝐷 ) by the manufac-
turer. Each SSD manufacturer has a unique key (𝐾𝑀𝐹 ). 𝐷𝑆𝐴𝐸 is an
SGX-based process provided by the manufacturer to the host, which
has the manufacturer’s key (𝐾𝑀𝐹 ) and SSD’s key (𝐾𝑆𝑆𝐷 ) inside the
enclave. Since these keys are performed inside the enclave, they
cannot be leaked outside. In addition, 𝐷𝑆𝐹𝑆 includes 𝑃𝐾𝐿𝑖𝑠𝑡 , which
is a list of all manufacturers’ public keys, and 𝑃𝐾𝐿𝑖𝑠𝑡 is perma-
nently stored on disk through the sealing process. The public key
in 𝑃𝐾𝐿𝑖𝑠𝑡 is used to verify 𝐷𝑆𝐴𝐸 during attestation [12]. A detailed
description of each key and component of DiskShield are given in
Table 2.

4.1.2 Secure File Create I/O Flows. DiskShield ensures integrity
for all files created using 𝐷𝑆𝐹𝑆 . Read requests in DiskShield work
the same as traditional IPFS. Using this file write request as an
example, Figure 4 describes the I/O flow for write requests from
the users and associated security procedures in DiskShield. In
particular, DiskShield has the following assumptions about the
threat model: (i) If needed, the user can safely update the SSD
firmware through the legal firmware update procedure provided
by the manufacturer. The manufacturer signs all data to be sent for
firmware updates. The SSD firmware then uses digital signatures
to verify the data [20]. (ii) The manufacturer provides the user with

Generate  Response and MAC

Manufacturer

(EkMF(KSSD), MACkMF(KSSD))
Read

KSSD = DkMF(EkMF(KSSD))
Decrypt and Verify KSSD 

KMF

DSAE

DSSSD
KSSD

KMFKFi
DSFS

MACKFi(M)
M=[EKSSD(KFi)|nameFi]

Generate MAC

(M, MACKFi(M))

KFi = DKSSD(EKSSD(KFi))

Send

Decrypt and
 Get KFi

Verify Message
MACKFi(M)

Firmware Update

(Code, [KSSD, EkMF(KSSD) | MACkMF(KSSD)])

Attestation
(KFi)Send

(EKSSD(KFi))Return

MACkMF(KSSD)

MACKFi(R)

Return 
Response

(R, MACKFi(R))

Verify Response
MACKFi(R)

PKList

Figure 4:Description of the procedures that guarantee securely cre-

ating files in DiskShield.

a security manager process called Authentication Enclave (𝐷𝑆𝐴𝐸 ).
(iii) The 𝑃𝐾𝐿𝑖𝑠𝑡 is embedded into 𝐷𝑆𝐹𝑆 by application developers.

DiskShield is basically a system that determines whether an SSD
allows file access and blocks file access if it is illegal. To achieve this,
SSD implements a file-based authentication system. In DiskShield,
each file is given a unique key at file creation. And files on SSD
are allowed to be accessed with file keys. To do this, the file keys
created in 𝐷𝑆𝐹𝑆 must be shared with the 𝐷𝑆𝑆𝑆𝐷 when the file
is first created. 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 share file keys securely using a
symmetric key (SSD device key,𝐾𝑆𝑆𝐷 ) with the help of𝐷𝑆𝐴𝐸 . In our
DiskShield design, the symmetric key (𝐾𝑆𝑆𝐷 ) is managed by𝐷𝑆𝐴𝐸 ,
so 𝐷𝑆𝐹𝑆 can obtain the symmetric key through attestation with
𝐷𝑆𝐴𝐸 . Thus, this symmetric key (𝐾𝑆𝑆𝐷 ) must already be shared by
𝐷𝑆𝐴𝐸 and 𝐷𝑆𝑆𝑆𝐷 before the file is created. In the following, we
describe the procedure for how 𝐷𝑆𝐴𝐸 and 𝐷𝑆𝑆𝑆𝐷 securely obtain
copies of 𝐾𝑆𝑆𝐷 .

To build a DiskShield system, the user must ask the manufac-
turer to update the SSD’s firmware. Of course, if the manufacturer’s
firmware is already installed inside the SSD, this step is not nec-
essary. When updating the firmware of an SSD, the manufacturer
sends DiskShield’s firmware code,𝐾𝑆𝑆𝐷 and a device file to𝐷𝑆𝑆𝑆𝐷
(❶). The device file contains 𝐾𝑆𝑆𝐷 encrypted with 𝐾𝑀𝐹 and the
Message Authentication Code (MAC𝐾𝑀𝐹

(𝐾𝑆𝑆𝐷 ). The transfer for
this firmware update from the manufacturer to the SSD is done
securely with a digital signature [20]. 𝐷𝑆𝑆𝑆𝐷 updates the firmware
with the code provided by the manufacturer and permanently stores
𝐾𝑆𝑆𝐷 and the device file in the secure zone. Now, we describe the
process of how 𝐷𝑆𝐴𝐸 acquires 𝐾𝑆𝑆𝐷 . 𝐷𝑆𝐴𝐸 reads the device file
from 𝐷𝑆𝑆𝑆𝐷 (❷), and finds 𝐾𝑆𝑆𝐷 through decryption and integrity
check (❸). Finally, 𝐷𝑆𝐴𝐸 and 𝐷𝑆𝑆𝑆𝐷 can safely share 𝐾𝑆𝑆𝐷 .

Next, we describe the procedure for a user to safely create a file
from 𝐷𝑆𝐹𝑆 to 𝐷𝑆𝑆𝑆𝐷 . 𝐷𝑆𝐹𝑆 creates a file key (𝐾𝐹𝑖 ) in the enclave.
First, when opening the 𝐷𝑆𝐹𝑆 file, 𝐷𝑆𝑆𝑆𝐷 checks whether the file
exists. For this,𝐷𝑆𝐹𝑆 sends file name (nameFi) andMAC𝐾𝐹𝑖

(nameFi)
to 𝐷𝑆𝑆𝑆𝐷 . Here, MAC is required since tampered file names during
the transfer should be filtered 𝐷𝑆𝑆𝑆𝐷 checks whether the file exists
by received file name. Since 𝐷𝑆𝑆𝑆𝐷 has internal file system, it can
check the file’s existence. File system implementation details of
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writing files in DiskShield.

𝐷𝑆𝑆𝑆𝐷 will be explained in Section 5.3.2. If a file exists, then MAC
is verified with 𝐷𝑆𝑆𝑆𝐷 ’s key. If verification fails, 𝐷𝑆𝑆𝑆𝐷 signals an
error that alerts that file name has been tampered. Moreover, 𝐷𝑆𝐹𝑆
checks an Error with Read After Write method. Implementation
details about Read After Write method will be explained in Sec-
tion 5.2.1. When verification succeeds, file’s existence is checked.
𝐷𝑆𝐹𝑆 ’s file open request succeeds if the file exists in 𝐷𝑆𝑆𝑆𝐷 . If not,
𝐷𝑆𝑆𝑆𝐷 alerts a missing file error. After that, 𝐷𝑆𝐹𝑆 checks an Er-
ror with Read After Write method. 𝐷𝑆𝐹𝑆 performs the following
procedures for file creation.

