
컨테이너기반의확장성있는 Fabric-Attached Memory관리플랫폼
이희락†,이창규†, Awais Khan†,강현구†,마진석‡,석성우‡,오명훈‡,김영재†

†서강대학교컴퓨터공학과, ‡한국전자통신연구원
{heerock, changgyu, awais, hyeongu, youkim}@sogang.ac.kr, {majinsuk, swsok, mhoonoh}@etri.re.kr

Scalable Container-based Software Platform for Fabric-Attached Memory Pool
Heerock Lee†, Chang-Gyu Lee†, Awais Khan†, Hyeongu Kang†, Jinseok Ma‡

Song-Woo Suk‡, Myeonghoon Oh‡, Youngjae Kim†
†Sogang University, Seoul, South Korea, ‡ETRI, Daejeon, South Korea

요 약
Recent progress in Non-Volatile Memory (NVM) and Gen-Z Interconnect introduce a new type of memory pool called

Fabric-Attached Memory(FAM). Until today, the massive memory pools are built via shared memory but often with severe
overhead. Unlike existing solutions, FAM provides scalable memory pool with a near-local access latency. However, such
hardware changes entail huge changes in software platform. To this end, we propose a scalable software platform based on
the container which is widely deployed in many scalable systems. First, our platform provides extensible control plane to
containers by employing broker container that accepts OpenFAM APIs. Second, we designed the data plane using bind mount
to keep FAM’s direct access with memory semantic. Our control plane showed only average 7.62% drops in IOPS and 8.13%
latency increase compared to without container. Also there is only negligible overhead in our data plane.

1. INTRODUCTION
Advancements in Non-Volatile Memory (NVM) technology and

high-performance interconnect such as Gen-Z [1] enable construct-
ing a new type of storage class memory called Fabric-Attached
Memory (FAM). Unlike existing shared memory architecture,
which involves mediation between compute nodes to access remote
memory, Gen-Z switch makes FAM directly accessible from all
compute nodes through its memory-semantic protocol with high-
speed fabric. Such properties enable FAM to play an essential role
in the Memory-Centric Computing (MCC) [2, 3] which is designed
on the idea that all must fit into the memory. Recently, HPE The
Machine [4] provides one example of such MCC platform.

FAM interconnected through Gen-Z provides memory-intensive
applications in manifolds. First, it offers a massive shared mem-
ory pool in which every address can be directly accessible from
hundreds of nodes. Second, it can mitigate the performance gap
between slow storage and memory with NVMs. At last, it pro-
vides direct memory load/store semantics on the memory ob-
jects through the Gen-Z interface. However, direct accessibility
and shareability of FAM do not come for free. The memory man-
agement framework for FAM is inevitable to this end.

Designing a memory management framework for FAM should
consider the following. First, it should provide applications with
isolated memory space called a region and control over accesses
to the region so that the data cannot be changed or shared un-
expectedly. Second, memory management protocol should be in-
dependent of applications. Regardless of programming languages
or user-level libraries, applications should be able to claim FAM.
Last, it should offer direct access to the allocated memory space
and keep simple memory access semantic. If accessing the FAM
pool accompanies a significant software stack, applications cannot
fully exploit the high-performance of the FAM.

A few prior works such as OpenFAM and MOSIQS [3, 5] pro-
posed different programming models for FAM. For instance, Open-
FAM offers API for disaggregated NVM pool to the applications.
MOSIQS offers a memory shared object storage abstraction on
persistent memory pool along with data object indexing. How-

이논문은 2020년도정부(과학기술정보통신부)의재원으로정보통신기획평가원의
지원을 받아 수행된 연구임 (No.2018-0-00503, 메모리중심 차세대 컴퓨팅 시스템
구조연구)

ever, they require to rewrite the whole application in order to adopt
FAM.

A simple solution is to deploy container on FAM pool. As in
HPC, containers are often deployed to enable application isolation
and to minimize host OS dependencies [6, 7, 8]. Further, contain-
ers provide an abstraction layer to the application with minimal
performance degradation with its light-weight, virtualization, and
portability properties.

