
RFTL: improving performance of selective caching-based page-level
FTL through replication

Ronnie Mativenga1 • Joon-Young Paik1 • Youngjae Kim2
• Junghee Lee3 • Tae-Sun Chung1

Received: 28 November 2017 / Revised: 6 February 2018 / Accepted: 17 July 2018 / Published online: 25 July 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The internal nature of flash memory technology, makes its performance highly dependent on workload characteristics

causing poor performance on random writes. To solve this, Demand-based Flash Translation Layer (DFTL) which

selectively caches page-level address mappings, was proposed. DFTL exploits temporal locality in workloads and when

low, high cache miss rates are experienced. In this paper, we propose a replication based DFTL, called RFTL, which aims

at minimizing the overhead caused by miss penalty from the cached mapping table in SRAM. We developed an analytical

model for studying the range of performance for RFTL. We extended EagleTree simulator to implement RFTL. Our

experimental evaluation with synthetic workloads endorses the utility of RFTL showing improved performance over DFTL

especially for read-dominant workloads. With 80% read dominant workload, RFTL’s cumulative distribution function

shows a 20% improvement and under 80% write dominant workload, it outperforms DFTL by 10% on I/O throughput.

Keywords Cached mapping table � Flash memory � Flash translation layer � Solid-state drive

1 Introduction

Unlike hard disk drives (HDDs), solid state drives (SSDs)

have revolutionized the storage system ecosystem from

mobile to enterprise-class storage server environments [1].

The price of SSD is now cheaper than HDD and supports

higher performance. Flash memory capacity continues to

grow as new memory technologies such as triple-level cell

(TLC) [2] or 3D stacking memory are discovered to help

increase flash memory density. As a result, more and more

memory blocks are being integrated into a single die. For

example, TLC has created 32 layers of TLC cells verti-

cally, resulting in much higher storage densities for each

die (3D stacking). The price of the SSD is $ 0.17 per GB

and the price has been reduced by 16.5% per year from

$ 0.99 per GB in 2012 and the 16TB SSD is on the mar-

ket [3]. SSDs feature low operating temperature, low

power consumption, vibration and durability against

external shocks, light weight, flexible design and low

access times. SSD is finally becoming a key storage device

for persistent data storage.

The problem arises when SSD capacity increases. The

page-mapped FTL table size increases as the SSD capacity

increases and even requires a larger SRAM to load the

corresponding mapping table. Thus this pure page-mapping

is not feasible to implement especially in the current SSDs

because of the high cost price/byte of SRAM. In an attempt

to overcome this SRAM space limitation problem of the

pure page-mapped FTL, the demand-based selective

caching of page-level address mappings has been pro-

posed [4]. A cache mapping table (CMT) maintains

recently accessed mapping entries. When a cache miss

& Youngjae Kim

youkim@sogang.ac.kr

Ronnie Mativenga

ronniematie@ajou.ac.kr

Joon-Young Paik

lucadi@ajou.ac.kr

Junghee Lee

junghee.lee@utsa.edu

Tae-Sun Chung

tschung@ajou.ac.kr

1 Ajou University, Suwon 443-749, South Korea

2 Sogang University, Seoul 13557, South Korea

3 University of Texas at San Antonio, San Antonio, TX 78249,

USA

123

Cluster Computing (2019) 22:25–41
https://doi.org/10.1007/s10586-018-2824-5(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2824-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2824-5&domain=pdf
https://doi.org/10.1007/s10586-018-2824-5

occurs, it has to involve page read and write operations to

update CMT, which is called cache miss penalty. This

penalty can become higher if there is interference with

internal GC or any other ongoing operations. Hence,

minimizing the cache miss penalty is critical for efficient

DFTL.

Most state-of-the-art SSDs employ multi-channels,

which allows access to data on different channels in par-

allel [5]. In this paper, we propose a method of replicating

the entire page-level translation table on flash memory

called RFTL to minimize the cache miss penalty when the

size of the working set is larger than the size of the cached

mapping table in the SRAM (CMT). The key idea of RFTL

is to take advantage of the multi-channel architecture of

SSDs where all channels are not always busy when a CMT

miss occurs. RFTL utilizes the multi-channel architecture

of an SSD and replicates the entire page-level translation

table across all the channels such that page mapping entries

do exist in isolation across channels. The RFTL uses the

replicated mapping entries of the other idle channels. When

a CMT miss occurs, RFTL can allow for an opportunity to

skip busy channels and utilize replicated page mapping

entries on different idle channels.

This paper has the following contributions.

– We propose a RFTL method to solve the high CMT

miss penalty problem of DFTL by making several FTL

copies in flash memory. When a mapping entry is

replicated to exist in isolation on several different

channels and a CMT miss occurs, the RFTL can skip

the active channel and dynamically utilize the repli-

cated page mapping entries in the idle channel for fast

address translation.

– RFTL allows FTL to understand the underlying flash

memory channel topology and replicate FTL to skip

channels in use due to GC or other ongoing I/O services

when a CMT miss occurs. Replicas reduce CMT miss

penalty overhead. Specifically, our approach demon-

strates better performance than a baseline without FTL

replication for small random write workloads.

