
A programmable shared-memory system for an array of processing-in-
memory devices

Sangkuen Lee1 • Hyogi Sim1
• Youngjae Kim2

• Sudharshan S. Vazhkudai1

Received: 3 January 2018 / Accepted: 20 August 2018 / Published online: 30 August 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Processing in memory (PIM), the concept of integrating processing directly with memory has been attracting a lot of

attention, since PIM can assist in overcoming the throughput limitation caused by data movement between CPU and

memory. The challenge, however, is that it requires the programmers to have a deep understanding of the PIM architecture

to maximize the benefits such as data locality and parallel thread execution on multiple PIM devices. In this study, we

present AnalyzeThat, a programmable shared-memory system for parallel data processing with PIM devices. Thematic to

AnalyzeThat is a rich PIM-aware data structure (PADS), which is an encapsulation that integrally ties together the data, the

analysis tasks and the runtime needed to interface with the PIM device array. The PADS abstraction provides (i) a

sophisticated key-value data container that allows programmers to easily store data on multiple PIMs, (ii) a suite of parallel

operations with which users can easily implement data analysis applications, and (iii) a runtime, hidden to programmers,

which provides the mechanisms needed to overlay both the data and the tasks on the PIM device array in an intelligent

fashion, based on PIM-specific information collected from the hardware. We have developed a PIM emulation framework

called AnalyzeThat. Our experimental evaluation with representative data analytics applications suggests that the proposed

system can significantly reduce the PIM programming effort without losing its technology benefits.

Keywords Programmable devices � Storage systems � Processing-in-memory � Big dataprocessing

1 Introduction

Processing-in-memory (PIM) is a well-known concept of

integrating processing units (cores) with memory devices

in order to reduce memory latency and increase memory

bandwidth [1]. PIM was originally introduced more than a

decade ago, with several studies showing its potential

advantages in various applications such as knowledge

discovery, scientific computing, image processing and

databases [2–6]. However, due to the difficulty in the

heterogeneous manufacturing process of logic and mem-

ory, so far, PIM has not been widely adopted in commodity

systems [7].

The preliminary version of the paper was published in the

Proceedings of the IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID) (2017).

This manuscript has been authored by UT-Battelle, LLC

under Contract No. DE-AC05-00OR22725 with the U.S.

Department of Energy. The United States Government retains

and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a

non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government

purposes. The Department of Energy will provide public

access to these results of federally sponsored research in

accordance with the DOE Public Access Plan (http://energy.

gov/downloads/doe-public-access-plan).

& Youngjae Kim

youkim@sogang.ac.kr

Sangkuen Lee

lees4@ornl.gov

Hyogi Sim

simh@ornl.gov

Sudharshan S. Vazhkudai

vazhkudaiss@ornl.gov

Extended author information available on the last page of the article

123

Cluster Computing (2019) 22:385–398
https://doi.org/10.1007/s10586-018-2844-1(0123456789().,-volV)(0123456789().,-volV)

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2844-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2844-1&domain=pdf
https://doi.org/10.1007/s10586-018-2844-1

Recently, there has been a renewed interest in PIM from

academia and industry [8]. Emergence of advanced 3D

memory allows the stacking of memory chips atop a pro-

cessing unit (e.g., GPU), enabling processing near memory,

e.g., TOP-PIM [9] that was put forward by AMD. Even

without 3D memory, specialized PIM devices have been

prototyped by Micron in their ‘‘Automata Processor’’ in

November 2013, which is a DRAM chip with an array of

processors [10]. NVRAM such as PRAM [11], memris-

tors [12], and STT-MRAM [13] is expected to replace

DRAM as it is non-volatile and power-efficient. PIM

architectures can also employ such emerging memory in

place of DRAM. However, since NVRAM is limited in

write cycles, the write frequency on the memory needs to

be carefully controlled.

Exploiting PIM architectures has potential advantages

for processing big data in terms of both energy efficiency

and processing time [7, 14]. Not only can multiple PIM

cores process data in a parallel fashion, but each PIM core

can also achieve higher data processing throughput than

commodity systems by accessing data stored in its corre-

sponding local memory device with lower

latency [9, 14, 15]. The concept of PIM is now also

acknowledged to be useful in extreme-scale systems, where

power consumption is increasingly becoming a significant

design constraint.

For example, the U.S. Department of Energy’s (DOE)

CORAL consortium is deploying three O(100) petaflops

systems, SUMMIT, SEIRRA and AURORA systems at

Oak Ridge National Laboratory (ORNL), Lawrence

Livermore National Laboratory (LLNL) and Argonne

National Laboratory (ANL), respectively in the 2018-2019

timeframe, which are expected to consume in the range of

10-13MW of power. These systems will be equipped with

deep memory tiers ranging from tens of GBs of high-

bandwidth memory (HBM), several PBs of DRAM and

persistent memory. In such systems, DRAM is a significant

source of power consumption. The DOE’s future exascale

system in 2023 is expected to be built within an energy

envelope of 20MW. At exascale, it is widely expected that

the cost of data movement between the deep memory tiers

will rival the cost of computation itself [16]. While tech-

nologies such as HBM and persistent memory help alle-

viate this concern, PIM and processing near memory can be

a significant step in this direction as well.

However, it is a significant challenge to integrate PIM

architectures into extant user application software. Pro-

gramming the PIM architecture can be a non-intuitive task

for users, since it is necessary to properly distribute data

and tasks to multiple PIM devices to fully take advantage

of data locality and parallelism of the PIM devices [9]. If

memory allocation and concurrency control are not

accomplished properly, efficiency and scalability of the

application can significantly decrease, due to data

skew [17] and massive remote access [18].

To address these challenges, we present AnalyzeThat, a

programmable shared memory system for PIM devi-

ces [19]. The system provides an abstraction for parallel

data processing with PIM devices, which allows pro-

grammers to focus on the functionality of their programs

and not on the management of data placement and thread

concurrency. More specifically, the abstraction is provided

as a PIM-aware data structure (PADS), which is a collec-

tion of key-value pairs distributed over multiple PIM

devices. Programmers load their data into the PADS

objects and execute the workflow of data analytics appli-

cations with PADS parallel operations. Thereafter, Ana-

lyzeThat’s runtime is responsible for making decisions to

efficiently process the PADS parallel operations on a sys-

tem having an array of PIM devices. The decisions (e.g.,

how to distribute key-value pairs and which PIM to offload

a task to) can be made based on PIM-specific information

that is collected from hardware devices. For such a capa-

bility, AnalyzeThat exploits operating system and hard-

ware support (e.g., device driver and global address space).

In addition, in order to give more control to programmers

to achieve generality of PIM programming, a low-level

PIM programming library that resembles POSIX pthread

APIs is provided as part of the AnalyzeThat library suite.

