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Abstract—Federated edge cloud (FEC) is an edge cloud envi-
ronment where multiple edge servers in a single administrative
domain collaborate together to provide real-time services. This
environment reduces the possibility of violating the quality of
service (QoS) requirements of target services by locating delay-
sensitive services at nearby edge servers instead of deploying
them on the cloud. However, as the number of edge servers in-
creases, the amount of energy consumed by servers and network
switches also increases. This creates another challenge for how to
schedule delay-sensitive services over FEC, while minimizing the
total energy consumption and reducing the QoS violation of a
service at the same time. This paper proposes an energy-efficient
service scheduling algorithm in FEC. The proposed algorithm
is based on an observation that as the number of edge servers
along the service path is reduced, the total energy consumption
can be minimized. Traditional approaches place services using
their maximum traffic requirements to ensure QoS without
considering the actual traffic change. In contrast, the proposed
algorithm schedules them with actual traffic requirements to
increase the number of services co-located in a single server.
This maximizes the consolidation of services in a single server
and thus minimizes the energy consumption. Moreover, when
edge servers are overloaded, the proposed algorithm reconfigures
the service path such that service migration overhead and
energy consumption are minimized while guaranteeing the QoS
requirements of services. The simulation results show that the
proposed algorithm improves energy efficiency by up to 21% and
lowers the service violation rate by up to 80% against existing
approaches.

Keywords—edge computing, energy-efficient, service schedul-
ing, federated edge

I. INTRODUCTION

With the development of 5G mobile communication and

Internet of Things (IoT), an edge cloud environment has

emerged to smoothly provide latency-sensitive services such

as augmented reality (AR) and autonomous vehicles. Instead

of managing data only on a physically separated cloud server,

edge cloud [1] performs key functions such as data collection,

analysis, and processing on an edge server close to users.

In other words, services that are sensitive to latency are first

deployed on the edge server, and services that are not sensitive

to latency or services that cannot be deployed on an edge

server due to the limitation of computing resources are placed

in the cloud. As a result, when a latency-sensitive service is

deployed in the cloud, network latency increases, resulting in

a QoS violation of the service.

* Corresponding author: Sungyong Park

(a) Edge Cloud (b) Federated Edge Cloud

Figure 1. Edge Cloud and Federated Edge Cloud

Meanwhile, as the number of edge servers managed in one

administrative domain increases, a federated edge cloud (FEC)

environment that provides services by the collaboration of

multiple edge servers has appeared [2] as shown in Fig. 1.

In this environment, services that are not deployed on one

edge server can be deployed on nearby edge servers to ensure

the service QoS. However, as the number of physical resources

such as distributed edge servers and switches increases, energy

consumption also increases [3]. Considering that the energy

consumption and QoS depends on which server a service

is deployed, it is necessary to devise an efficient service

scheduling strategy that satisfies the QoS of a service while

reducing energy consumption in FEC.

There have been few research activities conducted to address

this issue in FEC. On the other hand, a number of research

efforts for scheduling services to reduce energy consump-

tion have been made either in multi clouds [4]–[8] or edge

clouds [9], [10]. However, most of the previous studies have

been focused on scheduling services using maximum traffic

requirements regardless of their actual traffic usage. Although

these approaches can ensure service QoS, they prevent services

from being co-located even when the traffic volume is quite

low. This results in low resource utilization and unnecessary

energy consumption. Furthermore, service migration scenario

is not taken into account because services are scheduled based

on their maximum traffic requirements and, therefore, cannot

violate their QoS requirements by traffic fluctuations. This

assumption is not suitable for our target environment since

the computing capacity of each edge server in FEC is limited.
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This paper proposes an energy-efficient service scheduling

algorithm in FEC that minimizes energy consumption on

the service path while ensuring QoS at the same time. The

proposed algorithm initially places delay-sensitive services

in edge servers based on their minimum CPU utilization

requirements when service requests arrive. This allows us to

increase the number of co-located services and thus reduce

energy consumption. By periodically monitoring the traffic

fluctuation and volume in each edge server, our algorithm

reconfigures the service path when the CPU utilization of any

edge server exceeds beyond the predefined target threshold

value. All decisions are made by simultaneously considering

the minimization of total energy consumption, the reduction of

QoS violation possibility, and the minimization of service mi-

gration overhead. Since this problem is a variation of a multi-

constrained optimization problem known as NP-complete [11],

we propose a heuristic algorithm to solve such a scenario. The

simulation has been conducted on a cloud simulator called

CloudsimSDN [12]. The simulation results show that the

proposed algorithm minimizes energy consumption by up to

21% compared to existing approaches and also reduces service

violation rate by up to 80%.