First, 𝐷𝑆𝐹𝑆 requests 𝐷𝑆𝐴𝐸 for attestation [12] to establish a se-
cure channel between them (①). Here, the attacker can install mali-
cious 𝐷𝑆𝐴𝐸 on the host and attempt to succeed in attestation with
𝐷𝑆𝐹𝑆 . To defend against it, DiskShield adds the following process
to SGX’s attestation: First, during attestation process, 𝐷𝑆𝐴𝐸 signs
all messages sent to𝐷𝑆𝐹𝑆 with𝐾𝑀𝐹 . Second,𝐷𝑆𝐹𝑆 reads public key
corresponding to the manufacturer of 𝐷𝑆𝐴𝐸 from 𝑃𝐾𝐿𝑖𝑠𝑡 . Third,
𝐷𝑆𝐹𝑆 verifies all messages received from 𝐷𝑆𝐴𝐸 with a public key
during attestation. If verification fails, then 𝐷𝑆𝐹𝑆 determines it to
be a malicious 𝐷𝑆𝐴𝐸 , and rejects attestation.

After this, 𝐷𝑆𝐹𝑆 sends 𝐾𝐹𝑖 to 𝐷𝑆𝐴𝐸 through this securely es-
tablished channel (②). 𝐷𝑆𝐴𝐸 encrypts 𝐾𝐹𝑖 with 𝐾𝑆𝑆𝐷 (E𝐾𝑆𝑆𝐷

(𝐾𝐹𝑖 ))
and returns it to 𝐷𝑆𝐹𝑆 (③). 𝐷𝑆𝐹𝑆 creates a Message (𝑀) using
E𝐾𝑆𝑆𝐷

(𝐾𝐹𝑖 ) and the file name (nameFi). In addition, it generates
MAC𝐾𝐹𝑖

(M) using 𝐾𝐹𝑖 (④). Then, 𝐷𝑆𝐹𝑆 sends this information
(𝑀 and MAC𝐾𝐹𝑖

(M)) to 𝐷𝑆𝑆𝑆𝐷 when creating a file (⑤). 𝐷𝑆𝑆𝑆𝐷
decrypts 𝐾𝐹𝑖 encrypted from Message (M) using 𝐾𝑆𝑆𝐷 (⑥). 𝐷𝑆𝑆𝑆𝐷
then uses 𝐾𝐹𝑖 to generate MAC𝐾𝐹𝑖

(M) to prove its integrity (⑦).
If verification fails, 𝐷𝑆𝑆𝑆𝐷 alerts an error to a message (M) that
tells tampering has happened. After that, 𝐷𝑆𝐹𝑆 uses Read After
Write method to check an error and file open fails. If the verification
is successful, the key (𝐾𝐹𝑖 ) sharing of the file between 𝐷𝑆𝐹𝑆 and
𝐷𝑆𝑆𝑆𝐷 is complete. And 𝐷𝑆𝑆𝑆𝐷 creates a file on the internal file
system. 𝐷𝑆𝑆𝑆𝐷 creates a response (R) that has file-success return
value and creates MAC (MAC𝐾𝐹𝑖

(R)) by using R as 𝐾𝐹𝑖 . After that,
𝐷𝑆𝐹𝑆 gets response (R) and MAC𝐾𝐹𝑖

(R) created by 𝐷𝑆𝑆𝑆𝐷 with
Read AfterWrite method.𝐷𝑆𝐹𝑆 provesMAC𝐾𝐹𝑖

(R) with𝐾𝐹𝑖 . When
verification succeeds, the file open procedure ends with success
(⑩). If verification fails, it means that response (R) or MAC𝐾𝐹𝑖

(R)
was tampered in the middle of the procedure. Here, file-open ends
with a failure, however file system semantic mismatch between
𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 occurs since file is correctly created in 𝐷𝑆𝑆𝑆𝐷 .
Nevertheless, user can attempt to open a file again and solve the
mismatch problem.

4.1.3 Secure FileWrite I/O Flows. Figure 5 shows the filewrite/update
procedure. 𝐷𝑆𝐹𝑆 locks data using 𝐾𝐹𝑖 , generates MAC𝐾𝐹𝑖

(M) (①).
Then sends them to 𝐷𝑆𝑆𝑆𝐷 (②). 𝐷𝑆𝑆𝑆𝐷 uses 𝐾𝑆𝑆𝐷 to decrypt the
message, prove its integrity, and decide whether to allow the write
request (③). If verification fails, 𝐷𝑆𝑆𝑆𝐷 alerts an error to a message
(M) that tells tampering has happened. When verification succeeds,
write is performedwith device file system. After that,𝐷𝑆𝑆𝑆𝐷 creates
a response (R) that has file-success return value, and creates a MAC
(MAC𝐾𝐹𝑖

(R)) by using R as a 𝐾𝐹𝑖 (④). 𝐷𝑆𝐹𝑆 achieves response (R)
and MAC𝐾𝐹𝑖

(R) created by 𝐷𝑆𝑆𝑆𝐷 with Read After Write method.
On verification success, file-write sucessfully ends (⑥). If verifica-
tion fails, it means that response (R) or MAC𝐾𝐹𝑖

(R) was tampered
in the middle of the procedure. Here, file-write ends with a failure,
however, file system semantic mismatch between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷
occurs since file is written by 𝐷𝑆𝑆𝑆𝐷 . However, user can attempt
to write a file again and solve the mismatch problem.

5 DISKSHIELD IMPLEMENTATION

5.1 𝐷𝑆𝐹𝑆 Module

𝐷𝑆𝐹𝑆 implements Trusted DS Libaray (Figure 3). This library differs
from the existing FS library provided in IPFS for the following
reasons. IPFS uses the untrusted FS Library to utilize native file
systems [2]. The library uses a set of POSIX API for native file
system requests to store files created by IPFS on disk. This library is
an untrsuted library because it goes through the untrusted kernel’s
I/O stack. On the other hand, 𝐷𝑆𝐹𝑆 provides a Trusted DS Library.
𝐷𝑆𝐹𝑆 communicates directly with 𝐷𝑆𝑆𝑆𝐷 without going through
the untrusted I/O stack, allowing I/O requests to the device file
system, which is isolated inside of 𝐷𝑆𝑆𝑆𝐷 . This process is executed
by secure two-way commnunication, so it is called trusted DS
Library.

5.1.1 Attestation. 𝐷𝑆𝐹𝑆 contains 𝑃𝐾𝐿𝑖𝑠𝑡 which is a list of public
keys from all manufacturer keys(𝐾𝑀𝐹 ). 𝑃𝐾𝐿𝑖𝑠𝑡 is provided to the
application developer in the form of a file using SGX sealing [11].
Therefore, only𝐷𝑆𝐹𝑆 can safely read the 𝑃𝐾𝐿𝑖𝑠𝑡 . The file size is very
small(less than 10 KB) because there are currently fewer than 80 SSD
manufacturers [28]. 𝐷𝑆𝐹𝑆 uses public keys to verfy all the message
received from 𝐷𝑆𝐴𝐸 during attestation. Therefore, the 𝐷𝑆𝐹𝑆 can
trust that the target of attestation is the correct 𝐷𝑆𝐴𝐸 . We then
build a secure channel between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝐴𝐸 by implementing
local attestation provided by Intel SGX [10].

5.1.2 MAC Verification and Data Tunneling. 𝐷𝑆𝐹𝑆 implements
MAC Verification and Data Tunneling for secure data transfer when
writing files to 𝐷𝑆𝑆𝑆𝐷 . When an application updates files, the Mac
Verification Modules (MV) creates MAC [29] of the file’s updated
data and requests parameters that should be transferred. Request
parameters include file descriptor, file offset and data size. This
MAC is used in 𝐷𝑆𝑆𝑆𝐷 later to authenticate file update requests.
Also, when 𝐷𝑆𝑆𝑆𝐷 returns the response message to the Enclave,
MV verifies the response message to check whether it correctly
came from 𝐷𝑆𝑆𝑆𝐷 . If it is successful, it returns the response to
application.
𝐷𝑆𝐹𝑆 performs tunneling of user data buffer and requests param-

eters. For secure file I/O, there are additional request parameters
that should be transferred through device driver (e.g., Linux ATA
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Table 3: A set of DiskShield APIs.