Contributions The contributions of AnalyzeThat are as

follows. First, we identify the support required from the

operating system and the hardware. Based on that, we

present fundamental kernel and user-level software that are

necessary for providing PIM programming capability to

users, including a PIM device driver and a low-level PIM

programming library. Second, we present a PIM-aware

data structure (PADS) and PADS operations to lower the

entry barrier for programming with PIM-augmented

architectures, without losing the benefits of such an

architecture. Further, we present techniques for minimizing

the overhead of the executing operations. Third, we show

how AnalyzeThat can be exploited for various data anal-

ysis applications such as statistics, text-processing and

graph-processing, via an emulation platform. Our experi-

mental results confirm that a wide range of data analysis

applications, implemented using AnalyzeThat’s PADS, can

provide better performance compared to using a host

processor.

2 Related work

Recent studies have identified that a PIM architecture suits

large-scale data analysis workloads due to its parallelism

and fast memory access [7, 14, 20]. However, despite the

significant potential, the weak support for a high-level

386 Cluster Computing (2019) 22:385–398

123

programming interface brings new challenges. One solu-

tion is to extend the existing NUMA (non-uniform memory

access) library to manage the PIM devices and allow pro-

grammers to precisely control each one of them, e.g.,

allocating space and executing a kernel on a PIM device.

However, it requires a deep understanding of hardware-

specific details and may hinder programmers from focusing

on the application logic itself. OpenCL [21], which pro-

vides a generic interface for various accelerators, currently

does not support the PIM architecture. More importantly,

the OpenCL API still requires programmers to understand

the architecture of the accelerator hardware.

MapReduce [22] has been widely adopted to write

parallel data analysis applications, not only on commodity

cluster systems [23] but also on shared-memory machi-

nes [24] and GPU augmented systems [25]. Spark [26]

provides a powerful distributed data abstraction, RDD,

which exploits memory space across cluster nodes and

provides a similar interface to MapReduce. Several studies

have shown the potential of performing MapReduce

workloads on PIM architectures [7, 27]. However, these

studies primarily address the performance impact of the

PIM architecture, but not the software architecture and

usability, e.g., the runtime system to orchestrate the data

placement and code execution.

3 AnalyzeThat programmable system

Here, we discuss our key design principles, and provide the

architectural overview of the AnalyzeThat system.

3.1 Goals

Easy programming Interface Our main objective is to

provide an easy and effective programming interface for

PIM-augmented systems, so that users can easily program

the system without having to understand system-specific

details such as memory management, thread operation, and

non-uniform memory access latency.

Reduce data movement The location of the data, i.e.,

which PIM device it resides on, determines the data

movement cost, and it is expected that the data movement

cost will compete with computation cost. The reason being,

the analysis kernel running on a particular PIM core needs

to fetch the data from the remote PIM device if it is not on

its local memory. Thus, our system aims to minimize the

data movement cost between the host and the PIM devices,

and across the PIM devices during the application execu-

tion. In addition, it is necessary to optimize data placement

by factoring in PIM-specific information, such as the

computing load and memory usage, which will affect

performance.

Programming flexibility and generality Hiding details

such as how the PIM devices are used from the program-

mers can improve programmability. However, it is also

necessary to give advanced programmers more controls

(e.g., manually place a piece of data object or offload a task

to a specific PIM device). Thus, we also aim to provide a

set of low-level PIM programming library for this purpose.

3.2 Overview

We envision AnalyzeThat as a programmable shared

memory system atop an array of PIM devices, in order to

process data in-situ, on the memory device where they

already reside. We argue that such an approach helps

minimize data movement costs on future systems. Figure 1

depicts the interactions between various components of

AnalyzeThat.

Array of PIM devices At the lowest level is an array of

PIM devices, capable of processing. As we will discuss in

Sect. 4.1, emerging hardware technologies support a single

shared memory address space for a node composed of

general CPUs and compute accelerators such as PIM,

where any core can globally access any memory

region [28, 29]. The PIM device can either be 3D stacked

with memory chips layered atop the logic chip on the same

die or a discreet PIM device with an embedded controller.

PIM device driver We have developed a first order

implementation of a device driver that each PIM device needs

to support in order to realize the functionality needed in the

AnalyzeThat system. In our implementation, the device driver

is responsible for providing the communication path between

the PIM hardware and the higher-level components in Ana-

lyzeThat, maintaining PIM-specific internal information (e.g.,

wearout, data load) that will be queried for data placement,

task offloading and data segment expansion.

Low-level PIM programming library Atop the PIM array

and the device driver is a low-level PIM programming library,

Fig. 1 The hardware and software architecture of AnalyzeThat. PC

denotes the PIM-core

Cluster Computing (2019) 22:385–398 387

123

which gives direct control of PIM devices to programmers,

such as allocating PIM memory and offloading a task to a

PIM device. An advanced programmer can implement his

application directly using the low-level library.

PADS (PIM-aware data structure) The PADS library

provides an easier way of programming with PIM devices.

PADS provides an object-oriented abstraction that tightly

couples a data object and its operations. Specifically,

PADS provides an abstraction of a key-value container and

hides hardware-specific details (e.g., a PIM location) from

programmers. In addition, the PADS key-value container

supports a suite of parallel operations, such as map() and

reduce(), which can be used to manipulate the key-value

dataset in parallel. For instance, a programmer can create a

PADS object and populate it from an input file. The PADS

library then transparently distributes the input data across

multiple PIM devices based on a data placement policy.

Thereafter, the programmer can perform data manipulation

in parallel by invoking the PADS operations.

Runtime environment Behind the PADS abstraction, a

runtime handles the hardware-specific details such as data

distribution and task execution across the PIM array. For

this, the runtime periodically collects the status of each PIM

device using the low-level library and the device driver.

Based on the device status, the runtime dynamically makes

decisions on data and task load distribution (Table 1).

AnalyzeThat utilizes the PIM cores to process the data

in parallel. Together, these constructs provide a very

potent, programmable shared memory abstraction for in-

situ data analytics atop an array of PIM devices.

4 AnalyzeThat low-level framework

The low-level framework (Fig. 1) within AnalyzeThat

consists of an array of PIM devices, operating system

including the PIM device drivers and the low-level PIM

userspace APIs. In particular, the high-level programming

interface of AnalyzeThat (PADS, Sect. 5) is built upon a

unified shared memory abstraction across heterogeneous

memory devices, i.e., main memory and PIM memories

that this low-level framework provides.

4.1 Hardware architecture

Each PIM device in AnalyzeThat is composed of a dedi-

cated computing unit (PIM core), a set of programmable

registers and memory chips (PIM memory). The PIM core

is a fully programmable low-power processor similar to

ARM processors [30, 31]. This allows any general program

to be executed on the devices and, therefore, grants more

flexible programming than FPGA-based accelerators [32].

However, due to the difference in the instruction set

architectures between the host CPU and the PIM core, the

target binary code that is to be executed on the PIM core

should be compiled and built separately with a supporting

compiler. In addition to general programmability, each

PIM core contains its own hardware cache and MMU

(Memory Management Unit), and runs a firmware to con-

trol the internal hardware operations. The programmable

registers can be read and written by host applications to

initiate a task execution or to fetch runtime information,

e.g., memory duty cycles. Such information is used by the

AnalyzeThat runtime (Sect. 6).

