
Received April 17, 2019, accepted May 10, 2019, date of publication May 20, 2019, date of current version June 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917841

iStore: Towards the Optimization
of Federation File Systems
AWAIS KHAN 1, (Member, IEEE), MUHAMMAD ATTIQUE2, (Member, IEEE),
AND YOUNGJAE KIM 1
1Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea
2Department of Software, Sejong University, Seoul 05006, South Korea

Corresponding author: Youngjae Kim (youkim@sogang.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) through the Korea Government (Ministry of Science and
ICT) under Grant 2018R1A1A1A05079398.

ABSTRACT With the growing volumes of data, many organizations are deploying geo-distributed edge
servers and building federations atop of edge servers to improve data sharing, effective collaborations, and
analytics. Multiple federation file systems are designed to satisfy such needs, but due to application-specific
architectures, these federations neglect some important features that can improve the overall federation
performance. In this paper, we address the important challenges of federated file systems, in particular, global
namespace, optimal data placement and analysis, efficient data migration across edge servers, and metadata
optimizations. To further investigate these challenges, we prototyped the federation file system iStore to
emulate the federation and showed the significance of the afore-mentioned key challenges in the federation.
The iStore provides unified global namespace atop of geo-distributed edge servers with a generic job and
resource-aware data storage and placement algorithm (JRAP), which minimizes the job execution time by
considering resources at each edge server. Furthermore, to enable effective data migration, we employed
direct channel file layout-aware data transfer and designed a batch-based metadata scheme for federations
to reduce the metadata contention with increasing clients. We evaluated the efficacy of various big data
applications from data generation to storage and analysis using the iStore on real testbed and simulation.

INDEX TERMS Big data storage and HPC, geo-distributed edge computing, cluster storage and analysis.

I. INTRODUCTION
Data volume from edge devices such as sensors or mobile
devices is increasing at an explosive rate, easily surpassing
the scale of zettabytes [1], [2]. A single weather company
can generate more than 20 terabytes of data per day alone in
order to store temperature readings, wind speeds, barometric
pressures and satellite images from across the globe [3]. This
untamed growth of data volume poses serious challenges
to Big Data applications, requiring massive scale analytical
systems [4]. The current approach to handling such chal-
lenges is to use combination of core cloud services for data
storing, data visualization, text-based search and map-reduce
services from cloud providers. Although powerful and effec-
tive, such core cloud services are known to be not amenable
to the edge computing paradigm where migration of large
volume of raw data to the cloud core is considered prohibitive.
Internet connectivity may be unstable, network bandwidth
small and the usage cost too high.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yuedong Xu.

On the contrary, small or medium-sized data centers near
the edge, which we refer to as Edge Servers, comprising
multiple machines connected via high-speed network are to
guarantee high data availability and accessibility to the users.
Such edge servers are typically limited in resource, lacking
large scale storage space and computational capacity. We
argue that these edge servers can act as a building block
for a federation by combining multiple edge data centers
distributed over the network in order to enhance the edge
computing capability.

On the top of these geo-distributed edge servers, several
scientific, research and academic communities are building
federations to enable data sharing and better analytical col-
laborations [5]. These communities are taking advantage by
sharing and analyzing data across different realms for discov-
ering valuable products and services [5], [6]. For example,
scientists and their collaborators using the Department of
Energy’s computational facilities typically have access to
additional resources at multiple facilities and/or universities.
They use these resources to analyze data generated from
experimental facilities or simulation on supercomputers and

65652
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0001-8786-3850


A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

to validate their results, both of which require moving the
data between geographically dispersed organizations. Some
examples of large collaborations include: Oak Ridge Leader-
ship Computing Facility (OLCF) petascale simulation, which
needs nuclear interaction datasets processed at National
Energy Research Scientific Computing (NERSC) [6] and the
Argonne Leadership Computing Facility (ALCF), which runs
a climate simulation and validates the simulation results with
climate observation datasets at Oak Ridge National Labora-
tory (ORNL) edge server [6].

The federation and grid-based file systems on top of geo-
distributed edge servers are proposed to expedite such data
sharing and collaborations demands [7]–[11]. However, there
are several unmet challenges in existing federations file sys-
tems. The current notion of federation tends to assume homo-
geneous architectures, i.e., all edges across the network are
required to have uniform specifications such as identical file
systems, storage bandwidth, compute power and network
connectivity. Existing studies in this space include Xtreem
file system (XtreemFS) [8], Grid Data Farm (GFarm) [7], and
HDFS [12]. However, these file systems allow the aggrega-
tion of only the identical file system. For example, the GFarm
file system can aggregate other edge servers that are for-
matted with the same GFarm file system [7]. Such narrow
requirements result in underutilizing the CPU, memory and
storage resources. Besides identical file system aggregation,
determining the efficient data placement in such resource het-
erogenic federations is also challenging. Apparently, it may
sound simple: determine the data generator’s location, and
migrate data to the nearest edge server but sometimes, select-
ing nearest edge server or nearest neighbor is never an
effective decision.

This simple approach ignores the following major factors.
First, it does not consider the time to store the data, which
is dependent on the availability of resources such as storage
bandwidth and network connectivity between the edge server
and data generator. Second, it does not guarantee the effective
utilization of resources across the federated geo-distributed
edge servers. For example, the edge server equipped with
high storage bandwidth may stay idle because it is not
adjacent to data generator. Third, it is not smart enough to
consider the post-storage processing such as analysis of the
stored data that is among the primary demands of big data.
Fourth, it only uses the single edge server for job completion.
These requirements raise the need of federated namespace
that can facilitate the efficient data placement and analysis in
the federated geo-distributed edge servers. Another challenge
in federation is data migration across the edge servers. When
an analysis is requested on datasets stored on two different
edge servers, then datasets need to be aggregated on single
edge server to run analysis. Such frequent data migration
operations through federation namespace elevates the federa-
tion performance overhead. The direct channel datamigration
can be employed [6].

In this paper, we prototyped the federated file system iStore
in order to address the significant challenges of federation

file systems. iStore provides global namespace which can
unify geo-distributed edge servers. iStore provides optimal
data placement and analysis in the federation by considering
the resource configurations of federated geo-distributed edge
servers.

This paper makes the following specific contributions:

• We prototype iStore, a federation file system that
provides a global unified namespace by merging dif-
ferent geo-distributed edge servers connected via high-
speed networks such as terabits network infrastructure
in DOE’s ESnet [6], [13]. The aggregate storage names-
pace (ASN ) is responsible to enable this virtual unifi-
cation of different mounted edge servers into a single
federation.

• We propose a generic job and resource-aware data
storage and placement algorithm (JRAP), which com-
putes optimal edge server with minimal job execution
time (JET) for the job requests received via federation
namespace. JRAP takes into account resource availabil-
ity at each edge server participating in the federation and
estimate JET at runtime to map the request to the best
edge server in the federation.

• We equip iStore with a batch-based metadata approach
to minimize metadata overhead and direct channel data
migration (DCM ) technique to improve data transfer in
federated edge servers.

• To evaluate iStore, we build two federations, i) homo-
geneous resource configurations and ii) heterogeneous
resource configurations at the edge servers. We execute
various big data applications to show the performance
of iStore on a real testbed. We also evaluate JRAP algo-
rithm by simulation and on the real testbed to show the
efficacy of the efficient placement and analysis.

II. RELATED WORK
There are few federation file systems that are developed
targeting specific requirements, applications and particu-
lar areas. The parallel and distributed file systems such as
Ceph [14], Gluster [15] and Lustre [16] are designed for a
single-site installations, i.e. only for a single cluster. Grid
Data Farm (GFarm) [7], Xtreem File System (XtreemFS) [8]
andHDFS [12] are specifically designed for petascale storage
and computing. SPANStore [17] introduces a geo-replicated
storage service that focuses on the cost-effectivenss and deliv-
ering the key-value store service. GBFS [18] offers aggregate
storage over wide-area network via grouping file systems.
However, none of them are intended to provide the aggregated
and unified view of file systems dispersed across data centers.
Another study includes FedFS [10] and iRods [9], an object-
oriented rule-based storage system which provides virtual
data abstraction along with the workflow automation. These
systems are limited to remote memory communications, and
cannot aggregate all resources of the remote data center.