DiskShield API Description

sgx_fopen Creates or opens a protected file
sgx_fopen_auto_key Creates or opens a protected file

sgx_fwrite writes the given amount of data to the file, and extends
the file pointer by that amount

sgx_fread reads the requested amount of data from the file, and
extends the file pointer by that amount

sgx_ftell Returns the current value of the position indicator of
the stream

sgx_fseek Sets the position indicator associated with the stream to
a new position

sgx_fflush
forces a cache flush, and if it returns successfully, it is
guaranteed that your changes are committed to a file
on the disk

sgx_feof tells the caller if the file’s position indicator hit the end
of the file in a previous read operation

sgx_fclose closes a protected file handle
sgx_remove deletes a file from the file system

sgx_fexport_auto_key exporting the latest key used for the file encryption

sgx_fimport_auto_key importing a Protected FS auto key file created on a
different Enclave or platform

sgx_ferror returns the latest operation error code

sgx_clearerr attempts to repair a bad file status, and also clears the
end-of-file flag

sgx_fclear_cache clearing the internal file cache
sgx_flist shows the list of file owned by Enclave

driver). As we will discuss in the experimental section, we have
implemented DiskShield (especially, 𝐷𝑆𝑆𝑆𝐷 ) on the OpenSSD Jas-
mine development board [18]. The OpenSSD Jasmine development
board uses the SATA protocol. Therefore, this paper describes our
implementation of the extension of the SATA protocol. However,
our design is also applicable to the NVMe protocol. For example,
the file descriptor and offset should be transferred so that device
file system in 𝐷𝑆𝑆𝑆𝐷 can find files and position of updated data.
Also, MAC (32 Bytes) should be transferred for authentication. We
used tunneling to transfer the request parameter information as
well as the user data buffer.

After MV generates MAC, the updated data buffer and request
parameters (MAC, version, file name, key, etc) are enveloped on a
single buffer. This single buffer is transferred to the storage device
through a SATA driver.

5.1.3 User API. Table 3 shows a list of APIs provided byDiskShield.
DiskShield basically supports as same API as IPFS [9]. User can
creates secure file using sgx_fopen and sgx_fopen_auto_key [9]. If
a file is created using sgx_fopen_auto_key, the file key is generated
automatically by 𝐷𝑆𝐹𝑆 . Here, the processor derives file key from
enclave identity (MRSIGNER). Otherwise, the user can provide
file key using sgx_fopen. In this way, multiple enclaves can have
authority to access same file becuase user can use same file key
for different enclaves. Also, there are APIs (sgx_fexport_auto_key,
sgx_fimport_auto_key) that move the authority of file from one
enclave to others. Additionally, the DiskShield provides new API
named sgx_flist to show all files list owned by Enclave, similar to
’ls’ commands in Linux.

Figure 6 shows the sequence of file creation and file write in
DiskShield using sgx_fopen_auto_key and sgx_fwrite respectively,
. For file close (sgx_fclose), the 𝐷𝑆𝐹𝑆 asks 𝐷𝑆𝑆𝑆𝐷 to close the file.
For file read (sgx_fread), the 𝐷𝑆𝐹𝑆 asks 𝐷𝑆𝑆𝑆𝐷 to read the file, and

Table 4: Parameters and data transferred b/w 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 .

File Request Parameter Data Response
Open/Create Cmd MAC, Name, Key MAC, Fd, Version, File size

Close Cmd, Fd MAC, Version MAC, Retmsg, Version
Write Cmd, Offset, Size, Fd Data, MAC, Version MAC, retmsg, Version
Read Cmd, Offset, Size, Fd Data

get the data. Read request works the same as IPFS, because the IPFS
provides read verification.

5.2 Secure Two-Way Communication Module

For secure two-way communication between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 ,
we implement a read-after-write method. We also modify the disk
device driver to request the disk for filesystem operations of𝐷𝑆𝑆𝑆𝐷 .

5.2.1 Two-Way Communication using Read-After-Write. We design
a new system call (DS_rdafwr) to implement bidirectional data
transmission between 𝐷𝑆𝐹𝑆 and 𝐷𝑆𝑆𝑆𝐷 . This system call is called
after 𝐷𝑆𝐹𝑆 makes a single buffer using tunneling. It first sends the
file update request to 𝐷𝑆𝑆𝑆𝐷 . Also, it receives response message
including MAC from 𝐷𝑆𝑆𝑆𝐷 and sends it to 𝐷𝑆𝐹𝑆 . However, the
MAC (32 Bytes) returning as the device’s response value is too
big to be sent in the restricted response size (less than 20 Bytes)
supported by the device driver. For this reason, we constructed
Read-After-Write flow in the system call handler. The Read-After-
Write (RAW) flow first sends write request to update files. Then,
it sends read requests to the storage again. Then, it can read the
long response message which includes MAC as a data buffer from
𝐷𝑆𝑆𝑆𝐷 . The system call handler of the storage device reads this
data buffer and sends it to the 𝐷𝑆𝐹𝑆 .

5.2.2 Device Driver Implementation. New device driver commands
are needed to update secure files because 𝐷𝑆𝑆𝑆𝐷 has a different
communication flow compared with normal I/O. DiskShield com-
municates with SSD through SATA device driver. SATA protocol
transfers data by the unit of Frame Information Structure (FIS).
Figure 7 shows the structure of Register FIS. Register FIS has a
size of 20 Bytes. Register FIS includes request parameters such as
command type, logical block address, and size of data to send. On
the other hand, data FIS stores the data to send or data to receive.
We have modified the SATA driver and constructed for the safe
transmission of data and request parameters to the device. It also
helps 𝐷𝑆𝑆𝑆𝐷 distinguish secure file update request from an existing
normal file I/O. To this end, DiskShield first defines new SATA com-
mands sets(e.g., DS_CREATE, DS_OPEN, DS_WRITE, DS_READ,
DS_CLOSE). Table 4 exhibits request information and user data
buffer transmitted to SSD through system call (DS_rdafwr). Further-
more, DiskShield optimizes request information when marshalling
it in Register FIS. For instance, the reserved (4 Bytes) field of Regis-
ter FIS is not utilized. Thus, instead of wasting the field, DiskShield
utilizes it as a space to save additional parameters such as a file
descriptor. Moreover, since DiskShield is not a block-unit-based
request, LBA domain remains unused. File offset parameters are
stored in the space.

5.3 𝐷𝑆𝑆𝑆𝐷 Implementation

𝐷𝑆𝑆𝑆𝐷 implements (i) unmarshalling and Mac generation to au-
thenticate files and (ii) a file system inside the SSD for managing
files in a secure zone using internal CPU and DRAM in the SSD.
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Figure 7: Register FIS structure.

5.3.1 Unmarshalling and MAC Generation. Using a file key shared
by 𝐷𝑆𝐹𝑆 , 𝐷𝑆𝑆𝑆𝐷 executes unmarshalling and MAC verification of
secure file I/O requests. The version counter during MAC verifica-
tion makes it possible to defend the replay attack.