The organization of this paper is as follows. Section II

provides the descriptions of related works for minimizing

energy consumption in multi clouds and edge clouds. Sec-

tion III defines the problem and explains the details of our

proposed algorithm. Section IV evaluates the performance of

the proposed algorithm and shows its comparison with other

existing works. Finally, Section V concludes this paper.

II. RELATED WORKS AND MOTIVATION

Various research activities for scheduling services in terms

of energy efficiency and QoS guarantee are conducted in multi

cloud and edge cloud environments. This section provides a

brief summary of each activity and discusses the limitations

of previous works as well as the motivations for the proposed

research.

Multi Clouds Kim et al. [4] proposes a dynamic virtual net-

work function (VNF) placement and reconfiguration algorithm

to minimize the energy consumption while ensuring service

QoS. Nonde et al. [5] suggests an energy efficient virtual

network embedding approach for cloud computing networks

to consolidate resources in the network and data centers. Son

et al. [6] proposes a dynamic overbooking algorithm that

allocates host and network resources dynamically based on the

resource utilization. Sun et al. [7] proposes an energy-efficient

and traffic-aware service function chaining (SFC) orchestration

in multi-domain networks. They propose an online service

scheduling mechanism to minimize energy consumption in

servers and network links. Shang et al. [8] proposes a network

congestion-aware service placement and load balancing mech-

anism. This paper suggests that the algorithm can minimize

operation cost and network congestion time generated by

nodes and links.

Edge Clouds Ascigil et al. [9] proposes resource allocation

algorithms to place service requests from users and reconfigure

service resources in order to maximize the QoS experienced

by users. This paper focuses on a uncoordinated service

placement strategy whenever service requests arrive. Son et

al. [10] suggests a latency-aware VNF provisioning scheme

in distributed edge clouds. This paper places latency-sensitive

services between edge and cloud to guarantee QoS.

Motivation The average CPU utilization of a server cluster

where services are placed is only about 50-60% [13]. This

means that if services are allocated based on their maximum

traffic requirements, a large amount of computing resources

are wasted, resulting in unnecessary energy consumption.

Most of the aforementioned prior works use maximum traffic

requirements as a decision criterion in where to place services.

Thus, it is highly likely that edge servers can be severely

underutilized if service traffic is low.

It should also be noted that our target environment (i.e.,

FEC) is an federated environment that enables to share

computing resources with nearby edge servers. In traditional

edge cloud environment, delay-sensitive services are often

placed on the cloud due to the capacity limitation of a edge

server. However, FEC allows us to utilize the computing

resources shared by other edge servers, which further reduces

the possibility of violating the QoS requirements of a service.

Based on these observations, this paper proposes a service

scheduling algorithm in FEC. The proposed algorithm places

services with their minimum traffic requirements along the

service path and gradually reconfigures the path as the amount

of traffic increases. Since the service migration overhead

is one of the biggest concerns, the service placement and

reconfiguration algorithm schedules services to minimize the

service migration.

III. ENERGY-EFFICIENT SERVICE SCHEDULING

ALGORITHM

In this section, we discuss the system model for the

proposed approach and define the problem followed by the

detailed algorithm.

A. System Model

Fig. 2 shows an example of an FEC environment we are tar-

geting in this paper. We assume that there exist multiple edge

domains where multiple edge servers with limited computing

capacity are located and share computing resources among

them. The edge servers in each edge domain are connected by

an edge switch. Each edge switch is connected by aggregate

switches and core switches to route traffic to the cloud servers.

The cloud servers are assumed to have unlimited computing

capacity. Both cloud servers and edge servers are virtualized

and multiple virtual machines (VMs) can be created over these

servers.

When a service request with a series of service functions

and its latency requirement arrives at the service controller,

the controller creates a corresponding VM for each service
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Figure 2. System Model

function and place them on appropriate edge servers. Each

service function contains the descriptions of its minimum and

maximum traffic requirements. This paper assumes that only

one service function can reside at one VM.

B. Problem Definition

We assume that physical resources including edge servers

and network links can be represented as a graph G = (V,
E). For example, V represents either edge servers or cloud

servers where services can be placed, while E represents

virtual network links between the servers.

If a service S is composed of K service functions SF , a

service path SP can be expressed as SP = SF 1 → SF 2 →
... → SFK . Assume that the number of edge servers used

for running all SP is N and the number of network links

used to route the traffic from all SP is M . Then, the energy

consumption of physical resources Ephysical
SP can be calculated

by adding the sum of energy consumption from N edge servers

and M links as shown in Eq. 1.

