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a b s t r a c t

Future terabit networks are committed to dramatically improving big data motion between geo-
graphically dispersed HPC data centers. The scientific community takes advantage of the terabit
networks such as DOE’s ESnet and accelerates the trend to build a small world of collaboration
between geospatial HPC data centers. It improves information and resource sharing for joint simulation
and analysis between the HPC data centers. However, there exist several challenges for effective
collaborations such as a collective view of multi-site shared data, minimal performance degradation
of scientific applications running in a such collaboration environments and critical of all, data sharing
policies in such collaborations. In this paper, we propose to build SciSpace, Scientific Collaboration
Workspace for collaborative data centers. It provides a global view of information shared from multiple
geo-distributed HPC data centers under a single workspace. SciSpace supports native data-access
to gain high-performance when data read or write is required in native data center namespace.
It is accomplished by integrating an on-demand metadata export protocol. To optimize scientific
collaborations across HPC data centers, SciSpace implements search and discovery service. To evaluate,
we configured two geo-distributed small-scale HPC data centers connected via high-speed Infiniband
network such as terabits network of DOE’s ESnet, equipped with LustreFS. We show the feasibility
of SciSpace using real scientific datasets and applications. The evaluation results show average 36%
performance boost when the proposed native-data access is employed in collaborations. We also
emulate a real climate science collaboration to validate the usefulness of SciSpace.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, we are experiencing a data explosion: almost
90% of today’s data has been produced in the last two years,
with data being produced in the magnitude of petabytes [1,2]. A
weather company reported that more than 20 terabytes of data
is being generated each day for storing temperature readings,
wind speeds, barometric pressures, and satellite images across
the globe [3]. Several Department of Energy (DOE)’s High Per-
formance Computing (HPC) leadership-computing facilities, such
as Oak Ridge Leadership Computing Facility (OLCF) [4], National
Energy Research Scientific Computing Center (NERSC) [5], and
Argonne Leadership Computing Facility (ALCF) [6], generate hun-
dreds of petabytes of simulation data annually and are projected
to generate in excess of one exabyte per year [7]. To accommo-
date such growing volumes of data, science and research com-
munities are deploying larger, well-provisioned geo-distributed
storage and computation HPC clusters [8].

∗ Corresponding author.
E-mail addresses: awais@sogang.ac.kr (A. Khan), taeugi323@sogang.ac.kr

(T. Kim), bhyunki@sogang.ac.kr (H. Byun), youkim@sogang.ac.kr (Y. Kim).

In the HPC data centers, Data Transfer Nodes (DTNs) are sup-
plied to access the provisioned storage and compute clusters [9].
External access using DTN mitigates security risks. Atop such
DTNs, scientists and researchers across different HPC data centers
collaborate by sharing simulation and analytical data for science
research and discovery [10,11]. Particularly, the high-speed ter-
abit network connections between HPC data centers expedite
such collaborations. DOE’s ESnet currently supports 100 Gb/s of
data transfers between DOE facilities. In future deployments, it is
expected to support 400 Gb/s followed by 1 Tbps [12]. Generally,
scientists and their collaborators using the DOE facilities typi-
cally have access to additional storage and compute resources at
multiple geo-distributed HPC data centers. By exploiting various
computing resources at geo-dispersed HPC data centers, scientists
efficiently perform simulations and data analyses, resulting in
fast scientific discoveries. For instance, an OLCF petascale simula-
tion needs nuclear interaction datasets processed at NERSC [13].
Similarly, scientists in ALCF validate their simulation results by
comparing them with climate observation datasets at Oak Ridge
National Laboratory (ORNL) data center. This collaboration be-
tween data centers is accompanied by data movement between
OLCF and ALCF [13].
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A traditional workflow of scientific collaborations is as fol-
lows: the scientists at different facilities engage remote access
tools such as SSH to connect remote sites and find the required
datasets, copy the datasets to local sites via data transfer tools
such as bbcp [14] and scp, and afterwards, execute the analy-
sis [13]. Fig. 1 depicts the traditional collaboration model between
two collaborators from different HPC data centers. However, such
an approach does not work when multiple HPC data centers are
involved, because a SSH session is unable to present a single,
unified workspace out of all shared datasets from multiple data
centers. Therefore, it is crucial to render a unified view of shared
datasets to all the collaborators via a collaborative namespace.

The collaborative namespace in SciSpace eliminates the need
for laborious data transfers and managements, which have been
conducted manually by scientists, by allowing fine-grained shar-
ing configurations for individual datasets.

Above all, scientists in collaboration might require analyzing
the specific datasets based on certain conditions, for example, an
analysis on a dataset which is generated from a satellite at a cer-
tain location for a specific period of time, e.g., from a start point
to an end point. Existing parallel and distributed file systems do
not directly support such advanced, data-aware search queries. A
common approach to provide the advanced data search service
is to build a metadata indexing layer, using an external database
system, between the application and the file system. However,
this not only requires modifications to both applications and the
file system, but also forces scientists to use the SQL interface
instead of the familiar file system interface. TagIT [15] offers
data extraction and discovery service on top of a file system
namespace. However, the solution is heavily dependent on the
GlusterFS [16] architecture. Likewise, a single scientist can be in-
volved in multiple, separate or overlapping collaborations, which
is not addressed by any of the existing studies. Therefore, it is
essential to provide a collaboration workspace model to allow
practical and powerful collaborations in a paradigm where HPC
data centers are connected to high-speed networks.