– In this paper, we used both the modeling method and

the simulation method to analyze the effect of the

RFTL method (RFTL). In particular, we used the Eagle

Tree [6], which is popularly known as a SSD simulator,

for the constraints of the mathematical modeling

approach. Our evaluation shows that RFTL can mini-

mize the CMT miss penalty without significantly

reducing the lifetime of the NAND flash memory.

The remainder of this paper is organized as follows: Sec-

tion 2 discusses background and motivation. Section 3

shows the architectural design and implementation of the

RFTL method and Sect. 4 analyzes the boundary of the

RFTL performance improvement with a mathematical

model. Section 5 presents our experimental evaluation and

Sect. 6 discusses the related works. We then conclude in

Sect. 7.

2 Background and motivation

2.1 Background

The Flash Translation Layer (FTL) is one of the key ele-

ments in flash memory-based SSD. The FTL maintains a

mapping table of virtual addresses to the physical address

on flash memory. It helps emulate the functionality of a

generic block device by displaying only read/write opera-

tions to the upper software layer and hiding the flash

memory-based specific erase operations. Flash-based SSDs

are asymmetric in read and write. The flash memory device

can read the page (a unit of read/write), but can only write

to the page with the special status that it clears. Flash

memory is designed to erase at a block, a much larger unit

than a page, because page-level erasing is extremely costly.

The Page-based FTL is ideal for performance, but it

requires expensive, high-capacity SRAM memory, making

it difficult to use in the real-world SSD system. On-demand

selective caching-based FTL (DFTL) has been proposed as

a method for selectively caching address mapping

entries [4, 7]. This approach solves the huge memory

requirement of the page-based FTL and successfully solves

the overhead problem of the Full Merge operation of the

Hybrid FTL [4, 7]. DFTL separates pages into data pages

and translation pages.

In DFTL, the mapping entries stored in SRAM are

maintained by Cached Mapping Table (CMT). And the

translation pages are then maintained in a table called,

Global Translation Directory (GTD), locate translation

pages scattered across the chip if missed from cache.

However, since this DFTL does not cache all address

translations, it needs access to the address translation

request for the mapping item of the flash memory when

there is no mapping entry corresponding to the address

translation request in the SRAM. Therefore, the actual

performance of the DFTL is greatly influenced by the

working set size ratio of the workload to the SRAM size,

that is, the SRAM hit ratio.

The SSD performs garbage collection internally. In flash

memory, the page is valid and has an invalid state and a

clean state. When the number of invalid pages reaches a

certain threshold, a GC operation is performed to create

clean pages. The GC includes page read and write and

erase operations. The page write/programming time is

about 200 us, while the block erase takes about 1.5 ms [8].

GC is the most expensive operation in flash memory [3].

There is a background GC method that runs the GC when

26 Cluster Computing (2019) 22:25–41

123

the system/channel is idle to minimize the conflict with I/O

processing [9]. More worse, specifically in DFTL, when a

CMT miss occurs, the address translation performance

becomes worse if there is a conflict between flash memory

access and internal GC operation for address translation.

Therefore, we address this issue by redirecting it to a

replicated address translation entry using a multi-channel

SSD architecture.

Most SSDs are implemented using multiple channels to

take advantage of the abundant parallelism of current

NAND flash memory [10–12]. Figure 1 shows the internal

parallel architecture of a multi-channel SSD. Every chip

consists of multiple dies, each containing multiple blocks.

Each block consists of several pages, and the Translation

page contains the address mapping of the page based FTL.

The SSD system considers die and plane as internal parallel

units and can be thought of as an internal parallel device at

the top of the channel and flash memory chips. In this

paper, we propose a technique to replicate FTL and utilize

replicated FTL to minimize CMT miss penalty in multi-

channel SSD using DFTL. For example, a conflict with GC

during a CMT miss will increase the FTL cache miss

latency [6]. Internal I/O for address translation must wait

for the GC to complete its turn. However, if a replica entry

page in the idle channel is available, it can avoid conflicts

with the GC.

2.2 Motivation

In SSDs using the Selective Caching-based Page-level

FTL [4, 7], CMT hit or miss ratio can be determined

according to the mapping entries of cached mapping

table (CMT) loaded in SRAM and the working-set size of

workload. When a CMT miss occurs, flash memory reads

and writes occur because the mapping page storing the

corresponding mapping entry must be accessed from flash

memory. Since flash memory access latency is several

hundred times slower than SRAM access latency, the time

overhead of processing CMT misses from flash memory is

quite high. This is called the CMT miss penalty.

In particular, when a CMT miss occurs, the channel

storing the mapping page may be busy. In this case, you

must wait for the channel to become idle. The CMT miss

penalty time becomes larger because CMT miss can not be

processed. Figure 2 illustrates the worst-case situation of a

CMT miss penalty for a select-page-level FTL. When a

CMT miss occurs, it attempts to access Channel#2 to

access the corresponding mapping page. However, Chan-

nel#2 is currently busy with GC as an internal GC job. That

is, the Channel#2 access collision occurs with the GC

operation. CMT misses cannot be processed immediately.

This situation includes not only conflicts with GC, but also

conflicts with normal read writes for other I/O operations.

Therefore, in this paper, the case of channel collision

considering two cases will be examined.

Figure 3a shows that flash memory I/O to process CMT

misses conflicts with normal I/Os accessing flashmemory on

the same channel. In the figure, RCMT Miss is a CMT miss

flash memory I/O, and it requires to access the Channel#0.