The majority of federation file systems as mentioned
in [2] practice random placement, whereas random placement

VOLUME 7, 2019 65653



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

is always not an efficient solution and such techniques
incur both additional performance overhead and data migra-
tion cost. Additionally, implementing a flexible placement
is quite complex, as it requires complete knowledge and
design insight of file system under consideration. Several
studies have shown interest in data-placement and data-
migration approaches. IFogStor [19] implements a resource-
aware placement methodology for IoT data placement. The
data-migration based approaches [20]–[22] focus on migrat-
ing data with minimizing cost, whereas data-placement
approaches [23]–[26] minimize the data movement instead
of the data movement cost. Cho et al. proposed a migration-
based method Pandora [20] a cost-aware model that trans-
fers bulk data into the cloud, via both Internet and physical
shipment of data. Other related studies investigating opti-
mal placement problems have been addressed in [6], [27].
Yuan et al. [24] studied a data placement-based approach
for scientific workflows. Few studies have shown impor-
tance of data locality and placement in Hadoop [28], [29].
Agarwal et al. [25] propose an automated data placement
mechanism Volley for geo-distributed cloud services.

Apart from these, there are very few studies that have
conducted on scavenging existing available resources such as
desktop and server machines. FreeLoader [30] and Pado [31]
introduce the notion of scavenging existing resources to
suffice additional capacity and analytical demands. Major
limitations of using NFS mount at the edge servers are
the load-distribution and job-awareness. A single names-
pace or aggregated view of multiple NFS mount points at the
single edge is not possible. Furthermore, the type of file sys-
tem to be aggregated in federation is considered as the same,
which we believe to be a limitation in the existing federation.
Moreover, rules and policies are important in the federation
where, certain users and groups are assigned specific priv-
ileges to use federation. iRODS [9] is the only federation
providing automated workflow based on rules and policies.
In order to adopt these federation file system the legacy data,
application and architectural changes are required.

We envision iStore as a generic federation file system
which can federate multiple different geo-distributed edge
server file systems and provides optimal data placement and
analysis along with direct edge server to edge server transfer.
Moreover, iStore follows posix semantics and can be adopted
atop of existing posix-compliant file systems without requir-
ing any significant application or architectural change.

There are several key differences in our study as compared
to existing federation file systems. First, existing optimiza-
tion studies target cloud and not the federation environment.
Second, most of the existing studies never spotlight the
challenges of global namespace for federated geo-distributed
edge servers with different file systems. Third, we consider
optimal data placement and analysis based on job type,
rules and available resources. Fourth, direct-channel data
migration is not considered in existing federations design.
Fifth, metadata-batching scheme is never explored before in
federations.

III. iStore: FEDERATION FILE SYSTEM
In this section, we discuss our key design principles.

A. GOALS
1) GLOBAL NAMESPACE
The key design goal is to prototype a generic POSIX-
compliant global namespace that can federate edge servers
with different file systems requiring insignificant or no mod-
ifications in existing data, applications, software and under-
lying architectures.

2) RESOURCE AGGREGATION & DATA COUPLING
The edge servers partaking in the federation can throw in
their resources to jobs running on other edge servers in order
to optimize the job completion time. For example, if feder-
ation allows storage of data on multiple edge servers, then
edge servers share their storage resources to improve job
completion time. Similarly, analysis applications running on
dedicated edge servers might require coupling multi-edge
server sprayed data onto a single edge server. Such resource
aggregation and data coupling concept can be considered but
it needs detail monitoring of resources at each edge server.

3) JOB ALLOCATION MODEL (PLACEMENT AND ANALYSIS)
The efficient job allocation is significant in enhancing the
overall performance of federation. The job allocation mainly
depends on job type and availability of resources to perform
desired tasks. For example, in the case of data placement
request, it is necessary to consider an edge server with high
storage bandwidth regardless of its CPU power. Moreover,
if the job demands both storage and immediate analysis,
a suitable combination of both storage and CPU power can
complete the job in minimum time. We consider the job
classification as an important design aspect of iStore.

4) RULES AND POLICIES IN FEDERATIONS
The rules and policies in a federation are not only meant to
limit the data access rights but are used for different purposes
such as data categorization and workflow automation [9].
For example, consider a federation with 10 edge servers
{ES1,ES2, . . . ,ES10}, where a workflow rule is implemented
that, only {ES1,ES2} can execute analytical applications
because they are equipped with high computation power.
To target such particular demands, we consider rules and
policies in our design goal.

5) EFFECTIVE DATA MIGRATION
The data migration can affect the job completion time
when data has to be aggregated or migrated across different
edge servers. Considering the scenario of analysis between
two isolated datasets stored in different edge servers in
the federation. We need to migrate the datasets to one of
the edge servers. First, we need to consider the best edge
server that can complete the job in minimal execution time.

65654 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 1. Overview of the prototype federated file system iStore.

Second, whether data has to be migrated via the federation
namespace or directly between edge servers.

B. OVERVIEW
Figure 1 shows the architectural overview of iStore. The
iStore prototype aggregates geo-located edge server con-
nected via high-speed terabit network at a single mount point
thereby, facilitating data sharing to enhance collaborations for
effective analytics. The shim layer ASN is responsible for
equipping iStore with POSIX-compliance federation and for
providing file system operations interface. The file systems at
the geo-distributed edge servers are mounted onto data gener-
ator via Linux NFS [32] and ASN can thus, unify all mounted
edge server under a single namespace. This unification builds
virtual abstraction which keeps the users unaware of the
actual data location and underlying storage architectures.
In order to facilitate file-to-location mapping, we designed a
metadata manager which records all the federation metadata
such as resource statistics at each edge server, operations and
requests received via federation namespace. The metadata
manager is shown in Figure 1 at ASN tier. The optimal data
storage and placement component stand next to ASN and
metadata manager.

AsASN catches the incoming job request, JRAP is invoked
in order to execute job at the best suitable edge server with
minimum job execution time. JRAP computes the optimal
edge server based on job type and resource availability at
each edge server in federation. JRAP takes into account the
available storage capacity, storage bandwidth, computational
power and network bandwidth for computing the optimal
edge server. The resource monitor manager runs as a daemon
on each of the edge server and provides current resource
values to JRAP for optimal decision-making. Moreover,
JRAP also considers the rules and policies defined in meta-
data manager regarding the workflow in federation. In order

TABLE 1. Job categorizations for big data applications.

TABLE 2. Summary of notations used in model formulation.

to further optimize the job execution time, JRAP equips
iStore with parallel placement and analysis ability which
requires resource aggregation from the other edge servers in
the federation. Our JRAPmodel is generic and can be adopted
by any existing federation file systems. The DCM is shown
in Figure 1 alongside JRAP which enables direct channel
data migration across edge servers in federation. When data
needs to be migrated, JRAP triggers the DCM service on
source edge server to migrate dataset to destination edge
server without involving federation namespace. We claim
such direct channel migration is highly efficient as compared
data migration via federation namespace.

IV. JOB AND RESOURCE-AWARE REQUEST PLACEMENT
In this section, we present our job classification, system
model and algorithm for optimal data storage and placement
in federated geo-distributed edge servers.

A. JOB CLASSIFICATION
While big data is now in vogue, many organizations are
using the private cloud federations for their applications. Each
application has different job request based on their function-
alities, thus it changes the patterns of data processing. Some
applications require immediate analysis on generated data
while others are more focused on investigating legacy data.
Therefore, we divide the job requests into three categories as
shown in Table 1.

In rest of the paper, we use EE, PO and AO to refer these
jobs.

B. SYSTEM MODEL
For the convenience of the readers, major notations
used in this paper are listed in Table 2. We consider
a private network consisting of set of geo-distributed
edge servers ES = {ES1,ES2, . . . ,ESn} and a set of
data generators (e.g., weather sensing satellites) DG =

{DG1,DG2, . . . ,DGn} that are continuously generating large
volumes of data. The data generator connects to the edge

VOLUME 7, 2019 65655



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 2. An illustration of edge servers in federation.

server via dedicated high bandwidth network with S VPN
switches at the user side and S’ VPN switches each collocated
with an edge server.

Figure 2 provides an overview of our network design,
which is modeled as an undirected weighted graph G =
(N ,E,W ), where N denotes the set of nodes N =

{DGi ∈ DG, s ∈ S, s′ ∈ S ′,ESj ∈ ES}, E is a set of edges that
connects two distinct nodes and W(e) denotes the weight of
an edge e. Weight can be the amount of time taken to transfer
one slice of data from one node to another.

JRAP exploits the benefits of parallel processing and splits
the data across multiple edge servers ensuring the optimal
time. Splitting the data across all the edge servers in the
private cloud may give a minimum job execution time how-
ever it increases the migration and metadata management
overheads. Therefore, we introduced a parameter β, which
is a positive real number (β ∈ R+) controlling the number of
edge servers used for particular request. Our algorithm finds
the set of β number of optimal edge servers. The workload is
distributed among edge servers proportionally based on the
resources of each edge server. Specifically, the edge server
with powerful resources gets the maximum share of work-
load. Note that β is defined by the data generator based on
their requirement. For example, β = 1 means user wants all
the data to be stored in single edge server.