First, the 𝐷𝑆𝑆𝑆𝐷 distinguishes the types of I/O (normal file or
secure file I/O) by looking at the SATA commands. If it is secure
file I/O, 𝐷𝑆𝑆𝑆𝐷 should unmarshalls request parameters that are
hidden in register FIS (File descriptor, offset) and data FIS (name,
key, MAC, version). SATA driver first sends register FIS to 𝐷𝑆𝑆𝑆𝐷
and sends Data FIS to 𝐷𝑆𝑆𝑆𝐷 afterward. Therefore, the 𝐷𝑆𝑆𝑆𝐷 first
classifies data requests based on SATA command received from
Register FIS. For normal data I/O requests, 𝐷𝑆𝑆𝑆𝐷 calls the existing
General FTL (G-FTL) to service the request. If the SATA command is
a secure file command (DS_OPEN, DS_WRITE, etc), 𝐷𝑆𝑆𝑆𝐷 , it first
extracts request parameters (command, offset, size, file descriptor)
from Register FIS and stores it in an event queue [18] for a while.
After then, when data FIS arrives, the other request parameters
(MAC,version) piggybacked on the data are untunneled. Then, the
previously accumulated data in the event queue are extracted.

Second, after Unmarshalling the data, 𝐷𝑆𝑆𝑆𝐷 verifies the in-
tegrity of data in MV. The MV on the device side obtains the file
key from device file system and then authenticates the host’s file
requests. If the authentication is successful, file update is executed
through the internal filesystem. After the file system performs the
file request, MV gets the response value from it, generates the MAC,
and sends it to the host. The response data and MAC are checked
on the host-side MV later.

We also design a version counter in MV to defend malware’s
replay attack. If a malware attacks data, 𝐷𝑆𝑆𝑆𝐷 can detect it by
authenticating MAC, so it can prevent falsified data from being
overwritten. However, malware can return the data saved in the
device to the old version through a replay attack. For instance, if

𝐷𝑆𝐹𝑆 performs a DiskShield write request in the compromised OS,
a malware monitoring through system call can steal user data and
parameters sent through DS_rdafwr system call. If the malware
uses DS_rdafwr system call and re-transfer to SSD old data and
parameter information sent before, it can not be blocked by 𝐷𝑆𝑆𝑆𝐷
because the data is signed by proper file key. In order to prevent this,
𝐷𝑆𝑆𝑆𝐷 ’s MV has a version counter module. The version counter
module of MV in 𝐷𝑆𝑆𝑆𝐷 updates file versions and stores version
information inside the file inode of the filesystem. On the other
hand, 𝐷𝑆𝐹𝑆 saves version information received from 𝐷𝑆𝑆𝑆𝐷 in the
protected_fs_file. protected_fs_file is a IPFS file metadata
structure which is loaded on the safe enclave. When this metadata
should be updated on disk, it becomes a part of the user data buffer.
Because the user buffer is authenticated in 𝐷𝑆𝑆𝑆𝐷 , the version
counter in protected_fs_file is also safely stored.

The following shows the flow in blocking process of replay at-
tack; First, when making a file update request, 𝐷𝑆𝐹𝑆 packs file ver-
sion information in user data domain and sends them (see Table 4).
Then, if MAC authentication is successful in 𝐷𝑆𝑆𝑆𝐷 ’s MV, version
Counter compares if the version information sent by 𝐷𝑆𝐹𝑆 agrees
with that saved in file inode. If they do not match, it is regarded as a
replay attack. Such a command is rejected and error code is returned
to the host. If they match, on the other hand, inode version is up-
dated (simply by adding 1 to the previous version) and the updated
version information is sent to the host as a part of response. 𝐷𝑆𝐹𝑆
compares the returned version information with its previously-held
version. If the returned version is a one-notch-upgraded version
from the existing one, authentication is successful. Then, 𝐷𝑆𝐹𝑆
keeps the upgraded version in protected_fs_file and sends back
when making an update request later.

5.3.2 DiskShield Device File System. 𝐷𝑆𝑆𝑆𝐷 implements a file
system inside. The file system manages per-file key inside 𝐷𝑆𝑆𝑆𝐷
and assists authentication in the unit of file. Moreover, it directly
performs requests sent by 𝐷𝑆𝐹𝑆 . Since this is a filesystem running
within the limited SSD resources, however, the required memory
size must be minimized.𝐷𝑆𝑆𝑆𝐷 constructs DS-FTL in the unit of file
and reduces the indexing conversion process from offset-LBA-PBA
to offset-PBA. Therefore, it removes the necessity for an additional
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file allocation table. Also, DS-FTL itself does not require additional
memory space. When host updates SSD to implement𝐷𝑆𝑆𝑆𝐷 , it can
set the maximum size of the secure file area. Then, 𝐷𝑆𝑆𝑆𝐷 reduces
the size of the existing FTL (G-FTL) which is unusable, and allocates
DS-FTL accordingly. For example, assume that SSD size is 128GB,
and the host allocates secure file area as a 8GB. Because the G-FTL
only has to map 120GB now, 𝐷𝑆𝑆𝑆𝐷 reduces the size of G-FTL, and
allocates this space for DS-FTL which have to map until 8GB. The
part below explains the overall structure of 𝐷𝑆𝑆𝑆𝐷 file system and
how a set of file operations requested by 𝐷𝑆𝐹𝑆 are executed.

File System Structure. Figure 8 shows the in-memory and on-disk
structure inside the 𝐷𝑆𝑆𝑆𝐷 . Note that here the in-memory means
internal DRAM of the SSD. Information about the superblock, inode,
and DS-FTL is saved inside the on-disk fixed area. The super block is
loaded into the memory during the booting sequence, and the inode
and DS-FTL are loaded into the memory when the file is opened
upon a request. The following shows the DiskShield Device File
System (DDFS) structure within the in-memory structure:
• Super block saves the information, such as device key (𝐾𝑆𝑆𝐷 ),

root directory pointer, and the number of files. The device key is
an unique key that each SSD owns.

• Inode is the metadata information of a file. It does not only saves
the necessary information, such as a file name, size, inode number,
but also saves the file key (𝐾𝐹𝑖 ), version, and the DS-FTL pointer.
The file key is a per-file key that is shared with an Enclave and
transmitted from the host when the file is created. When the
Enclave sends a file update request, the version is updated to
block the replay attack.

• DS-FTL differs from the regular FTL (G-FTL), which is accessed
through the logical block address. Figure 9 shows the DS-FTL
structure which is allocated per file. The DS-FTL maps the file
offset to the physical block address (PBA). Like the previous

UNIX filesystem, inode manages the DS-FTL as a pointer-based
file indexing using the direct and indirect node blocks. Each FTL
chunkmaps the offset to the physical address where data is stored.
This mechanism minimizes overhead because the FTL chunk is
dynamically allocated as the file size grows. For instance, a file
under 4MB is accessed through the direct field, so that only one
FTL chunk is allocated. If the file size is 128 MB, the FTL chunk
is allocated up to a single indirect area, and if the file size is 4
GB, it is allocated up to a double indirect area.

• Root directory is the root directory of DDFS. Root directory
consists of per-key directories that own different keys. When file
open request (DS_OPEN) arrives in DDFS, DDFS first searches
root directory to find the specific per-key directory that matches
the key from host.

• Per-key directory has all files which have the same file key. It
maps the file name to the inode number as a hash table. DDFS
searches inode here when file open request (DS_OPEN) arrives.
Also, this directory is used for the sgx_flist API (see Section 5.1.3)
which shows the list of files owned by the same key.

• File table maps the file descriptor to the inode pointer.