On the other hand, at that moment when RCMT Miss arrives,

there are three ongoing normal I/Os (Wnormal, Rnormal, and

Enormal) to accessChannel#0.RCMT Missmustwait until these

three normal I/Os finish. Also, I/O for processing CMTmiss

may conflict with internal GC I/Os. That is when RCMT Miss

arrives while GC is still running.RCMT Miss will conflict with

ongoing GC operations such as RGC, WGC, and EGC in the

figure. As RCMT Miss must wait until these internal GC

operations finish, the RCMT Miss processing will be delayed

due to the shared channel resource conflict with the GC or

normal I/Os. However, as shown in Fig. 3b, if a copy of the

flash memory page for processing the CMT miss is present

on Channel#1, it can be processed in parallel with normal I/

Os onChannel#0.On the other hand, if a copy of the page that

is needed to process RCMT Miss on Channel#1 is available,

Fig. 1 Structure of a multiple-

channel SSD

Cluster Computing (2019) 22:25–41 27

123

then, it can also be immediately processed in parallel with

GC operations on Channel#1.

To minimize the processing time of CMT miss penalty

in selective caching-based page-level FTL, we propose the

idea of replicating mapping pages across multiple channels.

This allows for fast address translation, minimizing this

CMT miss penalties. As shown on Fig. 2, the flow pro-

cesses experienced during DFTL’s worst case are expen-

sive, that is on performance and this is made even worse

when requests are queued due to access conflicts [13].

Fig. 2 CMT miss penalty

example: flash memory I/O for

CMT miss processing is

currently delayed due to a

collision when accessing

Channel#2 with flash memory

I/Os for internal GC operations

Fig. 3 a Flash memory I/O to process CMT miss conflicts with internal GC operations or Normal write operation. b A copy of the flash memory

page on channel#1 is used to skip GC busy channel#0 and process the CMT miss in parallel with GC operation

28 Cluster Computing (2019) 22:25–41

123

3 Design and implementation for RFTL

RFTL is designed to prevent performance degradation

when a request undergoes a cache miss penalty with

selective caching-based page-level FTL. The request may

need to wait if the channel where the request should go is

busy, until the channel becomes available. The channel can

be unavailable due to other ongoing normal I/O operations

and GC operations. By duplicating the page mapping

table across multiple channels, it can dynamically use the

duplicated mapping entries available in the idle channel for

fast address translation. The following section illustrates

the RFTL architecture and its advantages compared with

the selective caching-based page-level FTL.

3.1 RFTL architecture

Figure 4 shows a descriptive diagram of the architecture of

RFTL. In RFTL, the entire page-level translation table will

be stored in flash. Flash blocks are logically divided into

Data Block and Translation Block. The data block stores

the user’s data. The translation Block stores the address

translation pages of the entire page-level translation table.

The translation block is divided into the original translation

block and the replica translation block. Depending on the

value of the RFTL’s replication factor, several replicated

translation blocks may exist. In particular, a translation

page stores only address translation entries that translate

logical page addresses into physical page addresses

whereas a normal page stores the user’s data. SRAM only

caches frequently accessed translation entries, which are

maintained by RFTL Cached Mapping Table (RCMT).

When a single entry in the translation page is modified, a

page write operation is performed. A new free page is

allocated and written according to the out-of-update rule of

NAND flash. The newly written page needs to be kept track

of and it’s managed by RFTL Global Translation Directory

(RGTD). The GDT is stored in the SRAM along with the

RCMT and is mainly used for location tracking when the

physical page position of the translation page changes.

A GDT table entry consists of a virtual page number

(MVPN) and multiple physical page numbers (MPPN and

MRPNs). The MPPN in the RGTD represents an address of

the original translation page while the MRPNs are

addresses of multiple replicated translation pages.

In RFTL, RGTD requires more memory space than the

existing DFTL GTD because all the original translation

pages and all duplicate translation pages must be tracked.

However, since the RGTD size is smaller than the RCMT,

this is not a big problem. If 4bytes are needed to represent

the physical page address on flash with each translation

page capable of storing 512 mappings. Therefore a 1 GB

flash would require 1024 translation pages and its GTD

size would only be 4 KB [4]. If we assign two replicas per

each translation page, then our RGTD would require only

about 8 KB of SRAM space for the same 1 GB SSD.

Considering 4 bytes for page addressing and 512 map-

ping entires clubbed in a 4 KB page, the flash space

overhead to store the entire page-level translation table is

only 0.2%. A 10 GB flash device requires only about

20 MB of space to store all the mappings in the traditional

DFTL [4]. In other words, total size of FTLs on flash is

highly dependent on the number of replicas assigned to

each translation page. For example, considering a single

replica of the entire page-level translation table, total size

of flash memory required to store the entire page-level

translation table including its replication is 40 MB of the

10 GB SSD. Three replica requires 60 MB of space.

Overall RFTL can require more flash memory space

required for keeping original FTL and SRAM space for our

page-mapped table also known as page-level translation

table on flash, but its space overhead is minimal.