However, there are some challenges to deploy container on MCC
architecture equipped with FAM. We list the identified challenges
here; First, the policy of provisioning the FAM resources into con-
tainers. Second, keeping memory-semantics and direct access of
FAM inside of containers. Third, management protocol of FAM
and its interface for containers. We elaborate above challenges fur-
ther in Section 3.1

In this paper, we introduce a scalable container-based software
platform for FAM pool. We choose a static resource provisioning
policy so that allocation is done when a container is initiated and
reclaim it as the container is terminated. Second, we bind mount
FAM pool into containers so that they can use memory seman-
tic through memory-mapped IO while providing isolation between
other containers. We adopted state-of-the-art OpenFAM [5] pro-
gramming model for FAM management. However, it only pro-
vides API specifications and not the architecture or implementa-
tion. Thus, we implement and deploy a broker container that man-
ages the OpenFAM API requests. We use Docker containers and
emulate FAM using Intel’s Optane DC 3D-XPoint Persistent Mem-
ory. We prototype memory management protocol to i) (de)allocate
the region in the FAM on application’s request and ii) to man-
age region metadata in FAM. We used STREAM benchmark to
evaluate the proposed approach [9]. The evaluation confirms that
the container-based application deployment in MCC exhibits little
overhead compared to direct application execution on MCC.

2. BACKGROUND
2.1 Gen-Z Fabric Interconnect

Gen-Z is a new type of fabric interconnect which allows any
node attached to the fabric be able to access any memory ad-
dress of nodes on fabric. Gen-Z also guarantees high bandwidth
and near-local latency and provides memory semantic to nodes as
they access their own local memory. With Gen-Z interconnect, the

Compute Node

….CPU GPU

CN CN CN

Memory

Fabric Attached Memory Pool

….
Gen-Z fabric Interconnect

Memory Memory Memory

Gen-Z Switch

Figure 1: An overview of Fabric-attached memory via Gen-Z switch.

massive number of memory devices can form a single disaggre-
gated memory pool. This is called FAM (Fabric Attached Mem-
ory). Figure 1 shows how the FAM is composed via Gen-Z fab-
ric interconnect. Compute nodes such as CPU and GPU are con-
nected to Gen-Z Switch. And memory modules are also connected
to the switch not to the compute node. It allows any compute nodes
to communicate with any addresses in the memory pool as if it
accesses its own local memory using memory-semantic commu-
nication like load/store. Thus Gen-Z’s communication proto-
col benefits memory-intensive applications in that it can eliminate
intermediate interconnection between different compute nodes,
which involves massive software stack overhead.
2.2 OpenFAM Programming Model

A scalable software stack should provide memory management
frameworks for memory-intensive applications to exploit FAM’s
scalable characteristics. Recently, OpenFAM proposes a program-
ming model for managing FAM with reference API implemen-
tation inspired after OpenSHMEM [2] specification. It specifies
abundant features from (de)allocating FAM, reading and writing
data, atomics to memory ordering. However, there was no prior
work to clearly show how to deploy such a memory managing
framework into a system with FAM.
2.3 Persistent Fabric-Attached Memory Pool

Recent advances in Non-Volatile Memory (NVM) take a seat
as a new tier of storage with byte-addressability and high-density.
NVM can potentially provide low-latency and high-bandwidth of
I/O operations by many orders of magnitude by replacing disk-
based storage with high capacity. Aggregated with Gen-Z fabric,
NVM serves as FAM pool globally and directly accessible from
any compute nodes [3].
2.4 Container

The containers are widely used in HPC and scientific computing
for managing resources due to their light-weight virtualization and
flexibility [10]. Similarly, in MCC, the container-based resource
management can bring several benefits. For instance, it can pro-
vide flexible environment to deploy various applications that re-
quires isolated regions in FAM pool. Additionally, containers in-
cur less performance overhead compared to virtual machines to
serve memory-intensive applications, as shown in [10].