As shown in Fig. 1, multiple PIM devices are connected

to a single host via a fast switch interconnect, i.e., PCI

Express. AnalyzeThat exploits the emerging memory

interconnect protocol, i.e., Cache Coherent Interconnect for

Accelerators (CCIX) [28], which allows cache coherent

accesses across heterogeneous memory devices from dif-

ferent processors and accelerators. Note that CCIX proto-

col does not require any modifications to existing system

software or operating systems, because the protocol is fully

implemented in hardware and firmware [28]. The coherent

memory access protocol and the fast switch interconnect

allow host CPUs to directly access the PIM memories

Table 1 Example APIs of low-level PIM library in C and high-level PADS library in C??

Low-

level

void* pimmalloc(size_t size, int pim) Allocates size bytes of memory in PIM device pim

void pimfree(void* addr) Frees memory of address addr

int pimexec_exec(pimexec_data_t* pe) Initiate offloading of a user-defined function

int pimexec_wait(pimexec_data_t* pe) Block the current thread until the execution completes

PADS void PADS.import(char* file, parser_t* pf) Import data from a file using a parser function pf

void PADS.map(PADS& out, mapper_t* mf, void*
arg)

Performs a user-defined map function mf and stores results in

out

void PADS.reduce(PADS& out, reducer_t* rf,
void* arg)

Performs a user-defined reduce function rf and stores results

in out

void PADS.export(char* file) Export data into file

pimexec_data_t is a record type that encapsulates all information regarding a code execution on a PIM core

388 Cluster Computing (2019) 22:385–398

123

without having to explicitly transfer data between the host

and the PIM memories. Similarly, a PIM core can access

not only its own local PIM memory but also other remote

PIM memories and DRAM on the host. Overall, this shared

memory abstraction from the hardware enables us to pro-

ject a consistent virtual address space to both the offloaded

PIM task and its parent application on the host, e.g., a

memory pointer can be shared between them, and greatly

facilitates application development.

4.2 PIM device driver

In addition to its capability as a memory storage device, the

PIM device features its own processing power. To exploit

the processing power, e.g., execute a task using a PIM core,

a host software needs to communicate with a PIM device,

which requires access to the programmable registers of the

PIM device. The PIM device driver primarily assists

userspace programs to allocate memory space and also to

access the programmable registers by providing a memory-

mapped I/O interface. Specifically, during system initial-

ization, the device driver detects available PIM devices that

are connected to the host. For each PIM device, the device

driver then creates a dedicated device file, i.e., /dev/

pimN, and /proc entries, i.e., /proc/pim/pimN/ on the

host. Also, a set of ioctl() operations through the device

files are supported for userspace applications. For instance,

to allocate memory space on a specific PIM device (e.g.,

40 KB memory allocation on the first PIM device), an

application first opens the device file (e.g., /dev/pim0)

and invokes the ioctl() system call with a predefined

operation id (e.g., PIM_IOC_GETPAGES) and the amount

of requesting space in the number of pages (e.g., 10).

Similarly, to initiate a task execution on a PIM device, the

application invokes ioctl() with a pointer to a structure

containing target function and argument addresses, and a

dedicated operation id (e.g., PIM_IOC_EXECUTE). In

addition, the device driver supports ioctl() operations that

allow host applications to access PIM-internal runtime

information such as PIM core utilization and memory

usage. In our design, the physical space allocation of PIM

memory is managed by device driver. Current allocation

status of each PIM memory can be acquired by reading the

/proc entry.

4.3 Low-level PIM library

The low-level PIM library of AnalyzeThat is layered atop

the PIM device driver and consists of a set of functions that

allow users to manually control PIM devices. Its usage is

similar to that of POSIX dynamic memory and pthread

functions. The library primarily provides two functionali-

ties—memory management and task offloading, by

wrapping the low-level ioctl interface. For memory man-

agement, it provides pimmalloc() and pimfree(). Program-

mers can allocate memory using the pimmalloc() function

similar to the standard malloc() function, with an additional

argument of pim_id to specify a PIM device that the space is

allocated from. Similar to the malloc() function that inter-

nally invokes the brk() system call to extend the data seg-

ment if needed, the pimmalloc() requests the device driver

via the aforementioned ioctl() interface to allocate memory

pages and expand the data segment. Note that the device

driver globally synchronizes memory allocation requests

from multiple applications, and grants applications access to

acquire a particular memory region. To offload tasks to the

PIM cores, the library provides pimexec_exec(). Program-

mers can offload a function to a specific PIM core by pro-

viding the pointer of the function and a pim_id. For

functions running in parallel on PIM cores, programmers

can synchronize the tasks using the pimexec_wait(), which

forces a wait for the specified thread to terminate.

Although the low-level library could have been imple-

mented with an existing heterogeneous computing framework

(i.e., OpenCL [21]), we adopt a PIM-specific framework

since OpenCL is known to sacrifice the performance to pro-

vide portability among different hardwares [33].

5 PADS: AnalyzeThat programming
interface

While the low-level library (Sect. 4.3) provides direct

access to the PIM devices to advanced programmers, the

PIM-aware data structure (PADS) is a higher-level data

abstraction that hides the intricate details of the hardware.

Thematic to PADS is the encapsulation of data, the anal-

ysis to be performed on the data and the mechanisms to

overlay both the data and the analysis on the PIM device

array. Users only need to create and manipulate the data

structure in order to take advantage of the PIM function-

ality, while remaining oblivious to the complexity of the

hardware. To this end, the PADS abstraction is composed

of two components, namely the key-value container and

parallel operations.

5.1 PADS key-value container

We have chosen to represent the data within PADS using a

key-value container, i.e., data is stored as key-value pairs.

Key-value pair representation of data is simple yet generic

enough to be used for various data analysis applications.

Various data analysis systems and modern databases adopt

key-value pair representation [22, 34, 35]. Internally, a

PADS key-value container consists of n sub-containers,

each of which is associated with a single PIM device. To

Cluster Computing (2019) 22:385–398 389

123

use the PADS data structure, an application first creates a

PADS key-value container object (referred to as a PADS

object, hereafter). Then, the application can simply put

key-value pairs into the PADS object, similar to using other

familiar data containers, e.g., C?? queue, set, map, etc.

The application does not have to specify the sub-container

that internally stores the key-value pair. Instead, the Ana-

lyzeThat runtime transparently selects a sub-container

based on a data placement policy, as we will explain fur-

ther in Sect. 6.2.

5.2 PADS operations

PADS supports a set of operations that run on the associ-

ated PADS object. This includes operations that can

facilitate data analysis tasks on the PADS object. Many

data analysis tasks in practice take input data from files.

Manually parsing a file and converting raw data to a

structured record set is a tedious, error-prone task. PADS

provides an import() function that automatically parses a

given input file and populates a PADS object with the

parsed key-value pairs. It supports many popular formats

such as txt, csv and netCDF, and a user can also specify his

own parser function. Similarly, the export() function writes

all key-value pairs in a PADS object to a file in a specified

format. In addition, PADS allows users to perform cus-

tomized data processing via the popular map() and reduce()

interface [22]. The map() function, which is a member

function of the PADS object, takes a user-defined function

and an output PADS object as arguments. The user-defined

function is executed on every key-value pair in the PADS

object. The reduce() function groups key-value pairs in a

PADS object based on their keys and produces a single,

reduced key-value pair for each key group.