Fig. 4 The schematic design of

RFTL

Cluster Computing (2019) 22:25–41 29

123

30 Cluster Computing (2019) 22:25–41

123

3.2 RFTL operation

3.2.1 Mapping operation

The mapping table (RCMT) of RFTL maintains two or

more physical locations (Data Physical Page Number:

DPPN) of the same mapping information per every given

logical page number (Data Logical Page Number: DLPN)

depending on the number of replicas allocated for each

mapping page (MRPN). In other words, unlike DFTL

where there is a single DPPN for every DLPN in the

mapping table, a multiple number of alternative copies of

the same mapping page are stored across multiple channels

in case the corresponding DPPN is inaccessible due to its

channel being busy with other operations. As illustrated

from our Algorithm 1 which show the mapping process,

RFTL can use this opportunity to utilize idle channels with

same copy (DRPN) of the requested mapping page. Fig-

ure 5 again shows the whole operation and here only a

single copy of every mapping page is maintained for

illustration purposes.

Due to out-of-place updates policy in flash memory,

translation pages are scattered throughout the chip. To keep

track of these translation page locations, the RFTL Global

Translation Directory (RGTD) on Fig. 5 stores all the

mapping locations of these pages. Unlike DFTL, it also

contains multiple reference (Physical Translation Page

Number: MPPN and RFTL Physical Translation Page

Number: MRPNs) for each logical page number (Logical

Translation Page Number: MLPN). The MRPNs are the

translation page copies for each original translation page

(MPPN). This means that a single translation page has a

copy or more across different chip locations.

3.2.2 Read operation

Once address translation is completed, flash memory page

read operation is initiated and serviced directly. For a

mapping read during RCMT miss, RFTL check is invoked

to assess the channel status first. If the channel is busy then

an alternative page (replica) on an idle channel is provided

otherwise if idle then the original mapping page is read

directly. Algorithm 1 shows the steps that are followed

through the whole read operation until requested data has

been located on flash memory.

Fig. 5 (1) Request to DLPN 1280 incurs a miss in RFTL Cached

Mapping Table (RCMT), (2) Victim entry DLPN 1 is selected, its

corresponding translation page MPPN 20 and its copy MRPN 21 are

located using RFTL Global Translation Directory (RGTD), (3)–(4) If

channel 2 is idle, MPPN 20 is read else MRPN 21 on channel 3 is

read, both pages updated (DPPN 130 ! DPPN 260) and concurrently

written to free translation pages (MPPN 22 and MRPN 23), (5)–(6)

RGTD is updated (MPPN 20 ! MPPN 22) and (MRPN 21 ! MRPN

23) and DLPN 1 entry is erased from RCMT. (7)–(11) The original

requests (DLPN 1280) translation page is located on flash (MPPN 14

and MRPN 15) and if channel 0 with MPPN 14 is busy, it is skipped

and a replica (MRPN 15) on an idle channel 1 is used instead. The

mapping entry is loaded into RCMT and the request is serviced. Note

that each RGTD entry maps 512 logically consecutive mappings

Cluster Computing (2019) 22:25–41 31

123

3.2.3 Translation page write

When a translation page is updated on flash memory chip,

it is written in batches together with its copies (replicas).

This technique is called batch-updating. For example, on

Fig. 5, each translation page has a single copy on a dif-

ferent channel. This means that each page is written/up-

dated onto two different locations (one original translation

page and its copy) on chip at the same time. The reasons

being, (1) to reduce the write overhead and (2) for a syn-

chronous location update on RGTD and RCMT after the

write operation is completed.

During a cache miss , a victim translation page entry is

updated on flash memory before it is evicted from RCMT

(write-back policy) this is because of Lazy copying feature

of RFTL do as to reduce write latency thereby improving

the overall system’s response time. To facilitate for a quick

update, RFTL checks the channel status and if busy then an

alternative location on an idle channel containing a copy of

the same translation page is availed for faster address

translation. This process is done each time he system tries

to access the chip during a RCMT miss.

3.2.4 Fault tolerance

RFTL maintains a full page-level mapping table (FMT) on

flash to ensure and maintain the consistency of its trans-

lation pages. If power is lost unexpectedly, a portion of the

FMT is uploaded from the non-volatile flash into SRAM

and becomes our cached mapping table (RCMT) after

reboot. Furthermore, mapping write requests are propa-

gated to all the target MRPNs Die registers by the con-

troller pending execution. For example, an MVPN write

request will have pointers to 1 original MPPN plus multiple

replica MRPNs on flash. So if machine crashes before all

replicas are completely written, after system reboot, the

information in the non-volatile Die registers (including

replica write request) is retained. This enables the write

execution to proceed, that is, ensuring thatwrites are

complete only when all replicas are created.

3.2.5 Garbage collection

Our approach (RFTL) maintains a GC threshold which is

the minimum number of available free blocks per given

time. If this limit is reached, then GC is triggered to claim

all the invalidated pages from both Data Blocks and

Translation Blocks. The garbage collector selects its vic-

tims based on an analysis adopted from [14] and if the

victim is a Data block then all the valid data pages are

copied to the Current Data Block and RFTL updates all the

translation pages and RCMT entries associated with these

pages. On the other hand if the victim is a translation block

then the valid pages are copied to the Current Translation

Block and the RGTD is updated.