To address the aforementioned challenges, we propose to
build SciSpace, a scientific collaboration workspace framework
for file systems across geo-distributed HPC data centers con-
nected via the high-speed network. Specifically, this paper makes
the following contributions:

• SciSpace promotes the collaboration activities among the
scientists at remote HPC sites for data sharing, joint simula-
tion, and analysis. The proposed service framework provides
a virtual abstraction on top of multiple dissimilar file sys-
tems and presents a global unified view of shared datasets
to all the collaborators. SciSpace allows a native data ac-
cess, e.g., local file write, which allows high performance
file operations and minimizes modifications to the exist-
ing applications and file systems. Any changes to the local
data center file system are transparently applied to the
collaboration workspace by Metadata Export Utility (MEU).

• SciSpace offers efficient Scientific Discovery Service (SDS)
integrated on top of the collaboration workspace to facilitate
the scientific workflow. Specifically, SciSpace provides a
multi-mode metadata extraction service based on applica-
tion’s requirement. Additionally, to allow a single scientist
to participate in multiple collaborations, SciSpace supports a
template namespace. Using the template namespace, scien-
tists can associate data sharing options, such as shared and
private namespaces, to individual collaborations.

• We conduct a comprehensive evaluation of SciSpace by
building a collaboration between two small-scale
geo-distributed HPC data centers with Lustre file systems
[17]. We compare the performance of our framework with

UnionFS [18]. In addition to synthetic datasets, we also use
real scientific datasets and tools such as H5Diff [19] and
Climate Data Operators (CDO) [20]. Our evaluation demon-
strates that SciSpace outperforms the traditional approach
by 36% improvement in performance on average, in real
collaborations. We emulate a real climate science workflow
to show the feasibility of SciSpace in scientific collaboration
environments.

The rest of this paper is organized as follows. Section 2 pro-
vides the background on scientific collaborations and existing
studies to motivate the need of SciSpace. We provide the design
and implementation challenges of each component in Section 3.
We evaluate SciSpace using synthetic and real scientific datasets
in Section 4. Section 5 discusses the related work and we finally
conclude in Section 6.

2. Background and motivation

This section presents the fundamental background and elab-
orates on our observations that helps to motivate the SciSpace
research.

SciSpace targets at a collaboration environment where sci-
entific application data are often physically stored in different
geo-distributed data centers or geo-locations because they are
sourced from different experiments, sensing devices or labora-
tories (e.g. the well known ALICE LHC Collaboration spans over
37 countries [21]) [22]. Fig. 1 represents a scientific collabora-
tion environment, where scientists at two geo-distributed HPC
data centers deployed with parallel and distributed file systems
(PFS/DFS) collaborate with each other, i.e., ORNL [4] (DC 1) and
NERSC [5] (DC 2), allowing the remote collaborator to access
the data and local facilities via DTNs [13]. The satellite images
showing temperature patterns are stored at DC 1 data center. The
scientist at DC 1 data center transforms these raw images to ap-
plication compatible datasets such as HDF5 [19] and NetCDF [23].
The DC 2’s scientist transfer these big datasets from ORNL via data
transfer tools such as bbcp [14] and perform different simulation
and analysis experiments on datasets. The outputs of simula-
tions are CMIP5 models [24]. Now, these datasets and model
outputs are shared with other collaborators at different facilities
to validate the model accuracy. It is achieved by giving access
and privileges to local facilities via DTNs and SSH connections
(DTNs as shown in Fig. 1). After the model is verified, scientists
share the model and datasets with all collaborators by applying
several sharing constraints. Then, the collaborators at different
climate facilities start using model and run analysis of their
own interest such as temperature prediction. There exists several
research studies such as [8,18,25–28] which can be applied in
such collaborations but lack of the critical collaboration specific
needs poses several challenges.

Collaboration-friendly Storage Model: The existing research
studies such as [8,18,25,27–29] can be directly applied to build
an aggregate collaboration storage model. However, this model
has a limitation that, in order to read or write data, I/O is
always initiated directly on the global namespace and ignores the
physical location of data. This location awareness is critical for
scientific applications. Whereas, WheelFS [30] favors the locality
but design architecture is limited to single site installation and
CFS [11] storage model allows read-only collaboration and writes
are not permitted on the global namespace. XtreemFS [31] offers
both local and global namespace access, however, it requires
scientists to swap between the namespaces at runtime.

Data Sharing Protocols: As, collaborations include massive data
movement across geo-distributed data centers [13,32]. At the
same time, scientists are interested in defining set or rules for
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Fig. 1. Scientific collaboration across two geo-distributed HPC data centers (DC) via DTNs equipped with parallel and distributed file systems (PFS/DFS).

data sharing to other scientists at remote sites. The existing
studies such as [11,18,27,29–31] lack such control mechanism for
data sharing across remote sites. iRods [33], OceanStore [25] and
GBFS [28] offer simple control on data sharing but rule-based or
key-based control mechanisms adopted in collaboration which
are not efficient. The namespace-level controls can minimize the
complex management of data sharing protocols.

Indexing and Discovery Services: Another requirement in such
collaboration with respect to scientific applications can be elab-
orated in two cases. First, in certain collaborations, only data
sharing is allowed and no application execution is allowed on
remote sites, e.g. in CFS [11]. In such scenarios, data is first
transferred to the local site and then, analytical applications are
executed on the data. Such massive amount of data transfer can
be reduced by introducing a data extraction mechanism inside
collaboration file system, e.g. Klimatic, VSFS and TagIt are de-
veloped based on the same motivation [10,15,34]. Second, it is
possible to execute applications directly on remote sites in collab-
oration. Then, even in such scenarios indexing service improves
the scientific applications by neglecting the undesired data.

To this end, our motivation is to propose a scientific collabo-
ration workspace which offers a transparent view of multi-site
shared data. The performance of scientific applications is im-
proved by seamless integration of locality-awareness embedded
within collaboration workspace. The simple namespace-based
sharing controls are integrated to enable and disable data export
in collaboration. Atop, indexing and scientific discovery service
are embedded inside collaboration workspace which effectively
retrieves data from geo-distributed data centers.