3. DESIGN AND IMPLEMENTATION
3.1 Design Challenges

Resource Provisioning: There are two ways of provisioning
FAM resources into containers. With a static provisioning policy,
containers are allocated a specific FAM region’s size when they
are initiated. Unlike the static approach, in a dynamic provision-
ing policy, FAM regions are allocated to each container as much as
containers request while they are running.
Control Plane: Since the FAM pool is directly accessible from
each container and shared transparently between containers, the
FAM pool’s management protocol is needed. This management
protocol can provide a strong abstraction for application and of-

Ap
pl

ica
tio

n
Co

nt
ai

ne
rs App 1 App 2 App 3 App 4

Mount Utility Mount Utility Mount Utility Mount Utility

Control Plane

Data Plane

Region
Broker Container

Resource Provisioning, Allocation/Deallocations
via OpenFAM API specifications

R1 R2
Fabric Attached Memory Pool (FAM)R3

Figure 2: An overview of proposed software architecture.

(a) Control Plane (Allocate)

1. Create
region

6. Return
region

Application
Container

Broker
Container FAM Pool

2. Allocate
region 3. Region

reserved
4. Region ID

(b) Data Plane (Access)

1. Access region

2. Return data

Application
Container

Broker
Container FAM Pool

5. Manage
metadata

Figure 3: The control and data IO path.
fer consistency for data stored in the region that one container oc-
cupies. Otherwise, it entails serious synchronization overhead in
that every application must communicate with each other to check
the current memory pool status. Management protocol includes
(de)allocation of FAM region and metadata for each region’s sta-
tus. Thus, it provides isolated region for each application running
in each container.
Data Plane: To fully exploit performance of FAM, memory-
semantics through Gen-Z fabric should be supported to applica-
tions running on each container. In order for that, there would
be little software stack for applications to access the pre-allocated
FAM region, and the container should provide a direct channel to
the Gen-Z interface that finally goes to physical FAM address.
3.2 System Overview

Figure 2 illustrates the proposed system design atop a FAM in-
terconnected via Gen-Z protocol. The top layer is the application
containers layer, providing an execution environment for various
scientific and memory-intensive applications. Each container pro-
vides the applications with direct channel to use Gen-Z interface
which finally getting to FAM. The broker container provides ac-
cess control to the FAM region and manages the metadata for each
region and global FAM pool status. The metadata includes the free
space in the FAM pool and each region’s ownership. Our Design
provides communication protocol for containers so that the appli-
cation does not need to care about how the FAM is managed. This
inter-container protocol provides a strong abstraction of FAM to
applications and reduces the overheads accompanied by communi-
cation between many applications without container.

The bottom layer is the FAM pool, which is shared by multi-
ple containers. Memory addresses in the FAM pool are divided by
a region unit and allocated to an individual application container
through the broker container.
3.3 Implementation

Control Plane: We implement the control protocol by refer-
ring to OpenFAM API. Communication is handled through gRPC
and inter-container network by publishing a port to the broker
container. The memory management functionality is performed
through the memory server application running in the broker con-
tainer. The memory server keeps information about the total size of
the FAM and available space. It gives a unique region ID to each
region and stores its ownership so that only one application con-
tainer can work with an allocated region. In order to keep the static
provisioning policy, every application requests a particular size of a

2 8 14 20 26

4000

5000

6000

7000

8000

0

1

2

3

4

of Applications

IO
P

S

A
v
g

.
L

a
te

n
c
y

(m
s
)

IOPS w/ Containers

IOPS w/o Containers

Latency w/ Containers

Latency w/o Containers

2 8 14 20 26
0

2

4

6

8

10

of Applications
B

a
n

d
w

id
th

(G
B

/s
)

Read w/ Containers
Read w/o Containers

2 8 14 20 26
0

1

2

3

4

of Applications

B
a

n
d

w
id

th
(G

B
/s

)

Write w/o Containers

Write w/ Containers

(a) Control Path (b) Read Bandwidth (c) Write Bandwidth

Figure 4: Performance evaluation of the proposed software platform for FAM pool.
region in advance. Figure 3(a) depicts how the control plane works
with an example of region allocation. In the first place, application
on an application container delivers create region() request to
the broker container before it starts actual work. Then the memory
server in the broker container gets the request and checks whether
there is available space for the requested size. If there is, it creates
a region and grants the unique region ID for it, and maps client
application ID to mark its ownership. Finally, it returns the region
ID to the application that requested the region.