Figure 2 illustrates an example program that uses the

PADS library. We assume that input data is stored in a file

(input.csv), and each record in the file is a pair of a string

key and an integer value, i.e, \key; value[. The program

is to double (i.e., 9 2) each number and, for each distinct

key, sum all the numbers sharing the same key. First, the

program creates three PADS objects, input for input data,

mapped for intermediate data, and reduced for final result

data (line 12). To populate key-value pairs from the input

file, it simply calls the import() function which automati-

cally parses the csv file and populates input (line 14). Next,

it invokes the map() function with the user-defined function

timesTwo() (line 15). During this map() processing, the

timesTwo() function, which doubles and updates a given

value (line 2), is internally called for every key-value pair

in the PADS object, input. To calculate the sum of numbers

grouped by keys (line 16), the program calls reduce() with

the custom reduce function, sumByKey(). The final result is

stored to a file by the export() function (line 17). Note that

the PADS abstraction hides the hardware-specific details,

and a programmer does not need to perform manual opti-

mizations regarding the underlying PIM architecture.

6 AnalyzeThat runtime

When programming with the high-level PADS abstraction

(Sect. 5), users can focus on writing application logic itself

without having to understand the PIM hardware architec-

ture. Below the PADS abstraction, the AnalyzeThat run-

time transparently handles PIM hardware-specific details,

i.e., data distribution and parallel task execution across the

PIM array. Figure 3 shows the internal architecture of the

runtime. Users can simply populate a PADS key-value

container and perform parallel operations, e.g., map() and

reduce(). The runtime consists of the device manager,

placement manager and task manager, and internally han-

dles all PADS operations with regard to the underlying

PIM hardware architecture.

1 // user-defined map function
2 void timesTwo(char* k, char* v, PADS& pd, void *arg) {
3 pd.insert(k, stoi(v) * 2);
4 }
5 // user-define reduce function
6 void sumByKey(char *k, char *v, char *out, void *arg) {
7 sprintf(out, "%d", stoi(out) + stoi(v));
8 }
9 // main program

10 int main(void) {
11 PADS input, mapped, reduced;
12

13 input.import("input.csv");
14 input.map(mapped, timesTwo, NULL);
15 mapped.reduce(reduced, sumByKey, NULL);
16 reduced.export("result.csv");
17 }

Fig. 2 Example of using PADS library in a C?? program

Fig. 3 Users can write applications with the PADS library, and

AnalyzeThat runtime transparently manages PIM-specific details

390 Cluster Computing (2019) 22:385–398

123

6.1 Device manager

To optimize the performance, the runtime should consistently

keep track of the device status. For instance, the runtime

should know which PIM core is busy before assigning tasks

to the PIM device. Likewise, to evenly distribute data load,

the runtime needs to track which PIM memory is most- or

least-populated. To this end, the Device Manager in the

runtime periodically gathers PIM device-specific information

and stores each device’s utilization statistics into a global

device status table in memory. The records in the device

status table are updated every 3 s, which is tunable. In par-

ticular, device-specific information, e.g., memory wearout

status and PIM core utilization, is directly fetched from the

device via ioctl() system call (Sect. 4.3). The device utiliza-

tion statistics can be gathered directly from the PADS objects.

The device status table is referenced by the Placement

Manager and the Task Manager for making runtime decisions

such as data placement and PIM thread dispatch, respectively.

6.2 Placement manager

When an application inserts a key-value pair into a PADS

container (e.g., pd.insert() in Fig. 2), the Placement Manager

selects a sub-container that is associated with a single PIM

device. Particularly, the decision is made based on the fol-

lowing three objectives: (1) Balancing the load evenly

across the PIM array. Load imbalance can slow down the

overall execution time, which is determined by the com-

pletion time of the slowest PIM task. (2) Grouping key-value

pairs in a single PIM device based on their keys. The re-

duce() operation runs faster if the key-value pairs are already

grouped by their keys. In addition, the absence of proper

aggregation may incur frequent remote PIM accesses, which

can lead to a significant performance drop. (3) Storing

output key-value pairs in a local PIM memory. Again,

accessing local PIM memory is substantially faster than

accessing remote PIM memory. Moreover, it eliminates

potential lock contention among multiple PIM threads.

Based on these objectives, the Placement Manager imple-

ments the following three static data placement policies.

Round-Robin (RR) In RR, the runtime selects a PIM

device for storing data in a circular, round-robin order.

Each PIM device pi maintains a counter ci, which is ini-

tialized to i. When a PIM thread running on pi inserts a

key-value pair, the runtime stores the key-value pair in

pmodðci;nÞ and increases the counter ci by 1. While RR

evenly distributes data across the PIM devices, it does not

aggregate key-value pairs for reducing the remote access.

Local-assignment (LA) LA always places a key-value

pair to the same PIM device pi that a requesting PIM thread

is running on. This can maximize the local PIM memory

accesses but does not guarantee an even data distribution.

Hashing (HS) HS uses a hash function h(k) ? [0,

n - 1], where n is the number of PIM devices, to select a

PIM device to store a key-value pair \k; v[. This

effectively aggregates key-value pairs based on the key, but

a skewed distribution of the data keys may directly lead to

a load imbalance across the PIM array.

Algorithm 1: Dynamic (DY) data placement policy.

Input: (k, v) // key-value pair to insert
Output: pi // PIM device ID

1 if check avoid(hashing(k))==false then
2 return hashing(k);
3 else
4 if check avoid(plocal)==false then
5 return plocal; // Local PIM ID
6 else
7 if check avoid(pmin)==false then
8 return pmin; // PIM ID with the min. key-value pairs
9 else

10 return pmin wear; // PIM with the min. wearout level
11 end
12 end
13 end
14 // definition of check avoid()

Input: pi // PIM device ID
Output: true or false

15 if pi==pmax then
16 return true;
17 else
18 with probability (1-w),
19 goto skip wearout check;
20 if pi==pmax wear then
21 return true;
22 end
23 skip wearout check:
24 return false;
25 end

Cluster Computing (2019) 22:385–398 391

123

Although these three static policies can optimize an

individual data placement objective, they cannot adapt to

the workload changes in practice. Therefore, the Placement

Manager provides an additional data placement policy,

Dynamic, which dynamically balances the three objectives.

Dynamic (DY) DY is a hybrid approach that merges the

other three policies, and tries to avoid the load imbalance

and skewed memory utilization based on the runtime sta-

tus. Specifically, DY first works identical to one of three

data placement policies, i.e., RR, LA or HS. However, if a

decision of the chosen data placement policy violates

predefined conditions, DY tries the next data placement

policy to select a target PIM device. This algorithm is

shown in Algorithm 1. The check_avoid() function deter-

mines whether a given PIM ID violates any predefined

conditions, i.e., it returns true if the given PIM device

contains the most number of key-value pairs. In addition,

for NVRAM-based PIM devices, DY can distribute data in

a wearout-aware fashion to prevent early device retire-

ments. In particular, based on the value of the tunable

parameter w (0�w� 1), DY avoids the data placement to

the PIM device with the high wearout-level. For example,

with w ¼ 0:5, the check_avoid() function factors the device

wearout when determining the target PIM locations for the

half (50%) of the data.