Table 1 shows the total space overhead required for

RFTL and DFTL on a 100 GB SSD. If the required map-

ping information of a request is present in RCMT, it is

processed directly through the available location of its

actual data and this is called a RCMT-Hit. On the other

hand, if the mapping information is absent from the RCMT

(RCMT-Miss), then this it has to be retrieved from the flash

memory chip into the RCMT, Algorithm 1 clearly shows

this. When a request is issued, there are two states in which

a mapping table can be at any given time, that is NOT-

FULL (Best Case) or FULL (Worst Case).

3.3 Best and worst cases for CMT misses

Best case When space is available in RCMT (Best-Case),

the incoming request entry is inserted into the mapping

table and its corresponding mapping information fetched

from the flash memory chip via RGTD that is used to locate

the exact position of the mapping page on flash memory. It

is during this flash memory access stage where RFTL will

check the mapping-page location’s channel to see whether

it is busy or not and if busy, an alternative location with a

copy of the requested mapping page, a (RFTL) on an idle

channel is provided. Instead of the incoming request being

queued until the its turn comes or till the ongoing operation

is completed, mapping information is availed faster from

the mapping page copy on an idle channel thus minimizing

the miss penalty.

Worst case Otherwise if RCMT is full, then a victim has

to be selected (using algorithm-LRU) [15] for eviction

while keeping in mind that most selective page-level

mapping schemes including DFTL adopts Lazy copying

(write-back) policy for cached entries. Before updating the

victim’s entries on flash memory, RFTL also checks the

channel status of the required chip to provide a mapping

page copy from an alternative channel whenever the status

returns busy state. In this scenario (Worst Case), all

channels will be busy including the ones with replicas

Table 1 Comparison of number of replica writes and RCMT size

FTL type Replicas (#) Total FTL (MB) E

Baseline 1 200 0

RFTL (1) 2 400 0.4

RFTL (3) 4 800 1.2

RFTL (7) 8 1600 2.8

RFTL (15) 16 3200 6

The number in parentheses denotes the number of replicas of the page

mapped table. E = extra writes due to RCMT miss/total writes

32 Cluster Computing (2019) 22:25–41

123

therefore forcing the request to queue for its turn. Algo-

rithm 1 describes this process for servicing a request during

the worst-case scenario. This means that the victim has to

be first updated on flash memory (read, Channel status

checked, updated and then re-written onto a new physical

location) before it is evicted from RCMT. The RGTD is

then updated with the victim’s new physical location prior

to its eviction from the RCMT. The incoming request is

then inserted into RCMT and follows the same steps of

fetching mapping reference from flash memory via RGTD

and channel status checking (RFTL check) as mentioned

above during the best-case scenario when there is space in

the mapping table (RCMT).

4 Modeling and analysis of RFTL

4.1 Performance modeling

In this section, we study the performance and lifespan of

our RFTL approach and evaluate its efficacy against that of

DFTL, which we present as our Baseline approach. We

analyze the efficacy of RFTL against DFTL using a simple

analytical modeling approach. For modeling, we used

several notations, which are detailed in Table 2.

Baseline approach (DFTL) The original DFTL

approach is considered as our baseline approach. In DFTL,

if a CMT miss occurs for a request and its address trans-

lation requests should be served by a busy channel in SSD,

those page read and write requests associated with the

address translation process should wait until the channel

comes to idle.

By considering the probability of a channel being busy

(PGC), (PGC=1) in DFTL wost case together with two-reads

and a single-write when a cache miss occurs while CMT is

full, average CMT access time can be formulated as:

FðbaseÞ ¼ ½C þ GC þ ð2RþWÞ��M þ ½C � ð1�MÞ�
ð1Þ

RFTL In RFTL, an entire page-level translation table is

replicated on flash memory. During a CMT miss, mapping

pages on idle channels can be utilized. Such pages on idle

channels, if any, can be used to avoid accessing busy

channels during a CMT miss. By considering the proba-

bility of getting a replica on an idle channel (P) and miss

ratio (M), we modeled the following scenarios:

Best case For a single CMT miss, when a channel that

contains its corresponding mapping page is busy and its

replica page is available on an idle channel (P = 1), We

have:

FðRFTL;bestÞ ¼ ½C þ ð2RþWÞ�M þ ½Cð1�MÞ� ð2Þ

Worst case: For a single CMT miss, if a channel with that

corresponding mapping page is busy and there is no replica

page available on any channel (P = 0), it has to wait until

the busy channel comes to idle. Compared with the best

case, the CMT miss is delayed for a longer time by GC

because it has to wait for completion of the ongoing GC.

This situation can be modeled as:

FðRFTL;worstÞ ¼ ðC þ GC þ ð2RþWÞÞ�M þ ½C�ð1�MÞ�
ð3Þ

4.2 Performance analysis

In this subsection, we will use the mathematical equations

for each approach as presented in Sect. 3 to run experi-

ments and then compare the performance and lifespan

results of RFTL against our Baseline approach that

implements a simple DFTL. For evaluation, we considered

SSD configurations as shown in Tables 3 and 4.

Performance For comparison, we considered similar

test environments for DFTL (PGC) and RFTL (P) approa-

ches as shown in Table 1. From Fig. 6, we can observe that

RFTL is superior to DFTL with an overall improvement of

around 20%. We also compared the average response times

of DFTL and RFTL by varying CMT miss ratio from 0 to 1.