Ephysical
SP =

N∑

i=1

Eserver
i +

M∑

j=1

Elink
j (1)

After placing a service on the service path, the service can

be migrated to nearby edge servers according to service traffic

fluctuations. If the total number of migrations occurred in all

SP is P , the total energy consumed for migration Emigration
SP

is sum of energy consumed for each migration as shown in

Eq. 2.

Emigration
SP =

P∑

i=1

Emigration
SPi

(2)

Then, the total energy consumption Etotal
SP is the sum of

Ephysical
SP and Emigration

SP as shown in Eq. 3. The main

objective of the proposed approach is to minimize the total

energy consumption Etotal
SP such that LSPi

the latency along

the i-th service path LSPi
does not exceed the target service

latency Ltarget
SPi

, where LSPi
includes both the latency along

the path and the latency incurred by service migration.

Etotal
SP = Ephysical

SP + Emigration
SP (3)

C. The Proposed Approach

Energy Model The energy consumption in physical resources

consists of the energy consumption of a server and a link

between the servers. If a server or a switch is powered off, the

energy consumption of this resource is considered to be 0. This

paper assumes that the energy consumed by a server is the sum

of static energy Estatic
server (also called idle energy) and dynamic

energy. The dynamic energy increases linearly with the CPU

utilization used [14]. Therefore, the energy consumption of the

i-th server Eserver
i used in this paper is defined as Eq. 4.

Eserver
i = Estatic

serveri +(Emax
serveri −Estatic

serveri)×
CPUused

i

CPU total
i

(4)

The other energy consumption arises from network links.

The energy consumed by links depends on the number of

switch ports used for processing traffic [15]. Assume that

Estatic
switch and Eport

switch are defined as the energy consumption

when the switch is idle and the energy consumption of each

port, respectively. Assume also that numport is the number of

ports used. Then, the energy consumed by the i-th link Elink
i

is defined as Eq. 5.

Elink
i = Estatic

switchi
+ Eport

switchi
× numport (5)

The overall energy is also affected by the migration energy.

This paper follows the migration energy model proposed by

Liu et al. [16]. Therefore, we assume that the energy for

VM migration is affected by the duration of VM migration

Lmigration
SPi

(defined in Eq. 10) and two regression parameters

α, β which can be obtained in [16]. Then, the energy con-

sumed by VM migration Emigration
SPi

can be defined as Eq. 6,

where VM j
size represents the size of a VM j in the i-th service

path and BW avail
link represents the available bandwidth of a link

used for the migration.

Emigration
SPi

= α× VM j
size

BW avail
link

+ β (6)

Latency Model The service latency on the i-th service path

LSPi
is the sum of the VM processing time in the servers

Lserver
SPi

, the VM transmission time between servers Ltrans
SPi

,

and the VM migration time Lmigration
SPi

as shown in Eq. 7.

LSPi
= Lserver

SPi
+ Ltrans

SPi
+ Lmigration

SPi
(7)

Lserver
SPi

depends on server utilization. Thus, Lserver
SPi

is

calculated by the sum of latency values from all edge servers

along the i-th service path as shown in Eq. 8. The latency in the

j-th server can be obtained by multiplying the idle processing

time T idle
processing and the actual CPU utilization of the j-th

server.

Lserver
SPi

=
N∑

j=1

(T idle
processing ×

CPUused
j

CPU total
j

) (8)

Ltrans
SPi

is also defined by the sum of latency values from

all switches along the i-th service path as shown in Eq. 9.

The latency in the j-th switch is the average packet size
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generated in the i-th service path PktsizeSPi
divided by the

available bandwidth of a link for transmitting a packet.

Ltrans
SPi

=
M∑

j=1

PktsizeSPi

BW avail
link

(9)

Besides, Lmigration
SPi

is calculated by the sum of the size

of VM j in the i-th service path divided by the available

bandwidth of a link for the migration BW avail
link as shown in

Eq. 10.

Lmigration
SPi

=
M∑

i=1

VM j
size

BW avail
link

(10)

Algorithm The proposed algorithm consists of two sub-

algorithms: service placement and service path reconfiguration
as shown in Algorithm 1.

In the service placement algorithm, the main idea is to

maximize the level of VM consolidation for low energy

consumption. For this, the service placement algorithm tries

to find an edge server HOST after placing a service S with

multiple service functions SP = SF 1 → SF 2 → ... → SFK ,

where the number of SF is K. Therefore, we assume that

each service request has both minimum and maximum traffic

requirements as well as its latency requirement LSP when a

new service request arrives at the service controller. Although

this mechanism may cause service migration when the service

traffic is relatively high, the service path reconfiguration algo-

rithm is designed to minimize the service migration overhead.