File Operation. In Figure 8, the 𝐷𝑆𝐹𝑆 accesses the per-key direc-
tory from the root directory in the open procedure (①). Then, it
obtains the inode number from the per-key directory and loads the
inode and DS-FTL from the NAND Flash(②). Finally, it registers the
new file descriptor and inode pointer to the file table and returns
the file descriptor. During the close procedure, the loaded inode and
DS-FTL are saved to the NAND Flash(③) and returns a response to
the host. When performing a read or write procedure, the DDFS
obtains the inode pointer from the file table, which is mapped to
the file descriptor(④). Then, the DDFS accesses to DS-FTL through
an inode and accesses the data through a Physical Block Address
(PBA) that is mapped to the file offset (⑤). Then it accesses to PBA
to write or read data.

Recovery from Power Failure. 𝐷𝑆𝑆𝑆𝐷 guarantees consistency of
DDFS. The inconsistency issues generated by power failure can
occur when a single command on the𝐷𝑆𝐹𝑆 is broken up into muliti-
ple operation in 𝐷𝑆𝑆𝑆𝐷 . Cause of file system inconsistency in 𝐷𝑆𝐹𝑆
includes (i) sgx_fwrite command makes DDFS to update not only
data, but also inode, and DS-FTL and (ii) file creation (sgx_fopen,
sgx_fopen_auto_key), file removal (sgx_remove), and file key modi-
fication (sgx_fexport_auto_key, sgx_fimport_auto_key)makes𝐷𝑆𝐹𝑆
update not only inode but also per-key directory and root directory.
If there is power failure during these operations, consistency can be
broken. To solve this problem, 𝐷𝑆𝑆𝑆𝐷 utilizes OOB (out-of-band)
area. OOB refers to a few bytes of region additionally allocated
to each NAND flash physical page. This area is used to store the
metadata of the physical page, such as logical address. Since this
OOB area is transparent to Host system, security of the OOB area
is preserved. To prepare for power failure, when page write occurs
for secure file, the 𝐷𝑆𝑆𝑆𝐷 records inode number and offset in the
OOB metadata area instead of traditional logical address.

When the power-failure occurs, the recovery is performed with
following steps – Step(1): As in the conventional method, 𝐷𝑆𝑆𝑆𝐷
searches full NAND flash and recovers mapping table of G-FTL
by searching logical address in each OOB. Step(2): For secure file,
𝐷𝑆𝑆𝑆𝐷 reads inode and offset from OOB space during NAND flash
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search and recover the inode and DS-FTL. Then, with this infor-
mation (Inode, Offset, PBA), it can recover the inode and DS-FTL.
Step(3): The𝐷𝑆𝑆𝑆𝐷 searches full inode which has file key. With this
information (inode, file key), it can reorganize per-key directory
and root directory.

6 EVALUATION

We performed our experiment on Intel(R) Core(TM) i7-8700 CPU
@ 3.70GHz with 16 GB RAM (128 MB for EPC). DiskShield was
implemented on Linux 4.10.16 and 𝐷𝑆𝑆𝑆𝐷 was implemented on
the SATA2.0 based OpenSSD Jasmine [18], which is composed of
ARM7TDMI-S core running at 87.5MHz, 96KB SRAM and 64MB
DRAM, and 64GBNANDFlashmemory chip. To prototypeDiskShield,
we modified 2,661 LoC (lines of code) on Jasmine Open SSD, 791
LoC on SGX SDK, and 243 LoC on Linux kernel.

To implement 𝐷𝑆𝐹𝑆 ’s two-way communication module, we im-
plemented a system call handler to send direct requests to the device
in a READ-AFTER-WRITE (RAW) mechanism. The system call in-
serts a request to the DS table, which is a data structure in a kernel,
responsible for moving parameters of DS file I/O requests to the
SATA driver. Specifically, the system call handler inserts param-
eters into the DS table, and the SATA driver retrieves them from
the DS driver. In the SATA driver, the new SATA command for
DiskShield is defined and the requests popped from the DS table
are sent to the device. 𝐷𝑆𝑆𝑆𝐷 implemented all the flows for DDFS,
but we used a fixed HMAC time delay of an FPGA module for au-
thentication [23] since the OpenSSD does not include the hardware
module for HMAC authentication unlike the latest SSDs [21]. The
delay used is 23.01 us for authenticating 4,608 bytes [23], which is
the size of a basic unit for transmission in IPFS. Delay is calculated
based on the Xilinx Virtex 6-3 which is HMAC SHA-256 IP core.

6.1 Performance Evaluation

To measure the performance overhead of DiskShield, we devel-
oped a multi-threaded in-house synthetic workload generator. For
a fair comparison against direct I/O implementation of DiskShield,
the 𝐷𝑆𝐹𝑆 uses direct I/O policy which bypasses the page cache in
Virtual File System.

Figure 10, Figure 11 and Figure 12 show throughput comparisons
betweeen DiskShield and IPFS (baseline). Note that DiskShield
offers both secure zone (DiskShield S-zone) and non-secure (nor-
mal) zone (DiskShield R-zone) on the disk. DiskShield R-zone
means the IPFS-based regular file I/O zone using 𝐷𝑆𝑆𝑆𝐷 . This mea-
sures the I/O overhead of𝐷𝑆𝑆𝑆𝐷 ’s regular zone. DiskShield S-zone
means the 𝐷𝑆𝐹𝑆 -based secure file I/O zone using 𝐷𝑆𝑆𝑆𝐷 . Only the
DiskShield S-zone files are protected from data-tampering attacks.

Figure 10 and Figure 11 show the I/O throughput comparison
for big file (16 MB) and small file (4 KB) workloads with respect to
increased number of I/O threads. The in-house synthetic workload
first creates files and then write the files. Then, overwrite and read
throughput are measured. As expected, a small file workload shows
lower performance compared to a big file workload.

From Figure 10, we observe the overall throughput of Baseline
and DiskShield R-zone is almost equal. This result shows that the
𝐷𝑆𝑆𝑆𝐷 incurs negligible overhead for DiskShield R-zone. Also,
for the single thread, the read throughput of DiskShield S-zone is
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Figure 10: Comparisons for IPFS and DiskShield with big files.
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Figure 11: Comparisons for IPFS and DiskShield with small files.

similar to the baseline, whereas the write throughput of DiskShield
S-zone is 17% lower than the baseline. The low write throughput of
DiskShield S-zone results from the 𝐷𝑆𝐹𝑆 using the RAW requests
to implement the two-way communication between the enclave
and 𝐷𝑆𝑆𝑆𝐷 .

As the number of threads increases, the write and read through-
put of baseline and DiskShield increases and converges to 1.5MB/s
and 10.5MB/s. On the other hand, the DiskShield S-zone does not
vary in performance at all as the number of threads increases. This
is due to the serialization of RAW processes between multiple I/Os.
Specifically, in our implementation, we used RAW process with
locks because the write requests and read requests for receiving
SSD response must be processed sequentially. If the driver supports
sufficiently large response size, this problem may be solved because
there is no need to implement RAW.

Figure 11 shows similar results in Figure 10. In particular, we
observe that DiskShieldS-zone’s read performance is quite low in
the case of a single thread. This was not the case for big file work-
loads. The overhead mainly comes from the overhead for loading
and storing a large number of inode metadata in DiskShield. If
the file is small, this overhead becomes exceptionally large. In the
baseline, the Ext4 file system loads multiple inodes in the main
memory at once. Therefore, multiple inodes are cached in the main
memory, eliminating the need of loading them from the storage.
In contrast, the DiskShield S-zone only loads a single inode to
minimize memory usage. Therefore, an inode should be loaded
from the storage every time a file is opened. This is the trade-off
between the memory space usage and the metadata hit ratio. If the
DiskShield S-zone loads inode to memory in advance like native
file system, then the temporal overhead will fade away. However,
it will need more memory space in SSD.