Table 2 Descriptions about parameters used in modeling

Constants Description

C DRAM (CMT access time)

GC Garbage collection wait time

R Read latency

W Write latency

Variables Description

F Channels (#)

M Miss ratio

N Replicas (#)

P N / F (probability of replica on idle channel)

PGC Probability channel being GC busy

E Value of extra writes

Table 3 SSD settings
Configuration Value

DRAM (ns) 100

SSD channels (#) 8, 16

GC wait (ls) 900

Read latency (ls) 25

Write latency (ls) 200

Cluster Computing (2019) 22:25–41 33

123

Considering the worst case of DFTL implementation

(where PGC=1), we observe that request latency can

increase up to 70% when miss ratio gets to 0.6. Taking

RFTL into account, we clearly observe its effectiveness as

it showed about 50% delay in average response time. In all

test cases, we can clearly notice that RFTL can outperform

baseline (DFTL).

Lifespan In our experiments, we considered a 100 GB

SSD where I/O requests arrival rate is 1000 IOPS. We

varied the number of copies of our entire page-level

translation table (RFTLs) on each scenario to compare

extra writes required. E is a variable representing the ratio

of extra writes. Figure 7 shows additional write overheads

for both DFTL and RFTL. RFTL can incur more writes

compared to DFTL, however for Replica (1), overall writes

on SSD are around 40% higher than DFTL. It will only

take 0.2% additional flash memory space to cover the

replicated entire page-level translation table while

improving 20% overall response time. As we maintain

more replicas of the entire page-level translation table, it

will increase more writes to synchronize all the replicated

entire page-level translation table on flash memory. How-

ever, this will increase the chances of utilizing replicated

mapping pages on idle channels for a CMT miss. A sum-

mary of our test configuration settings and results is shown

in Table 1.

5 Evaluation

The mathematical model presented in Sect. 4 models only

the performance of the CMT miss penalty and is therefore

limited to analyzing the overall I/O system performance

when SSD employs RFTL. Therefore, we instrumented a

well-regarded trace driven SSD simulator called EagleTree

[6] to implement RFTL to evaluate and analyze the actual

Input/output operations per second (IOPS) of RFTL com-

pared with baseline (DFTL).

5.1 Experiment setup

The EagleTree [6] can simulate multi-channel SSDs [12].

It allows for various configurations of specific flash

memory chip types from Single-Level Cell (SLC) to Multi-

Level cell (MLC) [2] configurations while supporting for

advanced commands like pipelining and copy-backs. For

the SSD configurations, we modeled an 4 GB SSD, which

is configured with 4 channels with each channel equipped

with a single chip. Each Chip is composed of 2 Dies, and

each die is constructed with a single plane. Each Plane

contains 1024 flash memory Blocks. Each flash memory

block consists of 128 Pages with 4 KB page. Access times

that the simulator used are shown in Table 5. The Greedy

GC method is employed and it limits the maximum number

of concurrent GC operations less than and equal to 2

channels at a time. The I/O scheduler uses NOOP. The over

provisioning ratio is set to 30% of the SSD, which complies

with the setting in several recent works [8, 16].

For the data allocation scheme, the most widely used

Channel-Chip-Die scheme is applied since it has the best

performance in term of the parallelism of SSD [8]. The die

level parallelism is called internal parallelism where

Table 4 Configurations

Baseline RFTL

PGC 0, 0.5, 1 –

P – 0.25, 0.5, 0.75

F 8, 16 8, 16

N – 2, 4, 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Miss Ratio

DFTL (PGC=1)
P=0.25

DFTL (PGC=0.5)
P=0.5

P=0.75
DFTL (PGC=0)

Fig. 6 Mapping response time with increased miss ratio on an 8

channel SSD

 0

 1

 2

 3

 4

 5

 6

 7

Baseline
Replica#1

Replica#3
Replica#7

Replica#15

R
at

io
 o

f E
xt

ra
 W

rit
es

(E
)

Approach

Fig. 7 Extra writes ratio (E ¼ extra writes due to CMT miss/total

writes) for baseline and RFTL

34 Cluster Computing (2019) 22:25–41

123

multiple dies can be accessed simultaneously while dif-

fering from the internal parallelism, the channel and chip

level parallelism are commonly supported parallelism,

which enables host I/O requests to be processed in parallel

at different channels and chips.

Synthetic workload benchmarks were used to evaluate

various I/O patterns in the workload. In particular, we

considered both write dominant and read dominant work-

loads. Following 80/20 rule, the write dominant workload

is 80% writes and 20% reads and the read dominant

workload is 20% writes and 80% reads. To compare the

efficacy of RFTL against DFTL, we compare Input/output

operations per second (IOPS) and lifetime of RFTL and

DFTL. Table 6 shows the sizes of SRAM used to adjust the

miss ratio for our above configured 4 GB SSD.

To run simulations with varied number of replicated

mapping pages for our proposed approach, we used RFTL

approaches described by Table 7.

5.2 Experimental results

In our evaluation, we ran experiments for mapping reads

and writes I/O performance check. After this evaluation,

we then compared the overall system performance from

RFTL and Baseline (DFTL).