On the other hand, the service path reconfiguration algo-

rithm is triggered by a service monitor. When the service

path reconfiguration algorithm is invoked, a list of overloaded

edge servers HOSTover is delivered to this algorithm by the

service monitor. Then, this algorithm locates a VM with the

smallest size VMsize from the HOST with the maximum

server utilization in HOSTover. Because a HOST with the

maximum server utilization must be the most overloaded

HOST and a VM with the smallest size has the minimum

migration overhead as shown in Eq. 6 and Eq. 10. Finally,

among the edge servers excluding the servers in HOSTover,

we create a list of candidate edge servers HOSTdest to

determine a destination edge server for service migration.

From the edge servers in HOSTdest, this algorithm searches

for a HOST , where the energy consumption after service

migration is minimized and the latency LSP is below the target

latency Ltarget
SP .

Implementation Architecture Fig. 3 depicts the overall ar-

chitecture and operational flow of our proposed algorithm.

The proposed algorithm consists of three components: service
placement manager, migration manager and service monitor.

The service placement manager is initiated when a new

service request arrives at the service controller. That is, when

a user initiates a service request to the service controller, the

controller invokes the service placement manager to decide

where to place the service in an edge domain. Since the

proposed algorithm considers actual resource utilization when

Algorithm 1 Service Placement and Reconfiguration

1: SFmax
i , SFmin

i : Max/min traffic requirements of SFi

2: N : Number of edge servers

3: SPi : i-th service path that includes HOSTi

4: HOSTN : List of edge servers

5: HOSTover : List of overloaded edge servers

6: HOSTdest : List of candidate edge servers for migration

7: HOSTutil
i : Server utilization of HOSTi

8: MaxUtil : Maximum traffic threshold

9:

10: procedure SERVICE PLACEMENT

11: while SPSU
exists in the service request queue do

12: SFi ← SPSU

13: Sort HOSTN by utilization in ascending order

14: i ← 1
15: while i ≤ N do
16: if SFmin

i + HOSTutil
i ≤ MaxUtil then

17: Place SFi on HOSTi

18: else
19: i ← i + 1
20: end if
21: end while
22: end while
23: end procedure
24:

25: procedure SERVICE PATH RECONFIGURATION

26: Sort HOSTover by utilization in descending order

27: while HOSTover not empty do
28: HOSTi ← the 1st HOST in HOSTover

29: VMj ← a VM with the the smallest VM i
size

30: HOSTdest = {HOSTN} - {HOSTover}
31: while HOSTdest not empty do
32: HOSTk ← HOST with minimum energy

33: after migration

34: if LSPk
> Ltarget

SPk
then

35: HOSTdest = {HOSTdest} - {HOSTk}
36: else
37: Migrate VMj to HOSTk

38: end if
39: end while
40: HOSTover = {HOSTover} - {HOSTi}
41: end while
42: end procedure

placing services, the service placement manager initially allo-

cates VMs running a series of service functions to appropriate

edge servers based on the minimum traffic requirements. The

migration manager is invoked when the service monitor detects

that any edge server is currently overloaded. For this, the

service monitor periodically checks the traffic fluctuations

of each edge server in every 30 seconds and updates the

corresponding status into a database. If the service traffic

exceeds the predefined threshold value (we use 70% in this

paper), the service monitor triggers the migration manager to
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Figure 3. System Overview

migrate a service VM to proper nearby edge servers to avoid

the QoS violation of the service.

IV. EVALUATION

To show the effectiveness of the proposed algorithm, we

have implemented the algorithm over a cloud simulator called

CloudsimSDN [12]. We also compared its performance with

that of a traditional service scheduling algorithm proposed

for edge computing environments. For simplicity, we call

the proposed algorithm as the actual resource-aware service

scheduling algorithm in FEC (RASSFEC) and the comparison

target algorithm as the non-resource-aware service scheduling

algorithm in edge cloud (NRASSEC).

A. Experimental Environment

Topology For the simulation, we assume an FEC environment

with 8 edge domains where there are 24 edge servers in

each domain. Each edge server is equipped with one 16-core

CPU and 32GB RAM. The ratio of pCPU to vCPU is 1

(i.e., no sharing) and thus the maximum number of VMs per

each edge server is 16. The edge servers in each domain are

interconnected by a edge switch with a 1 Gbps link. Each edge

switch is in turn connected to the 4 aggregate switches with

a 10 Gbps link. Finally, each aggregate switch is connected

to the 2 core switches with a 128 Gbps link to reach the 2

cloud servers. We assume that the cloud servers have unlimited

computing capacity.