Figure 12 shows the performance evaluation for different I/O
patterns. We see that the overall performance of write is lower
than read. This is because Jasmine OpenSSD Jasmine’s block-level
write performance (50MB/s) is 5x lower than its read performance
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(225MB/s). Generally, regardless of the I/O pattern, the read through-
put is almost same between baseline, DiskShield R-zone, and
DiskShield S-zone. It shows that the DiskShield’s read flow does
not incur much overhead. In sequential and random write patterns,
the throughput difference of baseline and DiskShield R-zone is
negligible. This means that 𝐷𝑆𝑆𝑆𝐷 does not disturb regular file I/O
and offers comparable performance with baseline. However, the
sequential and random write throughput of DiskShield S-zone is
13% and 31% lower than the baseline.

To analyze the overhead of DiskShield S-zone, we measured
the response time of sequential write and random write requests.
We also broke down the response time. Figure 13(a) shows the time
break-down of the response time for writing 64 MB files in sequen-
tial and random patterns. The ratio of the response time of HMAC
operation in 𝐷𝑆𝑆𝑆𝐷 is negligible because the delay (23.01us) is
much smaller than the amount of response time. The RAF response
time is the delay of two-way communication in 𝐷𝑆𝐹𝑆 . Because the
two-way Communication is implemented using the RAW pattern
in the system call handler, the unnecessary delay occurs as depicted
in Figure 13(b). This overhead occupies 14%, 30% of sequential and
random write response time. The reason for the bigger overhead
in the random write is that the IPFS sends more write requests to
the storage in random write. This is because data cache hit ratio in
IPFS is lower.

Table 5 compares the open and close latency of IPFS andDiskShield
S-zone for different file sizes. The latency of IPFS is all similar, re-
gardless of the file size. However, in the case of DiskShield, the
open and close latency significantly increase as the file size in-
creases. This is due to overhead from loading and storingDiskShield’s
DS-FTL. When a file is opened, the inode and DS-FTL are loaded
from NAND flash, and when the file is closed, they are stored in
NAND flash. Also, the size of DS-FTL linearly increases as the file
size grows. For example, when file size is 4KB, the total size of

Table 5: Open/close latency (ns) comparisons for different file size.

File Size 4KB 2MB 32MB 512MB

Open

IPFS 9.501 12.455 11.563 10.169
DiskShield S-zone 163.86 191.70 351.36 4412.3

Close

IPFS 17.877 22.215 18.076 18.494
DiskShield S-zone 192.51 218.66 512.21 5061.6

Table 6: Security analysis on the SGX-based filesystem.

Name IPFS Obliviate Graphene SPICHER Inuksuk DiskShield

Confidentiality guarantee ✓ ✓ ✓ ✓ ✓ ✓

Integrity verification ✓ ✓ ✓ ✓ ✓ ✓

Freshness verification ✕ ✓ ✕ ✓ ✓ ✓

Side-channel attack ✕ ✓ ✕ ✕ ✕ ✕

Persistent data attack ✕ ✕ ✕ ✕ ✓ ✓

Fresh data attack ✕ ✕ ✕ ✕ ✕ ✓

Table 7: DiskShield’s defense to data-corruption attacks.

Attack Scenario DiskShield Solution

File based Attack Secure file can be overwritten only by authorized 𝐷𝑆𝐹𝑆
which has right file key.

LBA based Attack Secure file is hidden from OS, so LBA based approach
is impossible.

System Call Hijacking
Even if the data buffer is corrupted, 𝐷𝑆𝑆𝑆𝐷 deny this
request by verifying MAC. Here, 𝐷𝑆𝐹𝑆 verifies error
message from 𝐷𝑆𝑆𝑆𝐷 .

Malicious Device Driver As same as system call hijacking

Malicious Enclave Existing IPFS does not permit unauthorized enclave to
open secure files.

Malicious Securiy Manager 𝐷𝑆𝐹𝑆 verifies 𝐷𝑆𝐴𝐸 using 𝑃𝐾𝐿𝑖𝑠𝑡 during attestation.

Replay Attack 𝐷𝑆𝑆𝑆𝐷 authenticate replay attack through I/O Version
Counter.

DS-FTL is only 32B. When the file size becomes 512MB, the total
size of DS-FTL is about 64KB. This leads to increment in data size
that should be loaded and stored.

6.2 Space overhead analysis in device

In this part, we explain the space overhead of𝐷𝑆𝑆𝑆𝐷 for implement-
ing the file system (DDFS) in the device. The main space overhead
generated by DDFS is super block, inode, and the DS-FTL. Because
DiskShield directly maps an offset to a physical block address, it
does not need an additional indexing table for mapping an offset to
a logical block address. When the secure partition is allocated, the
normal partition size in which G-FTL maps reduces. Therefore, the
size of G-FTL also decreases. DiskShield takes advantage of this
free space. Within this free space, the DDFS dynamically allocates
memory for inodes, superblocks, and DS-FTLs. Therefore, DDFS
does not need additional memory space in the SSD. Currently, this
metadata is loaded when file opens, and be flushed when file closes.
In future work, to reduce flushing metadata, We will implement a
cache mechanism that utilizes this memory space efficiently.

6.3 Security Evaluation

We analyzed the security of diverse TEE-based local data storage
systems that protect the persistent data. Pesos is an external third
party storage service, we do not compare the DiskShield with
Pesos because the target environment is different. Table 6 presents
a security analysis of the TEE-based file system and the key-value
store. IPFS [9] is a basic file system that is implemented in the
SGX SDK library. It guarantees file confidentiality and checks in-
tegrity through the read-verification process. Obliviate [2] is an
in-memory filesystem that is specialized in the side-channel attack
defense. It checks integrity using the Merkle hash tree, same as
IPFS. Graphene [24] provides a library OS that does not require
modification of the original application, but rather, loads it directly
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into the SGX. Graphene checks integrity by comparing the hash
values when a file is opened. SPEICHER [3] is a key-value store
that is specialized in defending replay attacks. It also guarantees
confidentiality and checks integrity, similar to IPFS. It builds a di-
rect I/O library that is based on Intel SPDK [13]. Using this system,
the data created by an Enclave is saved in the user buffer by an
OCALL and is transferred directly to the device while bypassing
the kernel. However, malware not only can attack the persistent
data, but it can also damage the fresh data by modifying the user
data buffer, which is outside of an Enclave. On the other hand, the
inuksuk protects persistent data already stored in the secure zone
even if malware has invaded. However, if the malware avoids user
detection and succeeds in invading the host system, the situation
would be catastrophic. This is because user continuously updates
secure files without knowing the existence of malware. All kinds
of newly updated fresh data can be tampered by malware before
arriving at secure zone. Then, the user loses updated information
forever. To sum up, none of these systems can protect the integrity
of persistent data from corruption attacks.

DiskShield protects persistent data through 𝐷𝑆𝑆𝑆𝐷 authenti-
cation. In addition, when the fresh data is tampered by malware,
𝐷𝑆𝑆𝑆𝐷 denies it by verifying MAC. Also, the𝐷𝑆𝐹𝑆 verifies response
received from𝐷𝑆𝑆𝑆𝐷 through two-way communication. If the MAC
verification or response fails, 𝐷𝑆𝐹𝑆 returns write error message to
the application.