6.3 Task manager

Task Manager is responsible for the execution of the PADS

application program by utilizing the PIM-architecture, i.e.,

fast local memory access and parallelism. Specifically, to

maximize the local PIM memory access, the Task Manager

spawns a PIM thread on every PIM device. Each PIM

thread then executes the user-defined PADS operation,

which is tightly associated with the PADS key-value pairs

in the local PIM memory. Internally, the runtime exploits

the low-level PIM library functions (Sect. 4.3) to accom-

plish task offloading. In addition, the Task Manager also

optimizes the PADS operations based on workload char-

acteristics. For instance, the reduce() operation gathers

results from all PIM devices and stores into a single PIM

device. For certain workloads, such a global reduce()

operation 5.2 can incur a significant contention in the

destination PIM device, where result data are collected. To

mitigate this contention, the Task Manager can perform a

Local Reduce (LR), in which each PIM thread performs the

reduce() operation locally by creating an intermediate

PADS object in the local PIM memory. This effectively

eliminates remote PIM memory accesses. After the Local

Reduce, the global reduce() takes the sorted key-value

pairs in the intermediate PADS objects and creates the final

result. As we will see later (Sect. 7), the Local Reduce can

significantly reduce the concurrent remote PIM memory

accesses, particularly when many key-value pairs across

the PIM array share the same keys.

7 Evaluation

Implementation We have implemented an emulation

framework for AnalyzeThat using 5000 lines of C/C??

code. We emulated the PIM device by preallocating the

system memory and binding threads to cores. To emulate

the different access characteristics of the PIM memory, we

introduced delays according to the memory access types,

i.e., access from the host core or the PIM core. Specifically,

a thread stays in a busy loop until the processor timestamp

counter (TSC) reaches a desired value. The delay is com-

puted based on a relative delay from a baseline when the

PIM core accesses its local memory. When the PIM core

accesses remote PIM memory, we add a delay corre-

sponding to the time taken to access remote memory in a

NUMA node. Our measurements of local and remote

memory bandwidth on a NUMA node are 6733.7 MB/s and

4567.5 MB/s, respectively, i.e., remote memory is 32.2%

slower than local memory. When the PIM accesses the

remote memory, either the DRAM on the host or memory

on another PIM, we add a 32% delay. Also, in our setup the

DRAM access is 49 slower than PIM’s local memory

access [9].

Testbed Our test machine comprised of two processors

(1.8 GHz Intel Xeon E5-2603, each with four cores),

64 GB RAM and ran the RedHat Enterprise Linux 6.5 with

the 3.1.22 kernel. We dedicated one core for the host-side

processing and emulates up to seven PIM devices with the

remaining seven cores. For each emulated PIM device, we

preallocated 4 GB of host memory and decreased the clock

speed of the core to 1.2 GHz.

7.1 Programmability of PADS

First, we demonstrate the effectiveness of the PADS

library. Using the PADS library, we implemented five

representative big data applications in a few tens of lines of

code, e.g., 65 lines at most for PageRank. Here, we briefly

explain each application and our implementation.

Group By Aggregation (GAG) computes the statistical

summary, e.g., the total sum and average value from

numerical datasets. Each line of the input file is composed

of key-value pairs, delimited by a comma (‘‘,’’). The pro-

gram first parses the input file and produces a set of key-

value pairs. It then performs calculations by grouping the

key-value pairs on the same key. Figure 4a shows the code

snippet of our implementation. In the code snippet, agg-

Map() function appends ‘‘1’’ to the value of each key-value

pair in data, and inserts the key-value pair into mapped.

392 Cluster Computing (2019) 22:385–398

123

Then, aggReduce() performs calculations by aggregating

all values in mapped based on their keys and stores the

result in result.

Aggregation (AG) works similar to GAG but calculates

the global statistical summary, i.e., not based on keys. We

implemented AG with a slight modification to the GAG

program. In particular, we replace key in every key-value

pair with the same value (e.g., ‘A’) in aggMap(), to make

all key-value pairs share the same key. Therefore, aggRe-

duce() calculates the statistical summary of all key-value

pairs.

Grep (GR) is a string matching application that prints

lines containing a matching keyword from the input file. In

our implementation (Fig. 4b), each line of the input file is

parsed as a \line no; text[. grMap() passes a key-value

pair to the output target, only if the text contains the

keyword. Note that the reduce operation is not used here.

WordCount (WC) counts the occurrences of each word

in the input text file. Each line is parsed as a

\line no; text[pair. wcMap() then generates

\word; 1[for each pair, which is appended to target.

sumByKey() in Figure 2 is used to aggregate the result.

PageRank (PR) computes the ranking scores of all nodes

in a graph dataset [36]. PR is an iterative algorithm and

more complex than the other workloads, as it requires four

user-defined functions (one parser, two map, and one

reduce functions). In Fig. 4d, we assume that each line of

the input file describes the edges between the nodes in a

graph, e.g., a line ‘‘2, 3 4’’ describes that the node ‘‘2’’ is

connected to the nodes ‘‘3’’ and ‘‘4’’ in the graph. graph-

Parser() loads the input data and assigns an initial

PageRank score (i.e.,‘‘1’’) to every node, which is appen-

ded to the original value with a delimiter (e.g., key=‘2’,

value=‘3 4 k1’). Then, PageRank scores are iteratively

updated as follows. First, prMap() equally distributes every

node’s PageRank score to its adjacent nodes. Second, for

each node, prReduce() computes a new PageRanks score

for the node by aggregating the scores distributed from

adjacent nodes. Next, the score of each node is adjusted by

the prMapAdjust() function. After the ith iteration, each

key-value pair in pr init½iþ 1� represents its adjacent

nodes and PageRank score of a given node (e.g., key=‘2’,

value=‘3 4 k0:125’) at the iteration.

For the rest of this section, we use these five applications

to study the performance of AnalyzeThat. In particular, for

AG and GAG, we synthetically generated the input data

consisting of 100 million entries (850 MB) with a normal

distribution. For GR and WC, we used a 6.4 GB text file

that concatenates contents of a wiki site [37]. For PR, a

DBLP dataset (8.6 MB) [38] with 317,080 nodes and

1,049,866 edges was used. Each experiment was repeated

five times, and we report the average with the 95% confi-

dence interval.

7.2 AnalyzeThat performance

Here, we compared the AnalyzeThat performance of run-

ning applications from Sect. 7.1 against a host-based

approach. For AnalyzeThat, we also evaluated four dif-

ferent data placement policies, i.e., Round-Robin (RR),

Hashing (HS), Local-Assignment (LA) and Dynamic (DY)

(Sect. 5).