3. Scispace : Scientific collaboration workspace

In this section, we present our key design goals and discuss
the design and implementation of SciSpace in detail.

3.1. Goals

• Collaboration Workspace: The key design goal is to provide
consolidated data visibility to all collaboration data centers
under a single uniform namespace. A workspace is layered
atop multiple dissimilar file systems mounted on data trans-
fer nodes, and presents a common unified data view to all
participants in the collaboration.

• Native-Data Access Support: To keep minimal modifica-
tions while achieving high performance, we consider it im-
portant to support for local writes and reads using local
data center’s file system namespace. The seamless locality-
awareness integration in collaboration can help improve
scientific applications performance.

• Multi-Namespace and Selective Data-Sharing: In
real-world scenarios, it is common that a single scientist is
involved in multiple collaborations. Moreover, offering the
ability to selectively share data via different namespaces for
each collaborator. Thus, we added privilege in our design to
manage multiple collaboration workspaces.

• Efficient Data Discovery and Search: In geo-distributed
collaborations, the extraction of required and useful data is
of high significance. Additional performance overhead and
network cost can be incurred if the required dataset is not
intelligently retrieved. To incorporate such intelligence, we
consider the scientific discovery and search service as an
important design goal. SciSpace supports attribute-based
data search facility.

3.2. Scientific collaboration workspace

The proposed collaboration model renders a global picture
of shared data to all the participants in the collaboration. An
architectural overview of the proposed collaboration workspace
is shown in Fig. 2.

3.2.1. Unified virtual file system layer
The Scientific Collaboration Workspace empowers SciSpace to

elude the need for modifications to existing scientific applications
and file system architecture. The intention to keep the existing
application and storage architecture intact drives the need to im-
plement a file system interface which can offer POSIX semantics.
Besides, all collaboration participating geo-dispersed data centers
grants access to shared resources such as storage and compute
nodes via single or multiple DTNs. The effective utilization of
provided multiple DTNs is also an essential viewpoint which
needs to be considered. If not properly approached, it can lead
to bottlenecks, i.e., multiple collaborators accessing a single DTN.
To this end, our Scientific Collaboration Workspace is equipped
with a POSIX-like file system API (scifs) and provides all the
basic file system operations. To manage the metadata effectively,
we employ a distributed metadata architecture and details are
presented in next Section 3.2.2.
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Fig. 2. Architectural overview of SciSpace.

An important role of Scientific Collaboration Workspace in-
cludes providing a consolidated view of shared data dispersed
across dissimilar file systems deployed at geo-distributed data
centers. Fig. 3 shows how scifs is mounted on the collaborator’s
machine. The participating data centers accordingly grant the ac-
cess from the collaborator’s machine through DTNs. Compared to
the traditional approach, where scientists have to manually trans-
fer data between multiple DTN mount points, scifs mount point
(/mnt/scifs) provides a seamless integration of multiple mount
points and user-transparent data transfers. More importantly, the
scifs mount point acts as a visible and interactive collaboration
workspace, as traditional file systems do, where all standard
file operations take place. When an incoming write request is
received, Scientific Collaboration Workspace assigns a DTN for
the write request by hashing the file pathname. SciSpace inter-
nally maintains a distributed metadata database to store all file
metadata including the computed hash value (Section 3.2.2). We
used hash-based placement strategy in order to eliminate I/O
broadcast problem when multiple DTNs host metadata service.

When a collaborator wants to read a specific file, the hash
is computed against the file pathname and a request is sent to
an appropriate DTN hosting the file metadata information. The
directory listing file system functionality (such as ls) provides a
list of shared contents to the collaborator by fetching file meta-
data information from all the DTNs in a parallel fashion. Such
design provides ease in controlling data sharing semantics. The
collaborators can selectively publish datasets in the collaboration
workspace. We maintain a flag sync as an extended attribute of
each file. When files are stored directly via SciSpace’s workspace,
the flag with value sync = true is added. The ls operation lists only
the files and directories with the sync flag set true. In the current
implementation, SciSpace does not offer file or data removal
to remote collaborators, but it can be easily extended via the
metadata service. Additionally, in the current scope of work, we
implemented only RW locking mechanism to avoid write conflict
cases.

3.2.2. Metadata management
Metadata is of high significance in any file system because it

is the key input to all operations [22]. Managing metadata in a
centralized way for such collaboration scenarios is not appropri-
ate. On top of local site congestion generated by current metadata
operations, remote collaborators operations can cause severe de-
lays. Moreover, a single site failure can lead to the collaboration
workspace failure. To address this issue, we adopted distributed
metadata to reduce metadata bottlenecks caused by the central

metadata management approach. Distributed metadata provides
more efficient scientific search and indexing services than a cen-
tralized indexing approach. The metadata service in SciSpace is
running on every DTN from all participating data centers. The
reason to execute metadata services on DTNs is manifolds, (i)
we can effectively utilize the DTNs, (ii) storing metadata globally
enables us to provide metadata to all the collaborators mounting
SciSpace, and (iii) we can exploit multiple available DTNs as
distributed metadata services for efficient scientific discovery and
indexing as compared to centralized metadata approach. To keep
our design scalable, we split metadata into multiple partitions.
This partitioning helps in obtaining a fair load-distribution across
available DTNs. Each instance of metadata partition acts as a
DB-Shard (database shard).