1) TRANSFER TIME
Consider the data generatorDGi wants to send the xij amount
of data to edge server ESj. Let αk be the size of slice and p
be the number of slices needed to be transferred from data
generator DGi to edge server ESj. The time taken to transfer
one slice of data fromDGi to ESj is denoted as nij. Therefore,
the transfer time ttrij to send xij amount of data from DGi to
ESj is represented as ttrij = p.nij.

ttrij = p.nij (1)

JRAP utilizes the parallel processing and consequently
the data are simultaneously transferred to β edge servers.

The overall transfer time is given as:

ttr = max(ttrij , ttrik , . . . , ttriβ ) (2)

2) STORAGE TIME
It is an important factor to be considered in choosing the edge
server for data placement. Let’s consider sj is the time taken
to store one slice of data by edge server ESj. The storage time
to store xij amount of data by ESj data is denoted as tst j = p.sj.
The overall storage time is represented as:

tst = max(tstj , tstk , . . . , tstβ ) (3)

3) ANALYSIS TIME
The server with a high computation power is more likely to
be chosen for data analysis. Let rj be the time taken to analyze
one slice of data and p be the number of slices needed to be
analyzed. The analysis time to analyze xij amount of data by
ESj is represented as tanj = p.rj.
The overall analysis time is represented as:

tan = max(tanj , tank , . . . , tanβ ) (4)

Note that in current scope of study, we consider simple
application scenarios and analysis time is estimated based
on history knowledge of the application. Therefore, anal-
ysis time of many common big data applications such as
Grep (GR) and Group-by Aggregation (GAG) can be esti-
mated based on data size and CPU performance.

C. JOB ALLOCATION MODEL
In this section, we present our approach for managing all the
three categories of job requests.

1) END-TO-END PLACEMENT AND ANALYSIS (EE)
This type of job requires both data placement and immediate
analysis on generated data. Therefore, we try to optimize the
data storage and analysis considering the combination of data
routing, data storage and analysis constraints. We use the Job
Execution Time (JET) of a data processing request as a metric
of selecting a set of optimal edge servers. A straightforward
way to reduce JET is by deploying the high-speed network
between the data generator and edge server. For example,
DOE’s ESnet currently supports 100 Gb/s between DOE
facilities, and in future deployments will most likely support
400 Gb/s followed by 1 Tb/s [13]. However, these network
improvements only increase the latency of data transferring
process, not end-to-end data placement and analysis time.
Therefore, the storage bandwidth and computational power
of edge server also play a vital role in achieving the min-
imum JET. In addition, JRAP also needs to consider the
current workload and the availability of resources in the
edge server. Technically, the edge server with less available
resources yields high JET as compared to the edge server with
maximum available resources such as storage bandwidth,
storage capacity and computational power.

Assume the data generator DGi ∈ DG has initiated an EE
request at a certain period. The total JET to be minimized

65656 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

has three components: transfer time ttr , storage time tst and
analysis time tan. Recall that ttr is the data transfer time from
data generator to edge server, tst is the data storage time taken
by edge server and tan is data analysis time. Putting these
times together, we can get the cumulative job execution time
of ESj.

JETESj = max(ttrij , tst j )+ tanj (5)

Here, max(ttrij , tst j ) represents the data placement time.
Since we use slice as a unit in data processing, edge server
begins writing operation as soon as it receives the first slice.
Therefore, to avoid time overlap we use the maximum of the
transfer time and storage time.
Parallel Data Placement and Analysis: Our objective

function is to determine a set of optimal edge servers that
minimizes the overall job execution time. Therefore, our
algorithm splits the data across multiple data centers ensuring
the optimal time. Splitting the data across all the edge servers
in the private cloud may give a minimum data placement time
however it increases the migration and metadata manage-
ment overheads. Thus, we introduced a parameter β, which
controls the number of edge servers used for particular job
request. Our algorithm finds the set of β number of optimal
edge servers and the data is distributed among data centers
proportionally based on the resources of data center. Note that
β is defined by the data generator based on their requirement.
The overall JET of job request is themaximum JET consumed
by any edge server. We can represent it as:

JET = max(JETES1 , JETES2 , . . . , JETESβ ) (6)

2) DATA PLACEMENT ONLY (PO)
In most big data applications, the data is produced contin-
uously from different geographical locations and analysis is
not pre-defined. We next design a model that automates the
data placement only (PO) job requests by exploiting the same
parallel processing.

The data placement time tpl at ESj can be formulated as:
tplj = max(ttr , tst ). Since the data request is sent to each
edge server simultaneously. Therefore, the maximum data
placement time consumed by any edge server considered as
aggregated Tpl . We can represent it as:

Tpl = max(tpl1 , tpl2 , . . . , tplβ ) (7)

3) DATA ANALYSIS ONLY (AO)
For data analysis only jobs, we adopt an on-site analysis
technique, whose basic idea is to perform analysis on the
same edge server unless migrating data to any other edge
server improves analysis time. Therefore, the data migration
occurs only in two cases: (1) Data center ESj does not have
any computation power, and (2) The data fromESj is migrated
to ESk if tanj > (tmijk + tank ). Here tanj is analysis time on ESj,
tmijk is migration time from ESj to ESk and tank is analysis
time on ESk . The migration time can be seen as Tpl , the only
difference is ttr depends on network bandwidth between edge
servers instead of data generator to edge servers.

Algorithm 1 Job and Resource-Aware Placement
Algorithm
Input: DG, list of data generator; ES, list of edge
servers; xij, requested data size; β, number of edge
servers used for data placement, JT , Job Type
Output: ESoptset , Optimal edge server set
.

1 ESsort ← sort.ES(JETESj , JT ) /*sort ES list by Job
Execution Time*/

2 EScandopt ← ESsorti=1 toβ /*optimal set contains first β
edge servers from sorted list*/

3 allocate.size(EScandopt )
4 notifyresourceusage(EScandopt )
5 EScandopt .JET = ComputeJET (EScandopt,JT )
6 findopt = false
7 while findopt 6= true do
8 for each ESj in EScandopt do
9 if ES.availabcap > allocate.size then

10 JETopt ← JET
11 ESoptset ← EScandopt
12 findopt = true
13 end
14 JET = ComputeJET (EScandoptsize )
15 ESvictim← EScandopt .pop() /*pop ES which does

not have required available capacity*/
16 EScandopt ← ESsort .push() /*push next ES in

EScandopt from sorted list*/
17 JETnew = ComputeJET (EScandopt )
18 if JETnew < JET then
19 JETopt ← JETnew
20 ESoptset ← EScandopt
21 findopt = true
22 end
23 end
24 end
25 return ESoptset

The total analysis time Tan of ESk can be formulated as:

Tank = tmijk + tank (8)

In the case of on-site analysis tmi = 0. Similar to aggre-
gated Tpl , we can compute aggregated analysis time Taggan of
job request performed by n number of edge servers:

Taggan = max(Tan1 ,Tan2 , . . . ,Tanβ ) (9)

D. JOB AND RESOURCE-AWARE PLACEMENT ALGORITHM
In this section, we present our job-aware algorithm
(Algorithm 1) that can manage each job based on their type.
To simplify the presentation, we consider EE job category
in the following description and pseudocode. Our algorithm,
determines the β number of optimal edge servers for each
EE request given complete knowledge of data generation in
both spatial and temporal domains. The decision making of

VOLUME 7, 2019 65657



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

algorithm depends on the current resource availability at each
edge server. At first, algorithm sorts the edge servers based
on the JETESj of each edge server and generates the candidate
optimal set EScandopt by taking first β edge servers from the
sorted list. We then distribute the data among the edge servers
based on the resources of each edge server and compute
the optimal JETopt . However, this EScandopt and JETopt may
not remain valid if any of the edge server in EScandopt has
less available storage capacity than the allocated data size.
In such cases, the algorithm assigns the remaining data to
other edge servers in candidate list and re-calculate the Tpl .
Then, EScandopt is updated by discarding the edge server with
less available capacity and inserting next edge server from
the sorted list. We compute the JETnew of updated EScandopt .
Algorithm checks if JETnew < JET then, we update our
JETopt and ESoptset set. Eventually, the algorithm terminates
by returning ESoptset with minimum JET.
The Algorithm 1 considers the EE jobs, however, it can

be adapted with minor modification for PO and AO jobs.
For PO, first EScandopt is computed by sorting the edge
servers based on tpl and then we use the formula presented in
equation (7) to compute the minimum data placement time.
Similarly, for AO, to choose the edge server for migration,
we simply sort the edge servers based on Tan and then, use
the equation (9) to compute the Taggan .