Data Plane: Our design aims to provide not only isolated FAM
regions but also direct access to FAM. Figure 3(b) illustrates the
data plane of our design. After the application container is granted
to access the region via broker container, it can freely load/store
to the region directly since broker container only grants exclusive
access. Docker employs multiple layer of file systems to provide
access control to the local host file system. To provide direct ac-
cess to the FAM, our implementation depends on bind-mount func-
tionality. bind-mount enables the write permission from inside of
the container. In other words, application in the container can ac-
cess to FAM as it does outside of container via bind-mount. In our
evaluation, we used Intel Optane 3D-XPoint which is equipped as
a local NVM since the Gen-Z is not commercially available.

4. EVALUATION
Experimental Setup: For evaluation, we used a server

equipped with two Intel Xeon Platinum 8280M (total 56 cores)
with 1.5 TB Intel Optane DC 3D-XPoint, and 768 GB DRAM. We
used numactl to bind containers with NUMA node. The NVM is
configured in interleaved mode. All experiments are performed us-
ing ext4-DAX and Linux Kenrel 5.4. To verify performance over-
head of our container-based approach, we compare against appli-
cations directly running on the host system.

Scalability Analysis on Control Plane: Figure 4 (a) shows
the communication performance between multiple application con-
tainers and the broker container. A single application executed
in application container issues a million number of requests, i.e.,
create and delete, to the broker container. We vary the number
of application containers to clearly articulate the broker container
communication overhead in massively parallel requests. We bind
each application container to one CPU core.

Figure 4(a) shows the total IOPS and average latency of vary-
ing application containers. The results show that IOPS and aver-
age latency gradually increase as the number of application con-
tainers increases. We also run every application without contain-
ers in the host system, i.e., grey bar and green line. With the re-
sult, we can figure out the performance degradation from the inter-
container network overhead between the broker and application
containers. We observed an average of 7.62% drop in IOPS and
8.13% increase in latency with our container-based approach.

Scalability Analysis on Data Plane: Figure 4(b) and (c)

present the read and write bandwidth of the proposed approach.
We evaluate memory bandwidth on STREAM benchmark using
PMDK [9]. Each application claims a 15GB region in NVM for
calculating three 5GB vectors. We increase the number of appli-
cation containers with benchmark applications running on it to in-
crease the transactions to memory simultaneously. We observed
that bandwidth improves by varying containers, i.e., upto 14 con-
tainers. However, bandwidth degrades for both read and write
I/Os. We attribute this performance degradation to contention in
iMC and XPBuffer in Intel Optane DIMM as mentioned in [3].
Note that, there is a slight performance difference in both ap-
proaches in Figure 4(b) and (c), which we claim to be incurred
by bind-mount docker utility.

5. CONCLUSION
We design and implement a scalable container-based software

framework for FAM pool to fully benefit memory-intensive appli-
cations from MCC architecture. Specifically, we enable deploy-
ment of applications via containers on FAM pool and provide re-
source provisioning, memory allocations and sharing among mul-
tiple processes running inside containers. The evaluation confirms
the feasibility of the proposed design.

참고문헌
[1] Gen-Z Consortium. https://genzconsortium.org.
[2] S. W. Poole, A. R. Curtis, O. R. Hernandez, K. Feind, J. A. Kuehn,

and G. M. Shipman, “Openshmem: Towards a unified rma model,”
2011.

[3] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. Oh, and Y. Kim,
“Persistent memory object storage and indexing for scientific com-
puting,” in MCHPC, 2020.

[4] K. Keeton, “Memory-driven computing.,” in FAST, 2017.
[5] K. Keeton, S. Singhal, and M. Raymond, “The openfam api: A

programming model for disaggregated persistent memory,” 2019.
[6] A. Torrez, T. Randles, and R. Priedhorsky, “Hpc container run-

times have minimal or no performance impact,” in CANOPIE-HPC,
2019.

[7] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in
Euromicro, 2013.

[8] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti,
“Portable, high-performance containers for hpc,” arXiv preprint
arXiv:1704.03383, 2017.

[9] “PMDK STREAM.”
https://software.intel.com/content/www/us/en/develop/
documentation/vtune-cookbook/top/tuning-recipes/ pmdk-
application-overhead.html.

[10] M. T. Chung, N. Quang-Hung, M. Nguyen, and N. Thoai, “Using
docker in high performance computing applications,” in ICCE,
2016.