Specifically, each DTN maintains two DB shards, i.e., metadata
service shard and discovery service shard, as shown in Fig. 4. We
maintain two different types of metadata, i.e., file system specific
metadata and indexing specific metadata. The file system meta-
data, such as filename, size, owner, and the path, is synchronously
updated when a write request is received. The indexing metadata
includes metadata of scientific dataset headers (such as HDF5
and NetCDF self-contained attributes) and user-defined indexing
attributes. For index metadata, we provide both synchronous and
asynchronous DB update mechanisms. In synchronous DB update,
the file indexing and metadata extraction is performed when a
write request is received. It incurs high overhead but it can be
masked under FUSE layer overhead. Whereas, in asynchronous
DB update, the file indexing and metadata extraction is conducted
later after file is stored. Only a single message is sent to indexing
service to register the file for indexing and metadata extraction.
When to conduct the indexing and metadata extraction depends
on pre-defined threshold such as time, size and file count. The
asynchronous DB update exhibits inconsistency between the file
system metadata and the indexing metadata, depending on how
early the metadata extraction and indexing is performed after
the corresponding file operation. We further explain the pros
and cons of two DB update mechanisms in Section 3.2.5. This
distributed metadata architecture is tightly coupled within the
collaboration workspace. We adopt an index data structure to
promote effective lookup and search queries on top of rela-
tional database to enable file attribute based retrieval. We do
not use key–value stores, as our metadata indexing approach
requires multiple associations, e.g., linking a single file with mul-
tiple attributes or single attribute to multiple files. The schema for
collaboration and indexing metadata is shown in Fig. 4. Note that
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Fig. 3. Scientific collaboration workspace.

such attribute-based file retrieval is not possible in the traditional
approach without performing a costly exhaustive search.

SciSpace obtains three significant benefits by integrating file
indexing and attribute extraction at file system layer; (i) effective
execution of metadata-intensive I/O operations such as file name
and path mappings on specific data center, (ii) no crawling/file
lookup required on multiple file system namespaces, and (iii) em-
powering search and query based on custom-defined attributes,
file system stat attributes and scientific dataset attributes (such
as HDF5 self-contained attributes).

3.2.3. Local-writes and export protocol
The file system interface of SciSpace (scifs) allows collabora-

tors to seamlessly access local and remote datasets in the collabo-
ration workspace. However, the additional file system layer, writ-
ten using the FUSE framework in our prototype (Section 3.2.1)
may degrade the overall I/O performance. To avoid such per-
formance degradation, SciSpace supports local-writes, i.e., writ-
ing data directly to the local data center file system instead
of the collaboration workspace (FUSE layer). Through the local-
writes, SciSpace can deliver the native performance of the local
data center file systems when collaborators can exploit the lo-
cal file systems. Furthermore, the local-writes also reduce the
network traffic across the sites and simplify the consistency and
resilience managements due to direct storage at local data center
namespace. However, datasets that have been written through
the local-writes are not directly visible inside the collaboration
workspace, and thus should be properly propagated to the file
system namespace of the collaboration workspace.

To assist local-writes, SciSpace features Metadata Export Utility
(MEU), which commits all unsynchronized metadata of locally-
written datasets to the file system namespace of the collaboration
workspace. In addition, collaborators can explicitly trigger such
commits. This concept works in a similar fashion to git local and
remote repository management. In our design, because datasets
written via the local-write are stored in permanent storage (local
data-center file system) only their metadata needs to be syn-
chronized with the collaboration workspace namespace. MEU
appropriately synchronizes such metadata into the collaboration
workspace namespace. In addition, MEU allows a fine-grained
control for sharing the datasets, e.g., when a collaborator wants
to share only subset of a dataset via collaboration workspace.

The local-write and MEU workflow is shown in Fig. 5. MEU
scans the files and directories recursively from a certain local
directory, such as /home/project. During the scan, it checks the
extended attribute sync of each file and directory in a pathname.
For example, to examine /foo/bar/hello.hdf5, MEU first checks
the extended attribute of foo. If the flag is true, MEU skips the
entire directory because all files and directories under foo have
already been synchronized. Otherwise, MEU enters the directory
and scans entries. Whenever any change occurs inside a directory,
we modify the flag of the parent directory of the file or directory
(in the example, bar is the parent of hello.hdf5). Once the scan

phase finishes, we add an extended attribute to all unsynchro-
nized files. When MEU synchronizes the metadata, it packs all
unsynchronized metadata into a single message to minimize the
synchronization overhead.

3.2.4. Template namespace
SciSpace is intended to effectively satisfy the needs for various

types of collaborations. For instance, a collaborator may require
a dedicated workspace for own research, simulation, and an-
alytical jobs. Also, a collaborator may be involved in multiple
collaborations simultaneously. Cloud data storage systems such
as Dropbox and Google Drive permits sharing data with multiple
users, and a user can participated in multiple projects and col-
laborations. Based on these practical use-cases, SciSpace provides
a namespace management module, Template Namespace, based
on the distributed metadata management architecture. Collabo-
rators can define multiple namespaces in SciSpace with the scope
of each namespace (local/global). Fig. 4 shows the association
between Template Namespace and other metadata in SciSpace.
In specific, when a file is written, its pathname determines the
namespace, which in turns defines the scope of the file content.
If a namespace scope of a file is local, the file is only visible to the
owner of the file. Similarly, if the scope is global, the file becomes
visible to any collaborators within the collaboration workspace,
e.g., a remote collaborator.

3.2.5. Scientific discovery service
Extracting a desired dataset from billions of data files remains

a central interest of the science and research communities. Par-
ticularly, a support of Scientific Discovery Service (SDS) within
the collaboration workspace provides the following benefits; (i)
it frees collaborators from retrieving undesired data to local data
centers via data transfer tools such as bbcp [14], LADS [13], and
(ii) it circumvents manual dataset screening phase in scientific
workflows performed before analysis. However, since the SDS
service entails additional processing for generating per file in-
dexes, it may incur a certain performance overhead. Therefore, if
such an indexing is not required on a certain dataset, it is favor-
able to skip the indexing for the dataset to avoid the overhead. For
instance, an application may only require a storage space without
having any subsequent analysis tasks. In addition, it is possible
that a scientist does not need such an indexing feature for a
certain dataset. To support such various requirements, SciSpace
provides three different metadata extraction modes.