E. EXTENSION TO DYNAMIC JRAP
Our current JRAP uses the static model whichmade decisions
based on the information available at the time of job arrival.
Our proposed technique can be easily extended for dynamic
model where decision can be changed in the middle of the
job execution, if needed. Consider a scenario, when JRAP
receives a job job2 at that time the most powerful server
ES1 was occupied with job1 and therefore JRAP sends it to
next best available server ES2. After a while, the ES1 has fin-
ished job1 and now JRAP will shift the job2 from ES2 to ES1
if it improves the overall job execution time.

The resource monitor manager (RMM) notifies the
resource availability to JRAP when a job execution is com-
pleted on any of the edge servers. Consider ESm finishes the
job which increases its available resources. JRAP will check
the if it can transfer any current job in progress from other
server ESn to ESm that improves the overall JET which is
computed using equation (6). The overall JET will only be
improved if following condition is satisfied.

JETESm + tminm < Rem.JETESn (10)

Here tminm is the migration cost of data from ESn to ESm
and Rem.JETESn is the remaining JET of ESn to complete the
job. We maintain a job queue in the MDM, which contains
the metadata of each job, i.e., the servers participating in
the job, percentage of workload share given to each edge
server. A simple job progress monitor can be integrated to
manage job progress of each edge server against the job by
adding start and end time of job. The migration cost incurs
because β is defined at the start of the job therefore data has to

be migrated from ESn to ESm to maintain the exact β number
of servers involved in the job execution. The following two
points are important in dynamic decision making of JRAP.
First, the edge server ESm most likely be assigned to the job
that is in initial phase of execution. Therefore, we maintain
a job queue and JRAP starts examining the job from most
recent because generally the jobs at the end of the queue are
already near completion and may require higher migration
cost. Secondly, ESm takes over the job from the weakest
server among β. Hence, JRAP just compares the last edge
server ESβ with the available edge server ESm.
Note that, the JRAP extension algorithm is suitable for end-

to-end (EE) and placement-only (PO) only jobs. It is because
additional migration cost on already stored data can slow
down analysis job, resulting in higher JET than expected.

V. DESIGN AND IMPLEMENTATION
In this section, we describe our rationale behind the ASN
design and implementation, batch-based metadata man-
ager (MDM), data storage and placement manager (JRAP),
direct channel data migrator (DCM) and finally, resource
monitor manager (RMM).

A. ASN: AGGREGATE STORAGE NAMESPACE
We prototyped aggregate storage namespace (ASN) in
FUSE’s high-level API v2.9.4 [33], [34]. File System in
Userspace (FUSE) is the most widely used framework
to prototype and evaluate new approaches to file system
design [33]. We studied FUSE’s high-level design, inter-
nal architecture and implementation in detail. FUSE has
evolved over the time and various optimizations are being
added to FUSE such as big_reads and big_writes, single and
multi-thread mode. To best of our knowledge, the latest FUSE
library can utilize max_writes, writeback-cache, and splicing
features [33].

We implemented all the basic file system operations in
ASN such as init, access, create, getattr, mkdir, read, readdir,
write and other essential functions. When iStore is mounted,
asn_init is the first method to execute. The metadata manager
node address is supplied to iStore at mount time as an argu-
ment. asn_initfirst checks themetadata manager service is up
and running, then it initiates a request to metadata manager to
provide a list of contributing edge servers in federation with
their complete configurations. After receiving the response
frommetadatamanager, asn_initfills its private data structure
to keep the list of edge servers contributing in iStore federa-
tion. On the contrary, the asn_destroy initiates the unmount
request and releases all the occupied resources. Themetadata-
oriented methods like asn_create and asn_open, all require
metadata manager assistance in order to get the file location
in the federation, i.e., which edge server contains the file.
When data-oriented methods such as asn_write is invoked,
only a 4KB of data is sent to the user daemon for writing
but when big_writes optimization parameter is passed as an
argument to iStore, then bigger chunks of data are sent to
the user daemon. This chunk size value is configured in

65658 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FUSE configuration file with key as max_writes. We used
max_writes of size 1MB in order to observe better and consis-
tent performance throughout our implementation and evalua-
tion. To further improve FUSE performance, we believe that
host-side caching based on SSDs can be taken into account
but we did not consider in iStore prototype implementation
because the goal of our study is to highlight the significance
of various features in the federation which previous studies
did not consider in their design.

B. MDM: METADATA MANAGER
The metadata manager (MDM) in the iStore design is of
vital importance. First, it interacts with almost all the iStore
components. Secondly, all requests received via the iStore
federation namespace require assistance from the MDM to
complete the operations. Thirdly, the federation metadata
statistics such as the total no. of edge servers, their default
resource configurations are maintained by the MDM.

We implemented MDM using gRPC, a high perfor-
mance, open-source, multi-platform, language neutral RPC
framework for developing distributed applications and ser-
vices [35]. MDM is defined as a gRPC service, speci-
fying the methods that can be called remotely by ASN.
gRPC uses Google protocol buffers (Protobuf) for under-
lying the message interchange format [35]. Protobuf is
Google’s open source mechanism for serializing structured
data [36]. We defined standardized messaging format in
Protobuf for communication among all the components.
The file system metadata e.g., stat, size, date are main-
tained by the file system. We keep only edge server and
file mapping in MDM. The important methods imple-
mented in MDM service includes, init_istore, create_md,
rm_md, create_batchmd. Here, create and remove are simple
metadata operations similar to other metadata management
approaches whereas, create_batchmd is not explored in fed-
erations before. Our batch-based scheme hold the metadata-
related I/Os in memory upto a certain limit, which we call
batch_size. All I/O requests are buffered until the batch_size
is reached. Once the batch threshold exceeds, single query
is sent to MDM with multi-valued insert thus reducing the
contention which can be incurred by using one-to-one remote
connections to MDM for each request. The Algorithm 2
shows the proposed batch-based metadata flush algorithm.
However, there is a certain fault-tolerance issue interrelated to
this batch-based scheme but we believe that can be remedied
by employing persistent memory storage architectures such
as Flash or PRAM.

To the storage end of MDM, we used SQLite,
a lightweight, public domain C library that does not require
any configuration, can easily be embedded into an appli-
cation, supports databases up to two terabytes in size [37].
It is the best choice to use SQLite API in our research
because of its simplicity and support for public domain sta-
tus. MDM design comprises of multiple relational schemas,
each responsible for holding different kind of information.
We used multiple schemas in order to manage information

Algorithm 2 Batch-Based Metadata Flush Algorithm
Input: WIO, new incoming Write I/O; CB, current batch
data structure; CT , current time of IO request arrival
Output: Flushdecision /*Decision to flush batch*/
.

1 SBS← loadConfigs() /* batch size threshold for
metadata */

2 BT ← loadConfigs() /* batch time threshold for
metadata */

3 Flushdecision← false
4 Timecheck ← 0
5 CB.add(WIO)
6 if CB.size() >= SBS.size() then
7 Flushdecision← true /*if size is equal to batch size*/
8 end
9 else

10 Timecheck ← CT − CB.time()
11 if Timecheck >= BT .time() then
12 Flushdecision← true /*if time is equal to batch

time */
13 end
14 end
15 return Flushdecision

properly and to reduce query contention on single schema.
Moreover, our MDM requires minimal modifications to offer
searchable federation namespace. The existing studies have
shown the needs of searchable namespace in large scale
storage systems [38]–[40].

C. JRAP: DATA STORAGE AND PLACEMENT MANAGER
The JRAP manager is responsible to control and balance
the data flow in federation. JRAP manager depends on few
parameters for computing the optimal edge server at runtime.
The parameter includes job type, available capacity, storage,
computation and network bandwidth. The latest resource val-
ues are provided by the resource monitor manager running on
each edge server in federation. Once all values are provided
to JRAP as input, JRAP first filters the edge server list based
on job type and available capacity. Then JRAP computes the
job execution time (JET) on the filtered edge server list. The
JRAP output is optimal edge server with minimum job execu-
tion time. The output is sent to metadata manager to store the
file and its location. The JRAP manager is implemented as
part of ASN, where all data related-operation create, write
and read consult JRAP to provide edge server, which can
complete job in minimum time. The JRAP manager imple-
ments the Algorithm 1. The details of algorithm and JRAP
decision-making is presented in Section IV.