Figure 5 shows the application runtimes of AnalyzeThat

and the host-based approach. The results are normalized to

1 // (a) Group-by-Aggregation and Aggregation
2 void aggMap(char *k, char *v, PADS& t) {
3 strcpy(new_val, v);
4 strcat(new_val, "1");
5 t.insert(k, new_val); // "A" instead of k for AG
6 }
7 char *aggReduce(char *k, char *v, char *reduced) {
8 tokenizer(v, head, tail, " ");
9 tokenizer(reduced, sum, int, avg, " ");

10 sum = stoi(sum) + stoi(head)
11 cnt = stoi(cnt) + stoi(int)
12 avg = (double) sum / cnt;
13 sprintf(reduced, "%d %d %f", sum, int, avg);
14 }
15 int main(void) {
16 PADS data, mapped, result;
17 data.import("input.txt");
18 data.map(mapped, aggMap);
19 mapped.reduce(result, aggReduce);
20 }
21 // (b) Grep
22 void grepMap(char *k, char *v, char *arg, PADS& t) {
23 if (strstr(v, arg))
24 t.insert(k, v);
25 }
26 int main(void) {
27 PADS data, result;
28 data.import("input.txt");
29 data.map(result, grepMap, "bob");
30 }
31 // (c) Word-Count
32 void wordCountMap(char *k, char *v, PADS& t) {
33 while ((token = strsep(&v, " ")) != NULL)
34 t.insert(k, 1);
35 }
36 int main(void) {
37 PADS data, mapped, result;
38 data.import("input.txt");
39 data.map(mapped, wordCountMap);
40 mapped.reduce(result, sumByKey);
41 }
42 // (d) Page-Rank
43 void prMap(char *k, char *v, PADS& t) {
44 // distribute the score to adjacent nodes
45 }
46 void prReduce(char *k, char *v, char *reduced) {
47 // aggregate scores from adjacent nodes
48 }
49 int main(void) {
50 pr_init[0].import("graph.txt");
51 for (i = 0; i < iter_no; i++) {
52 pr_init[i].map(pr_map[i], prMap);
53 pr_map[i].reduce(pr_reduce[i], prReduce);
54 pr_reduce[i].map(pr_adjust[i], prMapAdjust);
55 pr_init[i+1] = pr_adjust[i];
56 }
57 }

Fig. 4 Implementation overview of data analysis applications using

PADS library

Cluster Computing (2019) 22:385–398 393

123

the runtimes of the host-based approach. We observe that

AnalyzeThat with a single PIM (PIM(1)) is 15–30% slower

than the host-based approach with a single core (Host(1)).

Even though the PIM internal memory bandwidth is greater

than the host DRAM bandwidth, most workloads are

compute-intensive, and thus the more powerful host CPU

outweighs the higher memory bandwidth. However, Ana-

lyzeThat with two PIM devices (PIM(2)) outperforms the

host-based approach by 20–30%. In addition, AnalyzeThat

scales almost linearly as we use more PIM devices, except

for AG. For AG, the runtimes increase as more PIMs are

used due to its workload characteristics (Fig. 5a, c, d). In

addition, HS shows a different trend from the other policies

for the AG workload. This is because HS places all inter-

mediate data with the same key into a single PIM device.

Although this can eliminate a potential lock contention, all

reduce tasks are serialized regardless of the number of

available PIM devices. For GR, we observe little perfor-

mance variance across the different data placement

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

(a) Round-Robin (RR) (b) Hashing (HS)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

(c) Local-Assignment (LA) (d) Dynamic (DY)

Fig. 5 Comparison of

AnalyzeThat for different data

placement policies, without

Local Reduce. DY does not run

wearout-aware algorithm

(w ¼ 0). Host(1) refers to the

host with a single CPU, and

PIM(n) refers to n PIM devices

connected to a single host.

Runtimes of Host(1) for GAG,

AG, GR, and PR were 405.7,

356.8, 189.8, 44.1, and 1089.0 s,

respectively

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

GAG AG GR PR WC

N
or

m
al

iz
ed

 R
un

tim
e

(a) Round-Robin(RR)-LR (b) Hashing(HS)-LR

(c) Local-Assignment(LA)-LR (d) Dynamic(DY)-LR

Fig. 6 Performance impact of

Local-Reduce (LR) with

different data placement

policies. DY does not run the

wearout-aware algorithm

(w ¼ 0). Runtimes of Host(1)

for GAG, AG, GR, and PR were

405.7, 356.8, 189.8, 44.1, and

1089.0 s, respectively

Table 2 The test cases with different initial wearout distributions

across seven PIM devices

Case 1 Case 2 Case 3

Total (MB) 1000.00 1000.00 1000.00

Maximum (MB) 142.86 250.00 666.67

Minimum (MB) 142.86 35.71 0.00

Standard Deviation (MB) 0.00 77.15 243.98

394 Cluster Computing (2019) 22:385–398

123

policies. This is because GR is implemented only with

map() operations (Sect. 7.1) and not affected by the per-

formance variance of the reduce() operation, i.e., the lock

contention and skewed distribution of the intermediate

data.

7.3 Effects of enabling local-reduce technique

Next, we study the performance impact of the Local-Re-

duce (LR) technique, which aims to mitigate the overhead

from the lock contention during the reduce() operation.

Note that the previous experiment was conducted without

employing Local-Reduce. We run the same experiments of

the preceding section (Sect. 7.2), but with enabling Local-

Reduce. Figure 6 shows the result.

First, we observe significant performance improvement

in AG, for all data placement policies except HS. Local-

Reduce effectively mitigate the lock contention during the

reduce() operation by locally aggregating intermediate data

on each PIM device. However, AG with HS does not

benefit from Local-Reduce, because intermediate data is

already placed in a single PIM device without any potential

lock contention. Although Local-Reduce noticeably

improves the performance in most workloads (AG, GAG

and WC), it increases the runtime by 10–15% in PR,

regardless of the data placement policy. Note that Local-

Reduce is beneficial only when intermediate key-value

pairs from the map() operation are evenly distributed

across the PIM devices. However, intermediate data of PR

are rather skewed because the initial degree distribution of

the input graph follows the power-law distribution [39],

similarly to many real-world graphs. Therefore, performing

reduce() locally does not effectively reduce the size of the

intermediate data but introduces non-negligible overhead

from performing additional operations. We also observe

that Dynamic with Local-Reduce (DY-LR) consistently

performs better than RR-LR for all applications. In con-

trast, HS-LR and LA-LR performs worse than RR-LR for

workloads AG and PR, respectively. Note that DY-LR

performs the best in all applications except PR, for which

HS-LR outperforms DY-LR by 11% with seven PIM

devices (PIM(7)). However, compared to DY-LR, HS-LR

does not performs steadily over different workload

characteristics, e.g., HS-LR does not scale with the AG

workload. Therefore, we argue that DY-LR performs best

overall.

7.4 Impact of wearout-aware placement
algorithm

Next, we consider a PIM device with non-volatile memory,

which can have wearout issues, and study the effects of

wearout-aware data placement policy. Note that only DY is

wearout-aware among our four data placement policies

(Sect. 6.2). To validate the effectiveness of the wearout-

aware DY, we consider three different cases based on the

initial wearout distribution across the PIM array, as shown

in Table 2. Each case represents a different wearout status

of the PIM array after 1 GB of data has been written. For

instance, the data was evenly written across the PIM

devices in Case 1. In Case 2 and Case 3, 250 and

666.67 MB data was written to the most populated PIM

device, respectively. In Case 3, one PIM device was not

utilized at all during the population. We ran GAG and WC

workloads with DY-LR (Dynamic with Local-Reduce) data

placement with and without the wearout-awareness. Par-

ticularly, we study how application runtime and device

lifetime are affected by the wearout-awareness. For com-

paring the wearout, we measure the CV (Coefficient of

Variation)1 across the amount of data written to each PIM

device, after an application completes its execution.