• Inline-Sync: In this mode, write operation includes both data
storage and metadata extraction in a synchronous way. As
depicted in Fig. 6, a write operation completes only after
all the metadata is extracted and indexed. This mode aims
to facilitate applications that require both storage space
and immediate analysis on produced datasets. Although
the Inline-Sync mode provides a strict consistency between
datasets and the index database, its synchronous metadata
can significantly slowdown the individual I/O operations.
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Fig. 4. A schema view for metadata and discovery shard.

Fig. 5. Local-writes and on-demand export protocol.

• Inline-ASync: To reduce the increased I/O wait time, we pro-
pose Inline-Async mode, that injects partial de-coupling be-
tween storage and extraction operation. As shown in Fig. 6,
the total file write time in Inline-Async does not include the
metadata extraction process. In specific, we adopt a queue-
based metadata extraction architecture, where an indexing
request message is enqueued when a file is written. SDS
asynchronously dequeues messages and indexes data ac-
cordingly. This mode specifically targets environments with
offline or delayed analysis after data generation. It includes
FUSE and negligible message enqueue overhead.

• LW-Offline: To support indexing on top of local-writes (LW),
we require offline indexing mode which directly performs
the metadata extraction within the data center file system
namespace. This mode aims to facilitate cases when datasets
are stored via the local namespace and high-performance
is expected. The indexing service is triggered on the DTN
directly. The write operation includes no FUSE overhead due
to native access.

In the scientific community, the HDF5 [19] and NetCDF [23]
datasets are most commonly used data formats [19]. SDS utilizes
the HDF5 library [19] to extract all the attributes from the HDF5
file. Collaborators can specify attributes to index data in SciSpace.
The SDS validates the data for matching attributes defined by
the collaborator. If the match is found, the entry (attribute, file,
value) is recorded in the Discovery shard as shown in Fig. 4. In
addition, we also offer manual or collaborator-defined tagging,
where a collaborator is facilitated to tag a file or group of files
with custom attributes. The simple attribute structure consists
of attribute.name which refers to attribute name, attribute.type
refers to attribute datatypes, and attribute.value refers to the value
of an attribute. In the scope of current work, we provide only
three types of attribute types, i.e., integer numbers, floating point
numbers, and texts. We plan to extend our implementation to
include range-based attribute datatypes.

SciSpace provides a query interface via a command line utility.
Using query interface, collaborators can easily query the desired
contents/files within the collaboration workspace. The command
line utility supports operators inside a query string, such as equal
(=), greater (>), and less (<). For the text datatype, we provide
equal (=) and like (like) operation.

SciSpace currently delegates the fault-tolerance, replication,
and data consistency managements to distributed and parallel file
systems inside data centers. In fact, SciSpace inherits all these fea-
tures from data center equipped file systems, because it merely
adds a thin virtual abstraction layer on top of the mountpoints
of such file systems. However, we consider metadata replication
of collaboration workspace as an important factor and plan to
support the metadata replication in future.

4. Evaluation

4.1. Implementation

We implemented SciSpace using the FUSE’s high-level API
v2.9.4 [35]. Our implementation fully complies with POSIX stan-
dards and shows UNIX-like semantics and directory structure.
A generic messaging protocol is employed to interact with all
the components of SciSpace, accomplished via Google Protocol
Buffers [36]. Specifically, metadata service and scientific discov-
ery service running on each DTN are implemented based on the
client–server model using gRPC [37]. The gRPC client can connect
and interact with the metadata server. In our implementation,
the metadata client is integrated in collaboration workspace.
SQLite [38] is used as backend storage for each database shard.
SciSpace’s source code consists of more than 3000 lines.
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Fig. 6. SciSpace: Metadata extraction modes.

Table 1
Description of evaluation test-bed setup.
Component Description

Collaboration 2 Data Centers

Storage Lustre PFS for each Data center

Lustre 4 Nodes (2 x MDS, 2 x OSS)

MDS 24 Intel Xeon E5-2650 CPU Cores,
RAM 128 GB, 1 x 6.3 TB MDT

OSS 16 Intel Xeon E5-2650 CPU Cores,
RAM 64 GB, 11 x 7.2 TB RAID-0 OSTs

DTNs 4 Nodes (Lustre Client Nodes)

Collaborators 1–24 Collaborators

CPU Cores 24 x Intel Xeon E5-2650 @2.20 GHz
Memory 128 GB
Network Infiniband EDR (100 Gbps)
OS CentOS Release 7.3 Kernel v3.10

4.2. Experimental setup

4.2.1. Testbed
We build a testbed for scientific collaboration on top of two

geo-distributed data centers equipped with Lustre [17] connected
via high-speed Infiniband EDR (100 Gbps) network. Table 1 shows
detail description of the testbed setup. We use two DTNs for
each data center as Lustre clients and mount the DTNs via Linux
NFS v4.0 on to the collaborator machine as shown in Fig. 3.
Note our target environment is that, data centers in collabora-
tion are connected via a high-speed network such as ESNet’s
1 Tbps network [12]. We believe our testbed configuration fairly
emulates this situation. Particularly, in such a Terabits network
environment, the network bandwidth between the data centers is
higher than the PFS bandwidth of each data center. To accurately
emulate this situation, we have configured the Lustre bandwidth
of our testbed to be smaller than the IB EDR bandwidth, as in [13].

We compare the proposed SciSpace against a simple unifica-
tion file system approach such as UnionFS [18], designed to merge
several directories and file system branches. We implemented
the prototype idea of UnionFS using FUSE for comparison with
SciSpace and SciSpace-LW. In experiments, SciSpace refers to
the use of collaboration workspace to read and write whereas,
SciSpace-LW refers to use of the local file system namespace and
can benefit with native-access support. In the rest of the paper,
we refer the approach of the UnionFS as the baseline. All the
experimental results show the average of five runs. We drop
cache after each iteration of experiment from NFS mount points,
DTNs, and Lustre OSSs to have authentic performance values.