D. DCM: DIRECT CHANNEL MIGRATOR
The direct channel migrator (DCM) is accountable for data
migration job across edge servers in the federation. The
principal goal to develop direct channel data migration is to

VOLUME 7, 2019 65659



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 3. An illustration of data transfer round trip. (a) Data migration
without DCM. (b) Data migration with DCM.

optimize the task completion time. For example, in order to
execute analysis on an edge server with high computation
power, the data first needs to be migrated to that edge server
as shown in Figure 3 (a). Such cases are likely when data is
stored recognizing placement only job. As, placement only
job takes into account storage capacity and storage band-
width, ignoring computation power. In such data migration
scenarios, data is read through the ASN layer, comprising of
FUSE-based implementation which slowers the data migra-
tion and then, again stored on the edge server responsible
to run analysis via the ASN layer. However, we propose to
integrate a direct channel data migrator (DCM) in iStore to
minimize such ASN layer overhead. In DCM, all edge servers
are in contract to communicate and share data with each other
at the backend, i.e., bypassing ASN layer to expedite data
migration as shown in Figure 3 (b).

We implemented DCM using C/C++ and integrated it
with data storage and placement (JRAP) manager. Whenever
JRAP detects any sort of data migration requirement, it trig-
gers DCM service on source with a complete request format.
A simple request includes, file location, file offset, transfer
size, destination. We designed DCM based on the idea of
layout-aware data transfer proposed in the study [6]. DCM
is multi-threaded implementation, It consists of two major
components, i.e., dcm_src is the source edge server which
needs to transfer data whereas, dcm_dest is the destination
edge server on which data is going to be stored or analyzed.
DCMblocks all the update operations on data beingmigrated.

E. RMM: RESOURCE MONITOR MANAGER
The resource monitor manager is implemented for the
purpose of collecting the snapshot of available resources.

JRAP is highly dependent on RMM for providing the
resource availabilities. RMM collects the snapshot in two
modes, i) Time interval and ii) On-Demand. The reason for
using time interval is to ensure the status of edge server in
Federation. RMM based on certain time-interval notifies the
MDM about the active edge servers. In case, any edge server
leaves the Federation due to failure, RMM notifies the MDM
to exclude failed edge server from the list used by JRAP
algorithm. Whereas, On-Demand mode is used on arrival of
any request. RMM is invoked and latest available resources
are collected.

VI. EVALUATION
We now detail our evaluation methodology for the proposed
system.

A. EVALUATION SETUP
1) TESTBEDS
We evaluated iStore on two different testbeds shown
in Table 3. The Testbed I comprises of four nodes each
with disk bandwidth of 81MB/s, 16 Cores x 2.60GHz, RAM
32GB and connected via Infiniband (56 Gb/s). In order to
spotlight proposed optimization features, we constructed a
small private cloud federation using four desktops machines
with varying resource configurations at each machine shown
as Testbed II in Table 3. Each machine is considered as a geo-
distributed edge server. The edge servers are mounted at the
data generator using Linux NFS [32]. We build an Ext4 [41]
federation via iStore federation file system prototype. There
are two reasons to use the Ext4 file system federation. First,
we have a limited small-scale testbed environment and sec-
ond, it is common, stable, and has a well-documented design
that facilitates performance analysis. Before every experi-
ment, we drop system cache and re-mount the iStore. For
the evaluation of JRAP for large-scale edge servers environ-
ment, we developed a iStore simulation framework written
in C/C++ and performed a set of simulations. A detailed
description of the iStore emulator is provided later.

2) WORKLOADS
To fairly evaluate our prototype iStore federation, we used
four realistic big data applications.

TABLE 3. Testbed configurations. Testbed I is homogenous and Testbed II is heterogeneous. In table, capacity, S. Bw, and IB denote storage capacity,
storage bandwidth, and Infiniband network connection.

65660 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 4. iStore aggregate storage namespace overhead with baseline
NFS for various big data applications with β = 1. (a) Testbed I.
(b) Testbed II.

• Group-by Aggregation (GAG) computes the statistical
summary based on the certain group, e.g., the total sum
and average hourly temperature datasets based on the city.
Each line of the input file is composed of country, city, date
and hourly temperature. The calculations are performed by
grouping them based on the city name.
• Aggregation (AG) works similar to GAG, but it calculates

the global statistical summary instead of taking the certain
group into account, i.e., not based on city or any other
group by value.We implementedAGby slightlymodifying
the GAG code.
• Grep (GR) is a string matching application that print lines

containing a specific keyword from the input dataset.
• Word-Count (WC) counts the total bytes, characters and

words, in the dataset.

The computational power of each edge server is considered
to be heavily dependent on the workload type. For example,
a simple application such as word count does not consume
much of computational resources (i.e., CPU cycles) and takes
less analysis time whereas complex applications such as
image processing consume computational bandwidth of the
system. In this experiment, we used weather data of different
cities in the United States containing hourly readings of tem-
perature, wind speed and humidity for past 3 years. To ensure
the accuracy of results, we reiterated each of our experiment
5 times and measured the average of results. The analysis
time of abovementioned applications with different data sizes
were pre-collected and stored in MDM.

B. PERFORMANCE ANALYSIS
To show the overhead of iStore ASN layer on top of
Linux NFS [32], we defined an end-to-end placement and

analysis workflow i.e., from data generation to data analysis.
At first, we examined Word-Count (WC) application. The
WC is a simple application that counts the total number
of words in a given dataset. We used a data set of 40GB
for this application. We measured storage and computational
bandwidth of NFS and set it as performance baseline. Then,
we measure ASN performance for both storage and analy-
sis. The experiment shows overhead caused by ASN on top
of geo-distributed edge servers in Figure 4(a). The results
encountered near baseline performance with a negligible
overhead in both storage and analysis for theWC application.
Aggregation (AG) being a littlemore complex thanWCappli-
cation aggregates all the data based on the certain parameter.
For AG we supplied a workload size of 55GB. We observed a
uniform ratio of storage and analysis overhead in Figure 4(a)
for ASN and NFS.

To target compute-intensive applications, we consider
GREP (GR), textual searching or string matching in
big datasets based on given parameter. The GR can be
high resource-intensive if the number of matching pattern
increases in dataset. We analyzed GR with 20GB of work-
load. Our results reflected the exact traces of WC and AG
near baseline performance with minimal overhead. To further
investigate the overhead, we raise the compute intensity to
a significantly high level by running the Group-by Aggre-
gation (GAG) application. The GAG is an extended style
of AG where all dataset is not grossed but the data set is
grouped based on certain parameters provided. We adopted a
workload of 70GB to evaluate GAG. The experimental results
in Figure 4(a) conclude that the overhead caused by aggregate
storage namespace layer is quite negligible and application
complexity does not impact the overhead, however, the over-
head can vary linearly with increasing workload size.

Next, we discuss the big data application runtime with
respect to different edge server configurations as shown
in Figure 4(b). ES2 is more powerful in terms of computa-
tional power, as presented in Table 3. However, the overall
JET is higher than ES1 because of slower network bandwidth
causing huge latency in placement and analysis. Although
ES3 is equipped with SSD and has high storage bandwidth,
experimental results shows that ES3 performs the worst due
poor computational power and network bandwidth. These
result can also be validated from Table 4, note that ES2 is opti-
mal edge server while considering only CP whereas ES3 is

TABLE 4. Job execution time and optimal data placement with various combination of resources for each big data application with β = 1. The results in
parenthesis shows the second optimal edge server.

VOLUME 7, 2019 65661



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 5. Analysis only jobs in workflow defined federation evaluated
on Testbed-II with and without DCM.

optimal in case of SB, but both these edge servers have high
JET than ES1.
ES1 and ES4 share same storage and network bandwidth,

however because of less computational resource availability
ES4 showed quite disturbing JET, when it is compared to ES1.
As we discussed earlier, there is light-weight daemon run-
ning on each edge server monitoring latest job execution
status to UniMD. These statistics about edge servers are then
gathered by uni-data placement at runtime. At that particular
instance of time, resource utilization at ES4 was at peak
and uni-data placement agent dis-regarded ES4 to be more
efficient thanES1 and gives higher JET thanES1. Table 4, also
reflects the same results, notice that ES1 and ES4 are optimal
while considering (SB, NB) and NB only because both have
same resources. However, due to utilization of computational
power ES1 yields the minimum JET and therefore it is the
optimal ES while considering all resources.