Energy Parameters For the energy parameters for a server

and a switch such as peak power consumption and idle power

consumption, we use the parameters suggested in [17].

Workloads We assume that two real-time application services

such as face recognition and online text translator run at the

same time with a ratio of 60% to 40% for the evaluation. Each

application service consists of 3 different service functions.

The specification of application services and service functions

are summarized in Table I and Table II. The service traffic

used for each application service is generated by using Weibull

distribution [18] and the average packet size used for the

latency model is referenced from [19]. With the service traffic

discussed above, we generate two different types of service

traffic such as low service traffic and high service traffic. The

low service traffic is generated with a speed of 50 packets per

second (PPS), while the high service traffic is generated with

a speed of 200 PPS.

Table I
SPECIFICATION OF APPLICATION SERVICES [20]

Application Service Functions Latency Ratio

Face recognition
SuperHub - TPLink - Face

recongition API
2.0 sec 60%

Text translator
Livebox - Netgear - Text

translator API
1.5 sec 40%

Table II
SPECIFICATION OF SERVICE FUNCTIONS [20]

Type CPU (min/max) VM Size Idle Proc Time
SuperHub 2 / 4 512 MB 186 ms
Livebox 1 / 2 256 MB 225 ms
TPLink 2 / 4 128 MB 214 ms
Netgear 2 / 4 384 MB 196 ms

Face recognition API 0.5 / 1 1 GB 122 ms
Text translator API 0.5 / 1 1 GB 122 ms

B. Comparison of Energy Efficiency

Fig. 4 shows the energy efficiency per service of RASS-
FEC normalized with respect to NRASSEC. As shown in

Fig. 4, when the service traffic is low, RASSFEC outperforms

NRASSEC by about 21%. Whereas, when the service traffic is

high, the performance improvement is shortened to 10%.

This can be explained by the following reasons. When the

service traffic is low, the possibility of violating the maximum

traffic threshold in each service function is rare. Therefore, the

RASSFEC’s placement policy that increases the level of service

consolidation with minimum traffic requirements allows more

VMs to be co-located in a single edge server. This results

in high energy efficiency. In contrast, as the service traffic

increases, it is more likely that the sum of traffic generated by

all VMs running in a single edge server exceeds the maximum

traffic threshold. As a result, more energy consumption is

expected due to service migration. However, RASSFEC recon-

figures services to minimize the service migration overhead in

case of traffic fluctuation. This can minimize energy waste

along the service paths.

Figure 4. Comparison of Energy Efficiency per Service
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C. Comparison of Service Violation Rate

Fig. 5 shows the normalized service violation rate of RASS-
FEC with respect to NRASEC. As shown in Fig. 5, RASSFEC
generates almost similar service violations to NRASEC in low

service traffic, while RASSFEC performs extremely better than

NRASEC in high service traffic (i.e., about 80%).

This is because both algorithms prefer to placing services

in an edge domain when the target edge domain has sufficient

computing capacity. That is, when the service traffic is low,

both algorithms place most services on edge servers instead

of cloud servers, which results in low service violation rate.

However, as the service traffic increases, RASSFEC places

the services that cannot be deployed on edge servers to

nearby edge servers, while NRASEC starts to move them to

cloud servers. This creates more service violations since the

transmission latency from an edge domain to cloud servers is

relatively high. Although more service migration is expected in

RASSFEC when the service traffic is high, the migrating VMs

using RASSFEC’s migration policy are likely to be located at

nearby edge servers instead of cloud servers. It is worthy to

note that the transmission latency between two edge servers

is shorter than the latency between edge servers and cloud

servers.

Figure 5. Comparison of Service Violation Rate

V. CONCLUSION

In this paper, we have proposed an energy efficient service

placement and reconfiguration algorithms for FEC environ-

ments. The proposed algorithm minimizes energy consump-

tion by consolidating as many VMs as possible in a single

edge server and reduces the possibility of QoS violation by

locating services in nearby edge servers instead of moving

them to the cloud. Through simulations, we have also showed

that the proposed algorithm is effective for reducing energy

consumption as well as QoS violation rate. However, as we

increase the service traffic, the performance gap is shortened

due to the service migration overhead. This necessitates the

need for more efficient reconfiguration algorithm to minimize

the service migration overhead in future works.
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