5.2.1 Mapping I/O performance

Since RFTL aims to improve performance by speeding up

address translations during a cache miss, considering

mapping I/O performance is of importance to our evalua-

tion analysis. We used these to check this performance

improvement by RFTL and then compared them with the

ones obtained from our mathematical models in Sect. 4 in-

order to validate of our proposal. We further compared the

actual response time for every I/O for both read and write-

intensive workloads by placing them into ranges of

response time against their cumulative distribution fre-

quency (CDF).

Figures 8 and 9 shows mapping reads and mapping

writes consecutively from both read-dominant (a) and

write-dominant (b) workloads. From Fig. 8, RFTL out

performs DFTL by an average of 17% improvement as the

miss ratio increases. While on the other hand, Fig. 9b

shows RFTL’s mapping write operations from a write-

dominant workload environment averaging around 55% on

performance improvement as compared to DFTL. This is

because write intensive workloads increase the chances of

garbage collection (GC) which results in more more delay

due to increased internal conflicts while GC is operational.

DFTL suffers greatly from this effect but as seen from the

results, RFTL’s performance is exceptional because it can

skip GC-busy channels and utilize replicas on idle ones.

On Fig. 10, RFTL shows more than 90% of the I/Os

having response time below 300 ls while DFTL has only

below 65% of I/Os with the same response time for

Mapping Writes. This is due to the high percentage of

reads ratio that increases cache access demand thereby

increasing chances of CMT miss for such Read intensive

workload. When the workload is write intensive (Fig. 11),

we see RFTL having 100% of I/Os with response time

between 50 and 100 ls while DFTL at this range only

having below 55% for Mapping-writes. Same applies for

Mapping-reads where DFTL having below 80% of its I/O

ranging below 100 ls and 10% of I/Os exceeding 350 ls
response time.

5.2.2 End-to-end I/O performance

The miss ratio of the cache mapping table in SRAM is

important for a fair comparison of RFTL and DFTL

Table 6 4 GB SSD mapping

table sizes in SRAM at each

miss ratio

SRAM size (KB) Miss ratio

32 0.9

68 0.8

147 0.6

208 0.4

247 0.2

512 0

Table 7 RFTL implementation based on number of replicated tables

RFTL approach Description

RFTL(1) 1 replica copy written

RFTL(2) 2 replica copies written

RFTL(3) 3 replica copies written

The number in parentheses is the replication factor

Table 5 Operational SSD parameters and access timings

Parameter Access time (ls)

Page read delay 25

Page write delay 200

Bus data delay 100

Block erase delay 1500

Parameter Size (KB)

I/O size 4

Page size 4

Event size 4

Cluster Computing (2019) 22:25–41 35

123

 0

 50

 100

 150

 200

 250

0 0.2 0.4 0.6 0.8 0.9A
ve

ra
ge

 M
ap

pi
ng

 R
es

po
ns

e
Ti

m
e

(u
s)

Miss Ratio

DFTL
RFTL

 0

 50

 100

 150

 200

 250

0 0.2 0.4 0.6 0.8 0.9A
ve

ra
ge

 M
ap

pi
ng

 R
es

po
ns

e
Ti

m
e

(u
s)

Miss Ratio

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 8 Comparing the response time for mapping reads of input/output operations between RFTL and DFTL

 0

 200

 400

 600

 800

 1000

0 0.2 0.4 0.6 0.8 0.9

A
ve

ra
ge

 M
ap

pi
ng

 R
es

po
ns

e
Ti

m
e

(u
s)

Miss Ratio

DFTL
RFTL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 0.2 0.4 0.6 0.8 0.9

A
ve

ra
ge

 M
ap

pi
ng

 R
es

po
ns

e
Ti

m
e

(u
s)

Miss Ratio

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 9 Comparing the response time for mapping writes of input/output operations between RFTL and DFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 10 Comparing the cumulative distribution for mapping reads of input/output operations between RFTL and DFTL

36 Cluster Computing (2019) 22:25–41

123

performance. In order to consider this, experiments were

carried out while varying the SRAM size to change the

miss ratio. Furthermore, we compared the actual response

time for every I/O for both read and write-intensive

workloads by placing them into ranges of response time

against their cumulative distribution frequency (CDF).

When exposed to write intensive workloads, RFTL shows

extended improvement compared to DFTL. For example,

from Fig. 12a we see a 100% of I/Os falling below 50 ls
whereas DFTL has only around 70%. Figure 13 shows all

RFTL’s I/Os taking less than 250 ls for end-to-end overall

writes I/O in read-dominant workload while DFTL having

over 20% of I/Os going beyond 600 ls on the same Figure.

Figure 14 shows the results of RFTL and DFTL in terms

of Input/output operations per second (IOPS) for various

miss ratios with with read and write dominant workloads.

Fig. 14a shows the results for read dominant workload.

Overall we see that the RFTL approach can offer higher

throughput than baseline. This is because the higher the

cache miss rate, the greater the chance of using replicas for

faster address translation.