C. DIRECT CHANNEL DATA MIGRATION ANALYSIS
Figure 5 shows the analysis only (AO) job evaluation with
efficient direct channel migration in federation with a cer-
tain workflow rule defined. This experiment is conducted
on 4 nodes of Testbed II. To emulate the federation rules,
we defined a workflow rule in MDM that, the edge servers
ES1 and ES2 can only run analytical jobs in federation
because of high computation power. We first stored 1 GB of
data on each edge server including analytical edge servers,
i.e., ES1 and ES2. We conducted this experiment to show
the effectiveness of DCM in federation. In Figure 5(c)
WC and AG are executed without any migration because they
were already stored on ES1 and ES2, whereas, datasets stored
on ES3 and ES4 has to be migrated to any of the analytical
edge server. The JRAP manager determines the destination
edge servers to migrate datasets to ES1 and ES2 based on
job type and resources. The NoDCM in this experiement
refers to no direct channel data migration and requires data
to be transferred via federation namespace. The datasets first
need to be transfered to the iStore federation client and then
transferred to a specific edge server where analysis will run.
The experimental results depict that, even in small scale
federation, DCM can impact the performance.

TABLE 5. Batch-based metadata evaluation using MDTest [42] evaluated
on Testbed-I. Batch Size refers to number of I/Os aggregated in one batch.

D. BATCH-BASED METADATA EVALUATION
In this section, we present evaluation of proposed batch-
based metadata scheme in iStore prototype federation. This
experiment is conducted on Testbed I. We used MDTest [42]
to evaluate batch-based metadata scheme. We first run the
experiment on Linux NFS and then, evaluate iStore metadata
performance considering Linux NFS as baseline. The eval-
uation results obtained from MDTest are shown in Table 5.
Each result shows the mean value of file operation per second
for total 5 iterations of 16,384 files. The Batch Size in table
refers to number of entries in the batch. The 0% shows
no batch scheme whereas, 25% denotes percentage of I/Os
aggregated in one batch and then, send single request to
metadata manager in form of multi-valued insert query. Sim-
ilarly, 100% shows, that all requests were batched and sin-
gle multi-valued insert query is sent to metadata manager.
Table 5 shows high improvement with batch-based scheme
towards the increasing size of batch. The metadata manager
could only provide almost half of Linux NFS metadata per-
formance, when we used single batch for all the I/Os. The
reason of this degraded performance in batch size 0% and
100% as compared to linux NFS is two folds. First, for every
file create operation, FUSE invokes five operations serially,
getattr, lookup, create, write and flush. Second, user and
kernel space context switching overhead cannot be ignored.

VII. JRAP FOR EDGE SERVERS CLUSTER
For the evaluation of JRAP, we conduct experiments on
both the simulation and real testbed environments. First,
we present the experimental results on the simulation envi-
ronment where we consider a private cluster comprised
of 50 edge servers. Next, we show the experimental results
in real testbed where we intend to deploy a realistic cluster
environment and find the optimal edge server for an end to
end data placement and analysis for different applications.
We investigate the importance of each decision parameter
that is Storage Bandwidth (SB), Network Bandwidth (NB)
and Computational Power (CP) in choosing the optimal edge
server.

1) SIMULATION FRAMEWORK
We developed our JRAP solver using C/C++ language. The
source codes are less than 500 lines of codes. The solver
execution time is extremely short (in milliseconds). All sim-
ulation experiments are performed on a desktop PC with a
Pentium 2.8GHz processor and 4GB memory. We designed
private cluster federation with 50 edge servers, Cluster50.

65662 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 6. Depiction of geo-distributed network connected 50 Edge
Servers.

TABLE 6. Description of federation configurations.

TABLE 7. Job execution time for EE Jobs.

Figure 6 shows a depiction of private cluster Cluster50.
In order to cover various realistic scenarios, we setup edge
servers with different configurations of available capacity,
storage bandwidth, computational power, and network band-
width between data generators. For storage bandwidth, each
edge server can be installed with different number of storage
devices (e.g., HDD and SSD) and storage servers, resulting in
various storage bandwidths. We are measuring computation
power inGB/s, which shows that an edge serverESj is capable
of analyzing certain GB of data in one second. Data centers
are connected to data generators with different network con-
nections varying from 1Tb/s to 1Gb/s. Table 6 presents the
various values of each parameter for configuration of edge
servers.

A. JRAP ANALYSIS IN SIMULATION
Table 7 presents the experimental results for EE job request.
In this experiment, we use three data generators each initi-
ated a data placement and analysis request; DG1 initiated a
Job1 of 1TB, DG2 requested a Job2 of 800GB whereas DG3
requested a Job3 of 500GB after certain time period. For the
ease of presentation, in this experiment we are considering
β = 1 (i.e., single edge server is processing complete job).

Experimental results in Table 7 reveal that JET is minimum
for each job while taking into account all the three resources,
i.e., SB, CP, and NB. When Job1 is executed all the resources
are available at each edge server and ES14 is the optimal edge
server which yields minimum JET. The edge servers that are
powerful in one or two resources may not give minimum JET.
Table 7 shows the ES6 has maximum SB of 50Gb/s but still
it yields more JET than ES14, because of the slow network
connection between data generator and ES6 resulting in high
transfer time ttr . Similarly, ES24 and ES40 are most powerful
in terms of CP and NB, respectively. However, they both have
high JET because of the other weak resources. Now, for Job2
we observe that ES14 is not the optimal server because its
resources are already being utilized by Job1. Therefore, JRAP
returns ES33 optimal for Job2. Note that, for Job3 our model
selects ES28 because it gives minimum JET. It is evident
from the experimental results that each parameter can affect
the decision making of JRAP. Besides optimal decision, our
model also manages the load balancing across edge servers
by monitoring resource utilization.

We now discuss performance evaluation for PO job cate-
gory in our simulation Cluster50 environment. For this exper-
iment we considered a request of 2TB from a data generator
and β is set to 8 by the client.We compare JRAPwith two dif-
ferent data placement strategies. The first strategy is the near-
est neighbor (NN), which places all data to the closest edge
server from the data generator location. The second method
is equal distribution (ED), which randomly selects β edge
servers from the cluster and equally distribute data in β
edge servers irrespective of storage bandwidth. Figure 7(a)
shows the results of our experiment: NN shows the worse
performance as all the data is stored only in one edge server,
whereas ED equally distributes data, resulting in high data
placement time for edge servers with less storage bandwidth.
JRAP intelligently selects optimal β edge servers and dis-
tributes data based on the storage power of each edge server
while ensuring that each edge server store the allocated data
in almost same time. In our experiment, the edge server with
fastest storage bandwidth stores 465GBof data whereas slow-
est get the share of just 94GB of data from 2TB. These results
clearly depict that JRAP outperforms NN and ED methods.

Next, we show the performance evaluation of JRAP for an
AO job request. In this experiment, we consider the analysis
request of 1TB of data, which is distributed among five
edge servers (ES14 = 300GB,ES34 = 150GB,ES19 =
200GB,ES30 = 100GB,ES43 = 250GB). We compare
performance of JRAP with same two approaches presented
above that is NN and ED. In this experiment, theNN approach
aggregates all the data to single ES. The ES is selected
based on the maximum amount of data stored. Figure 7(b)
demonstrate the performance of NN, ED and JRAP approach
for AO job type. The experimental results reveal that NN
shows the worse performance because all the data first aggre-
gated on ES14 (because ES14 stored maximum data 300GB)
and then it performs analysis of entire 1TB of data. ED,
equally distributes data without considering the resources on

VOLUME 7, 2019 65663



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

FIGURE 7. Makespan comparison of JRAP with different job distribution
techniques on Simulation Testbed. (a) PO job request. ESi indicates index
of edge server selected among β edge servers. (b) AO jobs evaluation.

TABLE 8. Description of real testbed federation configurations.

FIGURE 8. Makespan comparison of JRAP with different job distribution
techniques for End-to-End job on Real Testbed. (a) with β edge
servers = 3. (b) with β edge servers = 5.

edge servers, resulting in unnecessarymigration cost and high
analysis time. However, JRAP only migrates the data from
edge servers with low computational power to minimize the
analysis cost. Thus, to reduce the analysis time data fromES19
and ES30 is migrated to ES6 and ES28, respectively.

B. JRAP ANALYSIS IN REALISTIC TESTBED
This experiment was performed on a real testbed comprising
10 edge servers. The edge servers were setup with different
configurations of resources. Table 8 presents various values
of each parameter used to configure edge servers. To evaluate
JRAP with real datasets, we downloaded weather forecast
datasets from ECMWF [43]. The ECMWF provides a vari-
ety of public datasets including operational, reanalysis, and
atmospheric composition [43]. We used 50GB of the oper-
ational dataset with an end-to-end job workflow, i.e., once
dataset storage is completed, GAG application is triggered
immediately on the dataset.