4.2.2. Workload
To evaluate the SciSpace performance, we used IOR [39]

benchmark. We use 375 GB of synthetic dataset using IOR. The

reason to use big dataset is to wipeout the caching effect. For
real collaboration activities, we use scientific HDF5 datasets com-
prised of the ocean surface data measured at different time
period across geo-distributed locations by different scientific in-
struments. We downloaded the dataset of size 116 GB (4600 files)
from MODIS-Aqua [40] . MODIS plays a vital role to predict global
changes accurately enough to assist policymakers in making
decisions concerning the protection of our climate [40].

We use two HDF5 applications, i.e., H5Diff and H5Dump in
order to emulate real collaboration activities. We also emulate
real climate science workflow on top of SciSpace. The details can
be found in Section 4.7.

4.3. Scientific collaboration workspace

To evaluate the performance overhead of SciSpace framework,
we run two sets of experiments (read, write) and compare base-
line with two variants of the proposed framework, i.e., SciSpace
and SciSpace-LW (quoted as native-access).

In Fig. 7(a)(b), we investigate the impact of block size in
both write and read operations with a single collaborator. We
observe that when the block size is less than 16 KB, the write
and read performance degrades in both baseline and SciSpace as
compared to SciSpace-LW. The reason for the decrease in read
and write operations is due to small-size transfer requests, FUSE
layer overhead, and metadata contact points. Whereas, SciSpace-
LW shows higher performance due to local-writes support and
low metadata contact points. However, as we increase the block
size, the write and read performance increases in all three ap-
proaches. In Fig. 7, the maximum throughput achieved by the
baseline and SciSpace is same at a block size of 512 KB however,
the SciSpace-LW shows higher performance in all test cases, in
particular ranging from small block size 4 KB up to 512 KB.
The performance improvement window lies in range from 2% up
to 70% when moving from big block size to smaller block size.
The average performance improvement of all write test-cases is
16%. However, for read test-case, SciSpace-LW shows a consistent
performance improvement in all test cases with an average of
41%. The performance degrades in baseline and SciSpace due to
several factors, first additional metadata querying for stat, second
FUSE invokes five operations serially, getattr, lookup, create, write
and flush and third, user and kernel space context switching over-
head cannot be ignored. Whereas, in SciSpace-LW case, we allow
collaborators to write to local file system namespace and push the
unsynchronized metadata to SciSpace, resulting in no additional
metadata querying and no FUSE overhead in SciSpace-LW.

Next, we perform the experiment to show scalability of SciS-
pace collaboration workspace by increasing number of collabo-
rators. Fig. 8(a)(b) shows the impact of multiple collaborators in
both read and write operation of all three approaches, i.e., base-
line, SciSpace and SciSpace-LW. We use the same dataset of



A. Khan, T. Kim, H. Byun et al. / Future Generation Computer Systems 101 (2019) 398–409 405

Fig. 7. Performance analysis of SciSpace by varying block size.

Fig. 8. Performance analysis of SciSpace varying collaborators.

Fig. 9. SciSpace: Metadata Export Utility, Indexing Modes and End-to-End Collaboration Performance with real HDF5 tools.

size 375 GB via IOR and fix the block size to 512 KB to benefit
the baseline and SciSpace approach as compared to SciSpace-
LW. The results stand different from our observations in the
previous experiment Fig. 7. As we vary the number of collabora-
tors, the baseline, SciSpace, and SciSpace-LW show a consistent
performance improvement. The reason for this improvement is
manifold. First, baseline and SciSpace get the benefit of NFS
caching at server and Lustre OSS cache and parallelism. Second,
due to effective and load-balanced utilization of available DTNs,
i.e., in the baseline, we allocate each DTN equal priority and
in SciSpace, we configure round-robin request placement policy.
However, SciSpace-LW, we divide the number of collaborators on
each DTN. Whereas, our SciSpace-LW cannot benefit with NFS
caching because it directly runs on local data center namespace
and can only utilize the parallelism of deployed Lustre at the data
center. The maximum performance boost when 24 collaborators
are active in collaboration is; for write test-case, 16% and read
test-case shows 28% boost when compared to baseline and SciS-
pace. However, we consider it is important to show the reason for
read performance degradation when collaborators number varies
from 8 to 16. The reason behind is NFS caching. So, in baseline and
SciSpace when the cache is full, the flush operation is invoked
and all the write I/Os get slow due to multi-level cache (NFS
cache, Lustre OSS) flush operation in progress. On the contrary,
SciSpace-LW requires only single cache flush (Lustre OSS).

4.4. Metadata Export Utility

Metadata Export Utility (MEU) performance relies on the num-
ber of files, irrespective of file size. Our realistic dataset contains
4600 files (116 GB), which we believe is not sufficient to clearly
show the performance of MEU. To show the effectiveness of
the proposed approach using a single collaborator, we define
a simple workflow. We create a zero-size file (count 5 K-1M)
via baseline, SciSpace-LW and execute the MEU on top of SciS-
pace-LW (Fig. 9(a)) to synchronize the metadata of files such
as filename and location (File Mapping Schema in Fig. 4). The
baseline approach uses the common FUSE-based collaboration
workspace. In SciSpace-LW, all the files are created via local file
system namespace however, it does not include the MEU export
overhead. Whereas, SciSpace-(LW+MEU) includes the use of local
file system namespace and MEU export overhead as well. The
experimental results are shown in Fig. 9(a). We observe that base-
line creates a huge overhead which comes from increased contact
points between collaboration workspace and metadata service.
Each of the file system calls (such as attr, access, create, open)
requires assistance from metadata service. Whereas, SciSpace-LW
requires no such additional metadata assistance. However, MEU
recursively iterates the directories and create a list of unsynced
files and send message to metadata service on DTN. The SciSpace-
LW and SciSpace-(LW+MEU) show a linear performance pattern.
In MEU, we batch all the requests and send single RPC call to
metadata service to minimize the message packing overhead.
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Table 2
Search query latency (in seconds) by varying hit-ratio.
Search attribute Hit-Ratio