Figure 7a shows that, for all tested cases, CV values

noticeably decrease when the wearout-awareness is

enabled. This confirms that DY-LR with the wearout-

awareness can effectively balance wearout levels across the

array by avoiding the use of the PIM device with the

highest wearout level. This will eventually prevent an early

retirement of a particular PIM device from an unbalanced

use. We also observe that enabling wearout-awareness in

Case 3 outweights the benefits in Case 2, due to the heavy

skewness of the initial data distribution in Case 3 (Table 2).

Figure 7b shows that the runtime overhead of the wearout-

awareness is 10% on average. This is because, with the

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Case 1 Case 2 Case 3

R
un

tim
e

(s
ec

.) GAG WA-off
GAG WA-on

WC WA-off
WC WA-on

 0
 50

 100
 150
 200
 250
 300
 350

Case 1 Case 2 Case 3

R
un

tim
e

(s
ec

.)

emitnuR(b)tuoraeW(a)

Fig. 7 Effects of enabling

wearout-awareness of the DY

data placement policy in three

test cases (Table 2). We used

seven PIMs and enabled Local-

Reduce (LR) for all tests

1 The CV is defined as the ratio of the standard deviation s to the

mean m of written data sizes across PIM devices. CV = s
m
.

Cluster Computing (2019) 22:385–398 395

123

wearout-awareness, the AnalyzeThat runtime has to peri-

odically collect internal PIM-specific information (e.g.,

current wearout status) from each PIM. Also, note that the

wearout-aware DY-LR performs comparable to other data

placement policies that are not wearout-aware (i.e, RR, HS

and LA). For instance, in Case 3 with WordCount (WC),

the wearout-aware DY-LR outperforms LA-LR, HS-LR,

and RR-LR by 1.8%, 8.1%, and 30%, respectively, with

seven PIM devices (PIM(7)).

8 Conclusion

PIM architectures can offer several advantages to data

analysis applications. However, there exists a high entry

barrier to programmers because of the complexity of the

hardware and the various new aspects it offers (e.g., data

placement, wearout-level, etc.), which need to be consid-

ered to take advantage of the architecture. We have

developed AnalyzeThat as a means to abstract such manual

efforts, and to provide an easy and efficient programming

platform to users. Specifically, it provides a high-level data

and programming abstraction, PADS (PIM-aware data

structure), which allows users to expose the PIM devices as

a key-value container, and apply a set of operations on the

container. The PADS abstraction further provides a run-

time system that collects internal information from the PIM

devices, and makes intelligent decisions such as dynamic

data placement on the PIM array. We have shown how

representative data analysis applications can be effectively

implemented using PADS. Our evaluation of AnalyzeThat

shows that it is viable, and can be used to develop complex

data analysis applications atop the PIM array.

Acknowledgements This research was supported in part by the U.S.

DOE’s Office of Advanced Scientific Computing Research (ASCR)

under the Scientific data management program, and the National

Research Foundation of Korea (NRF) Grant funded by the Korea

Government (MSIP) (No. 2015R1C1A1A0152105). The work was

also supported by, and used the resources of, the Oak Ridge Lead-

ership Computing Facility, located in the National Center for Com-

putational Sciences at ORNL, which is managed by UT Battelle, LLC

for the U.S. DOE, under the contract No. DE-AC05-00OR22725.

References

1. Kogge, P.M., Brockman, J.B., Sterling, T., Gao, G.: Processing in

memory: chips to petaflops. In: Workshop on Mixing Logic and

DRAM: Chips that Compute and Remember at ISCA, vol. 97

(1997)

2. Murphy, R.C., Kogge, P.M., Rodrigues, A.: The characterization

of data intensive memory workloads on distributed PIM systems.

In: Intelligent Memory Systems (2001)

3. Adibi, J., Barrett, T., Bhatt, S., Chalupsky, H., Chame, J., Hall,

M.: Processing-in-memory technology for knowledge discovery

algorithms. In: Proceedings of the DaMoN (2006)

4. Brockman, J.B., Thoziyoor, S., Kuntz, S.K., Kogge, P.M.: A low

cost, multithreaded processing-in-memory system. In: Proceed-

ings of the WMPI (2004)

5. Kang, Y., Huang, W., Yoo, S.-M., Keen, D., Ge, Z., Lam, V.,

Pattnaik, P., Torrellas, J.: FlexRAM: toward an advanced intel-

ligent memory system. In: Proceedings of the ICCD (2012)

6. Draper, J., Chame, J., Hall, M., Steele, C., Barrett, T., LaCoss, J.,

Granacki, J., Shin, J., Chen, C., Kang, C.W. et al.: The archi-

tecture of the DIVA processing-in-memory chip. In: Proceedings

of the SC (2002)

7. Pugsley, S.H., Jestes, J., Zhang, H., Balasubramonian, R., Srini-

vasan, V., Buyuktosunoglu, A., Davis, A., Li, F.: NDC: analyzing

the impact of 3D-stacked memory logic devices on MapReduce

workloads. In: Proceedings of the ISPASS (2014)

8. Scrbak, M., Islam, M., Kavi, K.M., Ignatowski, M., Jayasena, N.:

Processing-in-Memory: Exploring the Design Space. Springer,

Cham (2015)

9. Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J.L., Xu,

L., Ignatowski, M.: TOP-PIM: throughput-oriented pro-

grammable processing in memory. In: Proceedings of the HPDC

(2014)

10. Micron’s Automata: https://www.micronautomata.com

11. Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.-

C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-

L.: Phase-change random access memory: a scalable technology.

IBM J. Res. Dev. 52(4), 5 (2008)

12. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The

missing memristor found. Nature 453, 7191 (2008)

13. Driskill-Smith, A.: Latest advances and future prospects of STT-

RAM. In: Proceedings of the NVMW (2010)

14. Islam, M., Scrbak, M., Kavi, K.M., Ignatowski, M., Jayasena, N.:

Improving node-level MapReduce performance using processing-

in-memory technologies. In: Proceedings of the Euro-Par (2014)

15. Zhang, D.P., Jayasena, N., Lyashevsky, A., Greathouse, J.,

Meswani, M., Nutter, M., Ignatowski, M.: A new perspective on

processing-in-memory architecture design. In: Proceedings of the

SIGPLAN, ser. MSPC ’13, pp. 7:1–7:3 (2013)

16. Dongarra, J.: The international exascale software project road-

map. Int. J. High Perform. Comput. Appl. 25, 3–60 (2011)

17. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: SkewTune: mit-

igating skew in MapReduce applications. In: Proceedings of the

SIGMOD (2012)

18. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: scalable

MapReduce on a large-scale shared-memory system. In: Pro-

ceedings of the IISWC (2009)

19. Lee, S., Sim, H., Kim, Y., Vazhkudai, S.S.: Analyzethat: a pro-

grammable shared-memory system for an array of processing-in-

memory devices. In: Proceedings of the 17th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing.