Figure 8 shows the performance evaluation of three data
placement algorithms; nearest neighbor (NN), equal distri-
bution (ED) and JRAP. It is evident from the results that
NN performs the worst because only single edge server
is responsible for placing and analyzing the complete job.
ED performs better than NN as it utilizes the parallel process-
ing by equally distributing the job workload to β number of

FIGURE 9. Performance comparison of various load balancing techniques
with respect to variability of loads across geo-distributed edge servers.
We used Testbed-II in this experiment.

edge servers. However, it chooses the edge servers randomly
and does not consider the resource availability of each edge
server. JRAP outperforms both the algorithms because it
selects the best β edge servers and also it efficiently dis-
tributes the workload based on the storage and computational
power of the edge server. For β = 5, the 12.8GB of data
was processed by the fastest server and 8.1GB of data was
processed by the slowest server. Also, notice that overall JET
for NN is not affected by β because single nearest edge server
is selected to execute the complete job. However, the overall
JET for ED and JRAP is reduced with the increase in β.

C. IMPACT OF LOAD BALANCING IN JRAP
Figure 9 shows the efficacy of the JRAP for balancing loads
across edge servers. For evaluation, we make a job workflow
which runsWC, AG, GR and GAG in order. They are initially
enqueued in the job queue, and each job is dispatched by a
job dispatching algorithm. In order to show the superiority
of the JRAP, we compared our approach with different load
balancing techniques:

• Random distribution (Rand(1)) of workflow (ES1 is
occupied with GAG application, ES4 is executing WC,
GR and AG).
• Random distribution (Rand(2)) of workflow (ES2 is

responsible for running WC, GAG and AG, ES4 is
running GR).
• Nearest Neighbor (NN) (all workflows are running on
ES2). Experimental results depict that JRAP is responsible
for uniformly distributing the workload among the edge
servers.

It can be observed from Figure 9 that JRAP performed sur-
prisingly better in load balancing across cluster. Our results
proved that the makespan of JRAP is 200 times less than
the nearest neighbor approach. Following the same, CV1 of
JRAP is negligible if considered with other load balancing
strategies. This distribution can be explained by CV.

1The coefficient of variation CV is defined as the ratio of the standard
deviation s to the mean m of job loads across edge servers CV = s.

65664 VOLUME 7, 2019



A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

VIII. CONCLUSION AND FUTURE WORK
Massive expansion in data generation is leading towards high
geo-distributed storage and computation demands. Such geo-
located edge servers require federation on top of it to improve
data sharing, collaboration and analytics.We investigated and
showed the important challenges of federation file systems in
particular, global namespace, optimal placement and analy-
sis, data migration and metadata bottleneck. We prototyped
the iStore federation file system to emulate and support the
feasibility of proposed ideas. We evaluated iStore to show the
efficacy of each component via real testbed and simulation
framework. The proposed JRAP, DCM and metadata batch-
scheme improved the overall federation performance.

ACKNOWLEDGMENT
(Awais Khan and Muhammad Attique are co-first authors.)

REFERENCES
[1] IDC. Accessed: Dec. 23, 2018. [Online]. Available: https://www.ibm.

com/blogs/internet-of-things/ai-future-iot/
[2] A. Khan, A.Muhammad, Y. Kim, S. Park, and B. Tak, ‘‘Edgestore: A single

namespace and resource-aware federation file system for edge servers,’’ in
Proc. IEEE Int. Conf. Edge Comput., Jul. 2018, pp. 101–108.

[3] L. Krčál and S.-S. Ho, ‘‘A scidb-based framework for efficient satellite data
storage and query based on dynamic atmospheric event trajectory,’’ inProc.
4th Int. ACM SIGSPATIAL Workshop Anal. Big Geospatial Data, New
York, NY, USA, Nov. 2015, pp. 7–14. doi: 10.1145/2835185.2835190.

[4] C. L. P. Chen and C.-Y. Zhang, ‘‘Data-intensive applications, challenges,
techniques and technologies: A survey on big data,’’ Inf. Sci., vol. 275,
pp. 314–347, Aug. 2014. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0020025514000346

[5] T. J. Skluzacek, K. Chard, and I. Foster, ‘‘Klimatic: A virtual data lake
for harvesting and distribution of geospatial data,’’ in Proc. 1st Joint Int.
Workshop Parallel Data Storage data Intensive Scalable Comput. Syst.,
Nov. 2016, pp. 31–36. doi: 10.1109/PDSW-DISCS.2016.010.

[6] Y. Kim, S. Atchley, and G. R. Vallée, and G. M. Shipman, ‘‘LADS:
Optimizing data transfers using layout-aware data scheduling,’’ in Proc.
13th USENIX Conf. File Storage Technol. , 2015, pp. 67–80.

[7] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, ‘‘Grid
datafarm architecture for petascale data intensive computing,’’ in Proc. 2nd
IEEE/ACM Int. Symp. Cluster Comput. Grid, May 2002, p. 102.

[8] F. Hupfeld et al., ‘‘The XtreemFS architecture—A case for object-based
file systems in grids,’’Concurrency Comput., Pract. Exper., vol. 20, no. 17,
pp. 2049–2060, Dec. 2008. [Online]. Available: http://dblp.uni-trier.de/
db/journals/concurrency/concurrency20.html#HupfeldCKSFHMMC08

[9] A. Rajasekar and R. Moore, IRODS Primer: Integrated Rule-Oriented
Data System (Synthesis Lectures on Information Concepts, Retrieval,
and Services), vol. 2. Morgan and Claypool Publishers, 2010. doi:
10.2200/S00233ED1V01Y200912ICR012.

[10] FedFS.FedFS-Fedoraproject. Accessed:May 1, 2017. [Online]. Available:
https://fedoraproject.org/wiki/Features/FedFS

[11] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Newton,
MA, USA, 2009.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The hadoop
distributed file system,’’ in Proc. 26th Symp. Mass Storage
Syst. Technol., Washington, DC, USA, May 2010, pp. 1–10.
doi: 10.1109/MSST.2010.5496972.

[13] ESnet. Energy Sciences Network (ESnet). Accessed: Dec. 23, 2018.
[Online]. Available: http://www.es.net/

[14] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
‘‘Ceph: A scalable, high-performance distributed file system,’’ in Proc. 7th
Symp. Oper. Syst. Design Implement., Nov. 2006, pp. 307–320.

[15] A. Davies and A. Orsaria, ‘‘Scale out with GlusterFS,’’ Linux J.,
vol. 2013, no. 235, Nov. 2013. Art. no. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2555789.2555790

[16] (2017). Lustre: A Scalable, High-Performance File System. [Online].
Available: http://cse710.blogspot.kr/2013/02/lustre-scalable-high-
performance-file.html

[17] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha,
‘‘Spanstore: Cost-effective geo-replicated storage spanning multiple cloud
services,’’ in Proc. 24th ACM Symp. Oper. Syst. Princ., Nov. 2013,
pp. 292–308.

[18] G. B. Brand and A. Lebre, ‘‘Gbfs: Efficient data-sharing on hybrid
platforms: Towards adding wan-wide elasticity to dfses,’’ in Proc. Int.
Symp. Comput. Archit. High Perform. Comput. Workshop, Oct. 2014,
pp. 126–131.

[19] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, ‘‘iFogStor:
An IoT data placement strategy for fog infrastructure,’’ in Proc. IEEE 1st
Int. Conf. Fog Edge Comput., May 2017, pp. 97–104.

[20] B. Cho and I. Gupta, ‘‘Budget-constrained bulk data transfer via Internet
and shipping networks,’’ in Proc. 8th ACM Int. Conf. Autonomic Com-
put., New York, NY, USA, Jun. 2011, pp. 71–80. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1998582.1998595

[21] W. Hu, W. Sun, Y. Jin, W. Guo, and S. Xiao, ‘‘An efficient trans-
portation architecture for big data movement,’’ in Proc. 9th Int. Conf.
Inf., Commun. Signal Process., Dec. 2013, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6782927

[22] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau, ‘‘Moving big
data to the cloud: An online cost-minimizing approach,’’ IEEE J. Sel. Areas
Commun., vol. 31, no. 12, pp. 2710–2721, Dec. 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6678116

[23] Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing, and C. Yi, ‘‘A data
placement strategy based on genetic algorithm for scientific
workflows,’’ in Proc. 8th Int. Conf. Comput. Intell. Secur.,
Nov. 2012, pp. 146–149. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6405885

[24] D. Yuan, Y. Yang, X. Liu, and J. Chen, ‘‘A data placement strategy in
scientific cloud workflows,’’ Future Gener. Comput. Syst., vol. 26, no. 8,
pp. 1200–1214, Oct. 2010. doi: 10.1016/j.future.2010.02.004.