0% 25% 50% 75% 100%

Location (Text) 3.6 9.7 14.6 19.5 24.5
Instrument (Text) 3.8 9.5 14.7 19.7 24.5
Date (Text) 3.9 9.6 14.8 19.7 24.6
Day or Night (Int) 3.2 8.9 14.1 18.9 23.9

4.5. Scientific discovery service

In this section, we show the performance of multiple metadata
extraction modes. For this experiment, we use the 4 collaborators
and real scientific HDF5 datasets (116 GB). We extract all the
attributes (Search Attribute in Table 2) from HDF5 files along with
file system metadata (pathname, size, time, inode number etc.).
We specifically present Inline-Sync, Inline-Async, and LW-Offline.
We described each mode in detail in Section 3.2.5. The Inline-Sync
and Inline-Async use SciSpace collaboration workspace, whereas
LW-Offline uses the local data center namespace. It indexes the
files and update SDS shard accordingly.

Fig. 9(b) shows the time breakdown analysis of all the data
discovery modes. As expected, the Inline-Async and LW-Offline
perform better with an improvement factor of 12% and 36% with
5 attributes when compared to Inline-Sync. Whereas, when 20
attributes are used, the performance boosted up to 56% in Inline-
Async and 62% LW-Offline. The high time taken by Inline-Sync is
mainly derived from I/O blocking. A single write I/O waits until
all the indexing operations are complete. The indexing operations
include opening HDF5 file, extracting metadata attributes, and
recording the attributes in the database. Also, when we compare
Inline-Async and LW-Offline, the performance in earlier one is
56% and later one is 62% as compared to Inline-Sync when 20
attributes are used. The reason for negligible performance over-
head in Inline-Async as compared to LW-Offline is the result
of additional gRPC calls and protobuf messages for enqueuing
the index messages. However, LW-Offline operates directly on
the local file system namespace and incurs no added messaging
overhead.

Next, we discuss the search query latency. We measure the
search query latency using 4 collaborators, each produces four
types of 1000 queries. We select each query based on the defined
attributes in the real HDF5 dataset, (i) search the files generated
at a certain location, (ii) search the files with the particular
instrument, (iii) search the files including specific date, (iv) search
the files generated in day or night. We populate the SDS shards
with indexes and show latency by varying hit-ratio. The hit-ratio
is defined as the number of matching tuples in SDS shard over
the total number of tuples in shard. The average latency of each
query is listed in Table 2. We have seen that when hit-ratio is less,
i.e., the number of matching entries are only 25% of total entries,
the query latency is very short up to 8–9 s. However, when we
vary the hit-ratio to 100%, the high latency is experienced in
all search queries. This increase in query latency is the result of
message packing and unpacking at SDS. The SDS translates the
request message into SQL query and finds the required attributes
in SDS shard, then query results are packed in a message and sent
over the network. When the number of records returned in the
SQL query is high, then latency increases. This internal message
packing overhead leads us to show the hit-ratio comparison.

4.6. Search query and data migration analysis

We conduct the experiments to compare end-to-end analysis
times between baseline approach and SciSpace with real HDF5

tools such as H5Diff (computing the difference between two
HDF5 files) and H5Dump (converting HDF5 file to ASCII file). In
the baseline approach, it first finds the datasets on different data
centers, then migrates the datasets from all locations to local
data center and run applications. In particular, the search time
increases as the number of files searched increases because it only
allows file-name based search. On the other hand, collaboration
namespace gives benefit in terms of first two steps; first, query
time is constant irrespective of data size and file count. Second,
no-migration is required because application can run directly on
searched dataset without transferring datasets to the local data
center. Fig. 9(c) shows the result of H5Diff application. SciSpace
shows lower end-to-end runtimes than baseline for all cases of
different files. We observe the same performance trend for the
H5Dump application , however due to page limit, we do not show
the H5Dump results.

4.7. End-to-end analysis for scientific collaborations

SciSpace targets at a collaboration environment where scien-
tists and researchers at different research and computing facil-
ities share scientific datasets to improve the outcomes of sci-
entific simulations and analytics. In this section, we discuss a
real climate science use-case [41]. Climate science is the study
of relatively long-term weather conditions, typically spanning
decades to centuries but extending to geological timescales [41].
We emulate the temperature prediction workflow on SciSpace
and present the evaluation results. The temperature prediction
is a common and important workflow in weather forecasting
and climate sciences. There are different models used to sim-
ulate in order to predict the temperatures such as CMIP5 [24].
The climate scientists and researchers use several different pro-
grams and tools to analyze different dimensions of CMIP5 model
outputs such as global warming trends, sea level pressure, pre-
cipitation fraction, humidity patterns and thermal radiations [42].
The climate science collaboration between two scientists at geo-
distributed climate facilities is as followed; The satellites con-
tinually generate image datasets and store at different locations
across the globe. These satellite images are processed and trans-
formed to different application compatible datasets such as HDF5
and NetCDF on central facilities. The climate scientists transfer
these big datasets from central locations via data transfer tools
such as bbcp [14] and perform different simulation and analysis
experiments on datasets. The outputs of simulations are CMIP5
models. Now, these datasets and model outputs are shared with
other collaborators at different facilities to validate the model
accuracy. It is achieved by giving access and privileges to local
facilities via DTNs and SSH connections. After the model is veri-
fied, scientists share the model and datasets with all collaborators
by applying several sharing constraints. Then, the collaborators at
different climate facilities start using model and run analysis of
their own interest such as temperature prediction.