IEEE Press pp. 619–624 (2017)

20. Scrbak, M., Islam, M., Kavi, K.M., Ignatowski, M., Jayasena, N.:

Processing-in-memory: exploring the design space. In: Proceed-

ings of the ARCS (2015)

21. OpenCL: The open standard for parallel programming of

heterogeneous systems. https://www.khronos.org/opencl/

22. Dean, J., Ghemawat, S.: MapReduce: simplified data processing

on large clusters. Commun. ACM 51(1), 107–113 (2008)

23. Hadoop, A.: Apache hadoop. http://hadoop.apache.org (2011)

396 Cluster Computing (2019) 22:385–398

123

https://www.micronautomata.com
https://www.khronos.org/opencl/
http://hadoop.apache.org

24. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix??: modular

MapReduce for shared-memory systems. In: Proceedings of the

MapReduce (2011)

25. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a

MapReduce framework on graphics processors. In: Proceedings

of the PACT (2008)

26. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,

I.: Spark: cluster computing with working sets. In: Proceedings of

the USENIX, vol. 10 (2010)

27. Pugsley, S.H., Jestes, J., Balasubramonian, R., Srinivasan, V.,

Buyuktosunoglu, A., Li, F., et al.: Comparing implementations of

near-data computing with in-memory MapReduce workloads.

IEEE Micro 34(4), 1 (2014)

28. Cache Coherent Interconnect for Accelerators (CCIX): http://

www.ccixconsortium.com

29. Nobis, S.: AMD’s Unified CPU & GPU Processor Concept

30. Loh, G., Jayasena, N., Oskin M. et al.: A processing in memory

taxonomy and a case for studying fixed-function PIM. In: Near-

Data Processing Workshop (2013)

31. ARM Cortex-A5: http://www.arm.com/products/processors/cor

tex-a/cortex-a5.php

32. Netezza Data Warehouse | IBM: https://www.ndm.net/dataware

house/IBM/netezza

33. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive perfor-

mance comparison of CUDA and OpenCL. In: 2011 International

Conference on Parallel Processing (2011)

34. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lak-

shman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels,

W.: Dynamo: Amazon’s highly available key-value store. In:

Proceedings of the ACM SIGOPS, vol. 41, no. 6 (2007)

35. Debnath, B., Sengupta, S., Li, J.: FlashStore: high throughput

persistent key-value store. In: Proceedings of the VLDB

Endowment, vol. 3, no. 1–2 (2010)

36. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank

Citation Ranking: Bringing Order to the Web. Stanford InfoLab,

Stanford (1999)

37. EnWiki.NET: Encyclopaedia Britannica Ultimate. http://www.

enwiki.net/

38. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data (2014)

39. Adamic, L.A., Huberman, B.A.: Power-law distribution of the

world wide web. Science 287(5461), 2115 (2000)

Sangkeun Lee received the B.S.

degree in computer science from

Korea Advanced Institute of

Science and Technology in 2005

and the Ph.D. degree in com-

puter science and engineering

from Seoul National University

in 2012. He joined Oak Ridge

National Laboratory in 2013. His

research interests include large-

scale graph mining and analyt-

ics, big data systems and archi-

tectures, information retrieval

and recommender systems and

their applications.

Hyogi Sim received a M.S. in

computer sciencefrom Virginia

Tech in 2014 and is currently

pursuinghis Ph.D. degree at

Virginia Tech. He alsoearned a

M.S. in Computer Engineering

and aB.S. in Civil Engineering

from Hanyang Universityin

South Korea. He joined Oak

Ridge NationalLaboratory in

2015, as a post-masters associ-

ate.During this appointment, he

conductedresearch and devel-

opment on active storagesys-

tems and scientific data

management forHPC systems. He is currently an HPC systemsengi-

neer in Oak Ridge National Laboratory. His primary role is to des-

ignand develop a checkpoint-restart storage system for the

exascalecomputing project. His areas of interest include storage sys-

tems anddistributed systems.

Youngjae Kim received his

Ph.D. degree in Computer Sci-

ence and Engineering from

Pennsylvania State University,

University Park, PA, USA in

2009. He is currently an assis-

tant professor in the department

of computer science and engi-

neering at Sogang University,

Seoul, Republic of Korea.

Before joining Sogang Univer-

sity, Dr. Kim was a staff scien-

tist in the U.S. Department of

Energy’s Oak Ridge National

Laboratory (2009–2015) and an

assistant professor in Ajou University, Suwon, Republic of Korea

(2015–2016). Dr. Kim received the B.S. degree in computer science

from Sogang University, Republic of Korea in 2001, and the M.S.

degree from KAIST in 2003. His research interests include distributed

file and storage, parallel I/O, operating systems, emerging storage

technologies, and performance evaluation.

Sudharshan S. Vazhkudai leads
the TechnologyIntegration

(TechInt) group in the Nation-

alCenter for Computational

Sciences (NCCS) atOak Ridge

National Laboratory (ORNL).

NCCShosts the Oak Ridge

Leadership Computing Facil-

ity(OLCF), which is home to the

27 petaflopsTitan supercom-

puter. Dr. Vazhkudai leads

agroup of 17 HPC researchers

and systems softwareengineers;

the group is charged with

deliveringnew technologies into

OLCF by identifyinggaps in the system software/hardware stack,

anddeveloping, hardening and deploying solutions. His group’s

technologyscope includes the deep-storage hierarchy, non-volatile

memory, systemarchitecture, system monitoring, and data and meta-

data management.Dr. Vazhkudai received a Ph.D. and Masters in

Computer Science fromthe University of Mississippi in 2003 and

1998 respectively.

Cluster Computing (2019) 22:385–398 397

123

http://www.ccixconsortium.com
http://www.ccixconsortium.com
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
https://www.ndm.net/datawarehouse/IBM/netezza
https://www.ndm.net/datawarehouse/IBM/netezza
http://www.enwiki.net/
http://www.enwiki.net/
http://snap.stanford.edu/data

Affiliations

Sangkuen Lee1 • Hyogi Sim1
• Youngjae Kim2

• Sudharshan S. Vazhkudai1

1 Oak Ridge National Laboratory, 1 Bethel Valley Road,

Oak Ridge, USA

2 Department of Computer Science and Engineering, Sogang

University, Office: AS911, 35 Baekbeomro, Mapogu,

Seoul 04107, Republic of Korea

398 Cluster Computing (2019) 22:385–398

123

	A programmable shared-memory system for an array of processing-in-memory devices
	Abstract
	Introduction
	Related work
	AnalyzeThat programmable system
	Goals
	Overview

	AnalyzeThat low-level framework
	Hardware architecture
	PIM device driver
	Low-level PIM library

	PADS: AnalyzeThat programming interface
	PADS key-value container
	PADS operations

	AnalyzeThat runtime
	Device manager
	Placement manager
	Task manager

	Evaluation
	Programmability of PADS
	AnalyzeThat performance
	Effects of enabling local-reduce technique
	Impact of wearout-aware placement algorithm

	Conclusion
	Acknowledgements
	References