[25] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
‘‘Volley: Automated data placement for geo-distributed cloud services,’’ in
Proc. 7th USENIX Conf. Netw. Syst. Design Implement., Apr. 2010, p. 2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855711.1855713

[26] P. Teli, M. V. Thomas, and K. Chandrasekaran, ‘‘An efficient approach
for cost optimization of the movement of big data,’’ Open J. Big
Data (OJBD), vol. 1, no. 1, pp. 4–15, 2015. [Online]. Available:
http://www.ronpub.com/publications/OJBD_2015v1i1n02_Teli.pdf

[27] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam,
‘‘HybridStore: A cost-efficient, high-performance storage system combin-
ing SSDs and HDDs,’’ in Proc. IEEE 19th Annu. Int. Symp. Modelling,
Anal., Simulation Comput. Telecommun. Syst., Jul. 2011, pp. 227–236.

[28] Z. Guo, G. Fox, and M. Zhou, ‘‘Investigation of data locality in MapRe-
duce,’’ in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.,
May 2012, pp. 419–426.

[29] W. Tantisiriroj, S. Patil, G. Gibson, S. W. Son, S. J. Lang, and R. B. Ross,
‘‘On the duality of data-intensive file system design: Reconciling HDFS
and PVFS,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2011, pp. 1–12.

[30] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi,
and S. L. Scott, ‘‘Freeloader: Scavenging desktop storage resources for
scientific data,’’ in Proc. ACM/IEEE Conf. Supercomput., Nov. 2005, p. 56.

[31] Y. Yang et al., ‘‘Pado: A data processing engine for harnessing tran-
sient resources in datacenters,’’ in Proc. 20th Eur. Conf. Comput. Syst.,
Apr. 2017, pp. 575–588.

[32] S. V. Travis Bar, N. Langfeldt, and T. McNeal. Linux Nfshowto. Accessed:
Aug. 25, 2002. [Online]. Available: http://nfs.sourceforge.net/nfshowto/

[33] B. K. R. Vangoor, V. Tarasov, and E. Zadok, ‘‘To FUSE or not to
FUSE: Performance of user-space file systems,’’ in Proc. 15th USENIX
Conf. File Storage Technol. Santa Clara, CA, USA, 2017, pp. 59–72.
[Online]. Available: https://www.usenix.org/conference/fast17/technical-
sessions/presentation/vangoor

[34] A. Rajgarhia and A. Gehani, ‘‘Performance and extension of user space
file systems,’’ in Proc. ACM Symp. Appl. Comput., New York, NY, USA,
Mar. 2010, pp. 206–213. doi: 10.1145/1774088.1774130.

[35] GoogleDevelopers. gRPC: Google Remote Procedure Call. Accessed:
Dec. 23, 2018. [Online]. Available: http://www.grpc.io/

[36] Protocol Buffers Âă|Âă Google Developers. [Online]. Available:
https://developers.google.com/protocol-buffers/

[37] SQLite. SQLite Home Page. Accessed: Dec. 23, 2018. [Online]. Available:
https://www.sqlite.org/

VOLUME 7, 2019 65665

http://dx.doi.org/10.1145/2835185.2835190
http://dx.doi.org/10.1109/PDSW-DISCS.2016.010
http://dx.doi.org/10.2200/S00233ED1V01Y200912ICR012
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1016/j.future.2010.02.004
http://dx.doi.org/10.1145/1774088.1774130


A. Khan et al.: iStore: Towards the Optimization of Federation File Systems

[38] L. Xu, H. Jiang, L. Tian, and Z. Huang, ‘‘Propeller: A scalable real-time
file-search service in distributed systems,’’ in Proc. IEEE 34th Int. Conf.
Distrib. Comput. Syst., Jun./Jul 2014, pp. 378–388.

[39] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller, ‘‘Spy-
glass: Fast, scalable metadata search for large-scale storage systems,’’ in
Proc. 7th Conf. File Storage Technol., Feb. 2009, pp. 153–166. [Online].
Available: http://dl.acm.org/citation.cfm?id=1525908.1525920

[40] L. Xu, Z. Huang, H. Jiang, L. Tian, and D. Swanson, ‘‘VSFS: A ver-
satile searchable file system for HPC analytics,’’ Dept. Comput. Sci.
Eng., Univ. Nebraska-Lincoln, Lincoln, NE, USA, Tech. Rep. 128,
2013.

[41] Ext4. Ext4 Documentation. Accessed: Dec. 23, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt

[42] LLNL. Llnl/mdtest: Used for Testing the Metadata Performance
of a File System. Accessed: Dec. 23, 2018. [Online]. Available:
https://github.com/LLNL/mdtest

[43] ECMWF. Accessed: Dec. 31, 2018. [Online]. Available: https://www.
ecmwf.int/en/forecasts/datasets

AWAIS KHAN received the B.S. degree in bioin-
formatics from Mohammad Ali Jinnah University,
Islamabad, Pakistan. He is currently pursuing the
Ph.D. degree (integrated program) with Sogang
University, Seoul, South Korea. He was with one
of the leading software companies as a Software
Engineer, from 2012 to 2015. He is currently
a member of the Laboratory for Advanced Sys-
tem Software, Computer Science and Engineer-
ing Department, Sogang University. His research

interests include cloud computing, cluster-scale deduplication, and parallel
and distributed file systems.

MUHAMMAD ATTIQUE received the bachelor’s
degree in information and communication systems
engineering from the National University of Sci-
ence and Technology, Pakistan, in 2008, and the
Ph.D. degree from Ajou University, South Korea,
in 2017. He is currently an Assistant Professor
with the Department of Software, Sejong Univer-
sity, South Korea. His research interests include
location-based services, spatial queries in the road
networks, and big data analysis.

YOUNGJAE KIM received the B.S. degree in
computer science from Sogang University, South
Korea, in 2001, the M.S. degree from KAIST,
in 2003, and the Ph.D. degree in computer sci-
ence and engineering from Pennsylvania State
University, University Park, PA, USA, in 2009.
He was a Staff Scientist with the U.S. Depart-
ment of Energy’s Oak Ridge National Laboratory,
from 2009 to 2015, and an Assistant Professor
with Ajou University, Suwon, South Korea, from

2015 to 2016. He is currently an Assistant Professor with the Department of
Computer Science and Engineering, Sogang University, Seoul, South Korea.
His research interests include distributed file and storage, parallel I/O, oper-
ating systems, emerging storage technologies, and performance evaluation.

65666 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	iStore: FEDERATION FILE SYSTEM
	GOALS
	GLOBAL NAMESPACE
	RESOURCE AGGREGATION & DATA COUPLING
	JOB ALLOCATION MODEL (PLACEMENT AND ANALYSIS)
	RULES AND POLICIES IN FEDERATIONS
	EFFECTIVE DATA MIGRATION

	OVERVIEW

	JOB AND RESOURCE-AWARE REQUEST PLACEMENT
	JOB CLASSIFICATION
	SYSTEM MODEL
	TRANSFER TIME
	STORAGE TIME
	ANALYSIS TIME

	JOB ALLOCATION MODEL
	END-TO-END PLACEMENT AND ANALYSIS (EE)
	DATA PLACEMENT ONLY (PO)
	DATA ANALYSIS ONLY (AO)

	JOB AND RESOURCE-AWARE PLACEMENT ALGORITHM
	EXTENSION TO DYNAMIC JRAP

	DESIGN AND IMPLEMENTATION
	ASN: AGGREGATE STORAGE NAMESPACE
	MDM: METADATA MANAGER
	JRAP: DATA STORAGE AND PLACEMENT MANAGER
	DCM: DIRECT CHANNEL MIGRATOR
	RMM: RESOURCE MONITOR MANAGER

	EVALUATION
	EVALUATION SETUP
	TESTBEDS
	WORKLOADS

	PERFORMANCE ANALYSIS
	DIRECT CHANNEL DATA MIGRATION ANALYSIS
	BATCH-BASED METADATA EVALUATION

	JRAP FOR EDGE SERVERS CLUSTER
	SIMULATION FRAMEWORK
	JRAP ANALYSIS IN SIMULATION
	JRAP ANALYSIS IN REALISTIC TESTBED
	IMPACT OF LOAD BALANCING IN JRAP

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	AWAIS KHAN
	MUHAMMAD ATTIQUE
	YOUNGJAE KIM