To emulate such real end-to-end scientific collaboration, we
deploy SciSpace on two geo-distributed data centers acting as
climate facilities, where climate scientists are running simula-
tion experiments for temperature prediction. We download the
publicly available ocean surface temperature datasets [42] and
store on each data center along with index metadata. The dataset
comprises of NetCDF file format [23] with temperature readings
ranging from period 1979 till 2017 with a total 583 MB size.
We employed Climate Data Operator (CDO) [20] tools, i.e., timavg
and dayavg to compute temperature average per timestamp and
per day in a year and over the years. CDO is a large tool set for
working on climate and NWP model datasets [20]. We compare
SciSpace enabled local-writes with baseline and show the CDO
application runtime in Fig. 10.
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Fig. 10. A real climate science collaboration emulation on SciSpace.

We conduct these real scientific experiments to show the
benefits of deploying SciSpace in collaboration environments.
Fig. 10(a) depicts a real scenario where a certain datasets de-
sired for analysis are shared from remote collaborator. The x-axis
in Fig. 10(a) shows the percentage of files stored on local site
whereas, the rest of dataset is shared from the remote collab-
orator. We observed that, baseline shows a high runtime as
compared to SciSpace, even when 20% of files are stored on
local site. It is because SciSpace can transparently identify the
data locations and improves the performance due to embedded
locality-awareness. On the contrary, baseline routes the Read
I/O via aggregate or global namespace and ignores the datasets
stored locally. This locality unawareness makes the baseline per-
formance poor. So, we claim that favoring locality highly benefits
the scientific collaborations.

Fig. 10(b) presents a case where all the data is stored on
remote site and SciSpace cannot benefit with dataset locality.
However, in Fig. 10(b), SciSpace shows a higher performance
than baseline. It is because SciSpace uses indexing and retrieves
the required datasets from the remote site. We observe from
the experiments that, when the number of attributes increases,
the SciSpace improves the performance because adding more
attributes to the query results in more filtered and smaller size
output. However, at a certain point increasing the search or query
attributes cannot always make dataset small because query itself
is a compute intensive operation.

Therefore, we claim that SciSpace is deployable in scientific
collaboration environments and it also improves the existing
scientific workflow performance.

5. Related work

We differentiate the existing studies which can be deployed
in such collaboration environments based on following charac-
teristics, i.e., support of local read and writes bypassing global
namespace, collaboration workspace model, indexing service and
data sharing protocols.

Existing storage systems, such as GFarm [27], XtreemFS [31],
iRODS [33], Hadoop [43], Ceph [44], Lustre [17], and GlustreFS
[16], can provide an aggregate view of data stored on multiple
nodes within a single facility. However, such systems attain
the aggregated storage view by deploying an identical storage
interface on each storage node and do not support the uni-
fication of dissimilar file systems. Campaign Storage [45] and
OceanStore [25] offer an aggregate storage interface and are
designed to provide storage and data access facility to geo-
distributed sites. However, in these systems, users cannot selec-
tively publish datasets. More importantly, shared datasets always
need to be stored via the aggregate storage interface, CFS [11]
allows the read-only access to shared data whereas, read-only
access is not aligned with collaboration activities. The file system
unification studies, including WheelFS [30], UnionFS [18] and

GBFS [28], are focused on providing a full-featured file sys-
tem atop deployed file systems. However, they do not provide
collaboration-oriented features, such as data sharing control and
advanced data discovery services.

Another important factor of the scientific collaboration is tight
coupling to POSIX interface. Traditionally, most scientific appli-
cations have been written to store and retrieve datasets using
POSIX-compatible file systems [34]. Introducing a new interface
for the purpose, e.g., relational databases [3], requires costly
migration of existing datasets and unnecessary learning hassles
to scientists. In addition, scalable and efficient scientific discovery
and search services, e.g., extracting desired datasets from billions
of file system entries, are becoming an important component
in HPC. Recent studies, such as VSFS [34], Klimatic [10], and
TagIt [15], integrated such data management services at the file
system layer, instead of deploying additional database systems.
Providing the data management services are also important in
collaboration environments, because it can eliminate unneces-
sary data transfers between facilities by quickly identifying and
extracting datasets of interest.

SciSpace provides a virtual collaboration workspace to facil-
itate scientific collaborations. The collaboration workspace pro-
vides common data visibility and also supports the advanced
data discovery services in a high-speed network connectivity.
It is crucial to present a single pathname to view and share a
dataset, even when multiple data centers or sites participate in
the collaboration. Moreover, the collaboration workspace should
support advanced data discovery services, e.g., attribute-based
file search queries, to effectively retrieve desired datasets and
avoid unnecessary data transfers. In addition, it is common that
a scientist participates in multiple collaborations [32]. To the
best of our knowledge, none of existing systems directly support
multiple collaborations, which we address via providing template
namespace. SciSpace offers a gluing POSIX-compliant thin inter-
face atop dissimilar file systems from different geo-distributed
HPC data centers.

6. Conclusion

The increasing collaborations among geospatial data centers
require a notion of the common workspace, where all collabo-
rators can easily view and share data. In this work, we propose
SciSpace, a Scientific Collaboration Workspace which offers a
virtually unified common workspace to collaborators in multi-
HPC data center collaborations. SciSpace supports native-data
access to achieve high-performance via metadata export proto-
col. Scientific discovery service reduces the scientific workflows
by efficiently extracting the desired datasets via offering search
query-like utility. We evaluated SciSpace on top of two small-
scale geo-distributed HPC data centers connected via high speed
network such as Infiniband and equipped with Lustre. We also
emulated a real climate science collaboration scenario and the
evaluation endorses the usefulness of the SciSpace.
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