Table 7 shows DiskShield’s solution to the file modification
attack scenarios and solutions described in Section 3. Using pwrite()
for file based Attack is impossible because the secure file is hidden
from a native file system. On the other hand, the malware can use
system calls such as DS_rdafwr provided from DiskShield and try
to attack secure zone. However,𝐷𝑆𝑆𝑆𝐷 denies this request since the
request verification will fail. System call hijacking and malicious
device driver are a kind of man-in-the-middle attack, for which
DiskShield can defend using 𝐷𝑆𝑆𝑆𝐷 ’s authentication and secure
two-way communication. Also, a malicious enclave can try to open
the secure file using sgx_fopen(). However, existing IPFS denies
opening files because the file key is not matched.

7 CONCLUSION

This paper presented DiskShield, a tamper-resistant storage for In-
tel SGX. The DiskShield is an SGX-based versatile data protection
system optimized for local platform. We prototyped DiskShield
to evaluate security and performance analysis using the Jasime
OpenSSD Platform in Linux. The evaluation shows the overheads
of protecting data as tamper-resistant state is reasonable compared
to the baseline IPFS.
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A SECURITY EVALUATION USING

MALWARE SAMPLE

To evaluate with some attack vectors discussed in Table 7, we have
created attack scenarios based on the behavior of real malware
samples. We assume that a remote attacker invades host systems
and runs malware. We test the following scenarios.

A.1 Persistent Data Attack

A.1.1 File-based attack using DiskShield system call.

Assumption. The attacker has successfully invaded into the host
system and installed a user-level malware. The attacker also knows
that the foo.txt file is safely stored in the 𝐷𝑆𝑆𝑆𝐷 secure zone.

Attack Scenario. To corrupt the secure file named foo.txt, the
malware uses DiskShield system call (DS_rdafwr) to send a write
command to DS-SSD. Malware tries to open the secure file, read it,
encrypt it, and then write the encrypted data.

Evaluation Result. For evaluation, 𝐷𝑆𝐹𝑆 creates a 4KB file. 𝐷𝑆𝐹𝑆
sequentially performs sgx_fopen_auto_key, sgx_fwrite, and sgx_fclose
(Figure 14(b)). Then, 𝐷𝑆𝑆𝑆𝐷 performs DS_OPEN, DS_CREATE,
DS_WRITE, and DS_CLOSE operation in sequence (Figure 14(c)).
The reason why DS_CREATE is performed after DS_OPEN is that
the 𝐷𝑆𝐹𝑆 sends the open request first, and then sends the create
request again if the file does not exist. Here, the kernel messages
of DS_rdafwr system call and SATA device driver are shown in
Figure 14(a).

Figure 14(d), (e), and (f) show the messages generated by each
component during malware intrusion. First, the malware uses the
DiskShield system call to open the secure file, foo.txt. Although this
command is transferred to 𝐷𝑆𝑆𝑆𝐷 , 𝐷𝑆𝑆𝑆𝐷 verifies MAC and denies
opening the file (Figure 14(f)). This is because the malware cannot
generate the right MAC without the correct file key. Therefore,
since the file open request is denied, the malware fails to tamper
with a secure file, foo.txt (Figure 14(d)).

A.1.2 File-based attack using pwrite() and LBA-based attack using

ioctl().

Attack Scenario. To corrupt secure file, foo.txt, the malware
opens the file and uses pwrite() to overwrite it. Also, the malware
can open the device (DS-SSD) directly and use ioctl() to overwrite
data in the SSD.

Evaluation Result. The attacks mentioned above access the per-
sistent data by logical block address (LBA). However, the secure
zone is isolated in the SSD. The secure zone is a hidden space that
cannot be accessed by LBA. Therefore, malware cannot attempt to
corrupt the secure zone.

A.2 Fresh Data Attack

A.2.1 System Call Hijacking.

Assumption. The attacker has invaded the host system and suc-
ceeded in gaining the root privilege. Also, the attacker avoided user
detection and installed the rootkit as a kernel module. In this OS
compromised environment, the attacker tries to hijack system calls

when 𝐷𝑆𝐹𝑆 performs file open, write, flush, and close to update the
secure file (foo.txt).

Attack Scenario. The rootkit firstly reads the system call table
from the kernel symbol table. Then it finds the position where
the DiskShield system call (DS_rdafwr) is stored. It overwrites
this position with the address of the rootkit module. Therefore,
when 𝐷𝑆𝐹𝑆 calls DS_rdafwr, the rootkit module is called instead.
It encrypts the data buffer the host is trying to write. It calls the
original DS_rdafwr to overwrite the secure zone.

Evaluation Result. For evaluation, 𝐷𝑆𝐹𝑆 creates a 4KB secure
file (foo.txt) as mentioned above (Figures 14(a), (b), and (c)). The
attacker loads the rootkit into the kernel. The rootkit performs
system call hijacking when installed (Figure 15(b)).

When 𝐷𝑆𝐹𝑆 opens a secure file and calls DS_rdafwr for writing,
the rootkit hijacks the system call and modifies the user data buffer
(Figure 15(b)). However, 𝐷𝑆𝑆𝑆𝐷 verifies MAC and denies write
requests (Figure 15(c)). On the other hand, 𝐷𝑆𝐹𝑆 fails to perform
fflush(), and returns an error message to the application and exits
(Figure 15(a)). In summary, the malware not only fails to tamper
with the data stored in the secure zone, but through the two-way
communication, DS-FS immediately notices the failure and succeeds
in returning an error message.

A.2.2 Malicious Device Driver.

Assumption. The attacker has invaded the host system and suc-
ceeded in gaining the root privilege. Also, the attacker avoided user
detection and installed the rootkit as a kernel module. In this OS
compromised environment, the attacker tries to hook the SATA
device driver modules before 𝐷𝑆𝐹𝑆 performs file open, write, flush,
and close to update the secure file (foo.txt).

Attack Scenario. The rootkit hooks a function in the SATA driver
that packs commands into the registerFIS (Section 5.2.2 ). When
a secure file write command is received, the rootkit converts the
command into the regular write command. It tries to invalidate the
data protection by storing data in the regular zone instead of the
secure zone of 𝐷𝑆𝑆𝑆𝐷 .

Evaluation Result. Asmentioned above, DS-FS creates 4KB foo.txt
(Figures 14(a), (b), and (c)).

The attacker loads the rootkit into the kernel. The rootkit instal-
lation goes through the following process.

First, The rootkit reads the address of the variable (ahci_ops)
which holds a function pointer to the driver’s registerFIS packing
function (achi_qc_prep).

Second, The rootkit overwrites the address of the malicious
rootkit module with the position where the ahci_qc_prep function
pointer is loaded (ahck_ops->ac_prep).

Third, Figures 15(d), (e), and (f) show the messages generated
by the three components. If 𝐷𝑆𝐹𝑆 opens a secure file and attempts
to write the secure file, the rootkit module hooked from the SATA
driver replaces the secure command (DS_write) with a regular write
command (write). In Figure 15(f), themessagewith the [sata_hooking]
tag is a kernel message generated from a hooked rootkit module,
not an existing driver module. As a result, 𝐷𝑆𝑆𝑆𝐷 accepts the regu-
lar write command and writes data to the regular zone(Figure 15(d)).
Then it transmits a response to DS-FS in the host (Figure 15(e)).
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[  175.194728] [DS_rdafwr] File Open.

[  175.194788] [ata_tf_to_fis] Open Request to SATA. 
[  175.194827] [DS_rdafwr]Read-after-Write. cmd: 4e

[  175.195870] [DS_rdafwr] File Create.
[  175.195891] [ata_tf_to_fis] Create Request to SATA.

[  175.195935] [DS_rdafwr]Read-after-Write. cmd: 4d

[  175.197689] [DS_rdafwr] File Write. fd: 1,offset: 0, size: 4608
[  175.197708] [ata_tf_to_fis] Write Request to SATA.. fd: 1, offset: 0, size: 4608 

[  175.197759] [DS_rdafwr]Read-after-Write. cmd: 51
[  175.206496] [DS_rdafwr] File Write. fd: 1,offset: 8192, size: 4608

[  175.206531] [ata_tf_to_fis] Write Request to SATA.. fd: 1,offset: 8192, size: 4608

[  175.206587] [DS_rdafwr]Read-after-Write. cmd: 51
[  175.217837] [DS_rdafwr] File Write. fd: 1,offset: 4096, size: 4608

[  175.217851] [ata_tf_to_fis] Write Request to SATA.. fd: 1,offset: 4096, size: 4608
[  175.217918] [DS_rdafwr]Read-after-Write. cmd: 51

[  175.227688] [DS_rdafwr] File Write. fd: 1,offset: 0, size: 4608

[  175.227706] [ata_tf_to_fis] Write Request to SATA.. fd: 1,offset: 0, size: 4608
[  175.227742] [DS_rdafwr]Read-after-Write. cmd: 51

[  175.239524] [DS_rdafwr] File Close. fd: 1
[  175.239534] [ata_tf_to_fis] Close Request to SATA.. fd: 1

[  175.239558] [DS_rdafwr]Read-after-Write. cmd: 4f

EVAL DEMO name: foo.txt[u_diskshieldfs_exclusive_file_open] File Open. name: foo.txt
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 0, size: 4096
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 4096, size: 4096
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 8192, size: 4096
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 0, size: 4096
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 8192, size: 4608
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 4096, size: 4608
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 0, size: 4608
[u_diskshieldfs_fclose] File Close. fd: 1

(b) Secure File Generation: 𝐷𝑆𝐹𝑆 Messages
DS_open_wr
DS_create_wr
MAC Authentication Success
DS_write_wr
MAC Authentication Success
DS_write_wr
MAC Authentication Success
DS_write_wr
MAC Authentication Success
DS_write_wr
MAC Authentication Success
DS_close_wr
MAC Authentication Success

...OPEN...fd is -1
File Open Error! name: foo.txt, fd: -1 

(d) File Attack: Malware Application
Messages
[  269.745081] [DS_rdafwr] File Open.

[  269.745148] [ata_tf_to_fis] Open Request to SATA. 
[  269.745262] [DS_rdafwr]Read-after-Write. cmd: 4e

(e) File Attack: Kernel Messages
DS_open_wr
MAC Authentication Fails
Open verification fail.

(a) Secure File Generation: Kernel Messages (c) Secure File Genera-
tion: 𝐷𝑆𝑆𝑆𝐷 Messages

(f) File Attack: 𝐷𝑆𝑆𝑆𝐷 Messages

Figure 14: Messages from the Application, Kernel and Storage against File-based Attack using DiskShield System Call

EVAL DEMO name: foo.txt[u_diskshieldfs_exclusive_file_open] File Open. name: foo.txt
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 0, size: 4096
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 4096, size: 4096
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 8192, size: 4096
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 0, size: 4608
EVAL File Flush Error

DS_open_wr
MAC Authentication Success
DS_write_wr
MAC Authentication Fails
Write Verification fails

DS_open_wr
MAC Authentication Success
Write to Regular zone

(a) System Call Attack: 𝐷𝑆𝐹𝑆 Messages (c) System Call Attack: 𝐷𝑆𝑆𝑆𝐷
Messages

(d) Driver Attack: 𝐷𝑆𝑆𝑆𝐷 mes-
sages

[  246.006563] [syscall_hijack]: root kit has been loaded.

[  246.006564] [syscall_hijack]: system call table address: 0x8f6001a0
[  246.006564] [syscall_hijack]: arch x86_64

[  246.006565] [syscall_hijack]: DS_rdafwr Address: 8ea70760
[  246.006565] [syscall_hijack]: DS_rdafwr System Call Number: 333

[  253.654681] [syscall_hijack] Hijack DS_rdafwr system call.

[  253.654703] [DS_rdafwr] File Open.
[  253.654729] [ata_tf_to_fis] Open Request to SATA.

[  253.654788] [DS_rdafwr]Read-after-Write. cmd: 4e
[  253.656604] [syscall_hijack] Hijack DS_rdafwr system call.

[  253.656606] [DS_rdafwr] File Read. fd: 1,offset: 0, size: 4096

[  253.656611] [ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 0, size: 4096
[  253.656890] [syscall_hijack] Hijack DS_rdafwr system call.

[  253.656910] [DS_rdafwr] File Read. fd: 1,offset: 4096, size: 4096
[  253.656914] [ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 4096, size: 4096

[  253.657181] [syscall_hijack] Hijack DS_rdafwr system call.

[  253.657183] [DS_rdafwr] File Read. fd: 1,offset: 8192, size: 4096
[  253.657201] [ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 8192, size: 4096

[  253.657564] [syscall_hijack] Hijack DS_rdafwr system call.
[  253.657565] [syscall_hijack] write commands hijack: DATA CORRUPT (len: 4)

[  253.657566] [DS_rdafwr] File Write. fd: 1,offset: 0, size: 4608

[  253.657585] [ata_tf_to_fis] Write Request to SATA.. fd: 1, offset: 0, size: 4608

EVAL DEMO name: foo.txt[u_diskshieldfs_exclusive_file_open] File Open. name: foo.txt

[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 0, size: 4096
[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 4096, size: 4096

[u_diskshieldfs_fread_node] File Read. fd: 1, offset: 8192, size: 4096
[u_diskshieldfs_fwrite_node] File Write. fd: 1, offset: 0, size: 4608

EVAL File Flush Error

(e) Driver Attack: 𝐷𝑆𝐹𝑆 Messages
[  196.190564] [DS_rdafwr] File Open.

[  196.190590] [sata_hooking][ata_tf_to_fis] Open Request to SATA.
[  196.190651] [DS_rdafwr]Read-after-Write. cmd: 4e

[  196.192481] [DS_rdafwr] File Read. fd: 1,offset: 0, size: 4096
[  196.192485] [sata_hooking][ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 0, size: 4096

[  196.192765] [DS_rdafwr] File Read. fd: 1,offset: 4096, size: 4096

[  196.192783] [sata_hooking][ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 4096, size: 4096
[  196.193050] [DS_rdafwr] File Read. fd: 1,offset: 8192, size: 4096

[  196.193053] [sata_hooking][ata_tf_to_fis] Read Request to SATA.. fd: 1, offset: 8192, size: 4096
[  196.193418] [DS_rdafwr] File Write. fd: 1,offset: 0, size: 4608

[  196.193437] [sata_hooking][ata_tf_to_fis] Write Request to SATA.. fd: 1, offset: 0, size: 4608

(b) System Call Attack: Kernel Messages (f) Driver Attack: Kernel Messages

Figure 15: Messages from the Application, Kernel and Storage against System Call Hijacking and Malicious Device Driver Attack

However, since this response is wrong, 𝐷𝑆𝐹𝑆 returns an error mes-
sage to the application and exits. To sum up, even though the
regular zone is overwritten with the wrong data, the data stored

in the secure zone is kept safe. Also, through the secure two-way
communication, 𝐷𝑆𝐹𝑆 recognizes this immediately and succeeds
in returning an error message.
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