Especially, we observe RFTL(1) improves total system

performance by 2.5% at 0.2% miss ratio compared to

DFTL and even its improvement gets greater as the miss

ratio increases, for example at 0.9% miss, RFTL outper-

forms DFTL by almost 6%. However, The situation is

different for 2 replicas (RFTL(2)) and 3 replicas

(RFTL(3)). We see that the approach show reduced per-

formance as we increase the replication factor even though

they still out perform our baseline. We witness the per-

formance improvement gets lower as the replication factor

increases (RFTL(2) and RFTL(3)), even though even

though they still out perform DFTL. As miss ratio increa-

ses, the gap between RFTL(3) and DFTL narrows down to

 0

 0.2

 0.4

 0.6

 0.8

 1

0 250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-850

850-900

900-950

950-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-850

850-900

900-950

950-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 11 Comparing the cumulative distribution for mapping writes of input/output operations between RFTL and DFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-850

850-900

900-950

950-1000

1000-1050

1100

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-850

850-900

900-950

950-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 12 Comparing the cumulative distribution for overall writes of end-to-end input/output operations between RFTL and DFTL

Cluster Computing (2019) 22:25–41 37

123

only 0.3%. This is because the more replicas, the greater

the total number of writes, which increases the GC number.

Figure 14b shows the results when the workload is

write-dominant. Unlike read-dominant workload results,

overall RFTL performance improvement is observed to be

negligible. If the workload is write-dominant, the demand

for write operations increases and more GCs are triggered.

Excessive GC execution can result in more writes, thus

reducing the opportunity to benefit from using replicas in

the system when a CMT miss occurs. Comparing RFTL (1)

and DFTL results, RFTL (1) shows higher performance

than DFTL by 4.6% as the miss ratio increases. However,

when the number of replicas increases, the IO throughput

of RFTL (2) and RFTL (2) is lower than that of DFTL

regardless of the miss ratio. It is because of the increased

writes by the replicas causing more delay in RFTL(2) and

(3) over RFTL(1).

Since the lifetime of the flash memory is limited by the

number of erases, it is also important to evaluate the impact

of RFTL on the NAND flash lifecycle. For this analysis, we

calculated the number of mapping writes for each approach

while changing the CMT miss ratio. In Fig. 15, we see that

as the number of replicas increases, the number of mapping

writes linearly increases. If a CMT miss occurs and the

selected victim entry needs to update its original mapping

page on flash memory’s page-level address translation

table, it issues additional writes by the number of replicas.

These additional mapping writes can affect flash memory

lifetime. However, the amount of mapping write is very

small compared to the number of writes in the actual

workload, so it will not have a significant effect on lifetime.

This is not the case since and assigning a single copy

(RFTL(1)) per each translation page would double this to

0.4%. If we assign 3 copies (RFTL(3)) or n-copies

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

700-750

750-800

800-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-650

650-700

750-800

800-1000

1050

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Flash Access Time (us)

DFTL
RFTL

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 13 Comparing the cumulative distribution for overall reads of end-to-end input/output operations between RFTL and DFTL

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

0 0.2 0.4 0.6 0.8 0.9

To
ta

l T
hr

ou
gh

pu
t (

IO
PS

)

Miss Ratio

DFTL
RFTL(1)
RFTL(2)
RFTL(3)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

0 0.2 0.4 0.6 0.8 0.9

To
ta

l T
hr

ou
gh

pu
t (

IO
PS

)

Miss Ratio

DFTL
RFTL(1)
RFTL(2)
RFTL(3)

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 14 Comparing input/output operations per second (IOPS) for RFTL and DFTL

38 Cluster Computing (2019) 22:25–41

123

(RFTL(N)), this means we will occupy only 0.2% � N of

the total flash memory which is quit negligible.

5.2.3 Analysis

From the above mentioned results we realized that RFTL

Mapping I/O performance, especially its mapping-writes

performed well above Baseline under write dominant

workloads as depicted by Fig. 9b. This is because RFTL

takes advantage of replicas on free channels to skip GC

busy channels induced by write intensive workloads. On

the other hand, the overall performance results for End-to-

End I/O results on Fig. 14a shows that RFTL overall per-

formance benefit is evident when exposed to read-domi-

nant workloads. RFTL tries to improve DFTL’s miss

penalty that is experienced when a mapping request is not

found in cache. While trying to fetch this entry, it might

face access conflicts with internal I/Os. In other words,

increased read requests subsequently increases chances of

cache-misses and the miss penalty of DFTL. This gives

RFTL increased opportunity to utilize replicas, thus evident

from Fig. 14a. Read dominant workload increase mapping

requests which in-turn increases opportunity for our pro-

posed approach.

6 Related work

A pure page mapping FTL maintains a page-level address

mapping table [5] and is known as the most efficient FTL

because it can store all address mappings in SRAM in flash

memory [4]. However, loading a full page-level address

mapping table requires huge SRAM, and as storage

capacity of an SSD increases, SRAM demand increases.

DFTL solved this SRAM space problem by loading only

the necessary mapping entries as needed. However, DFTL

can have a huge SRAM cache miss penalty issue during

address translation. The performance of DFTL is highly

dependent on the working-set size of the workload on SSD.

This study aims to reduce the miss penalty of DFTL and to

improve an overall flash memory performance by avoiding

long GC queuing delay on busy channels during cache

miss. To achieve high performance in an SSD, an SSD

consists of multiple flash memory chips and multiple

independent channels [12]. The parallel architecture in an

SSD allows multiple I/Os to be processed in parallel on

different channels and on different flash memory chips.

This study proposes an FTL replication scheme on flash

memory across different channels in the SSD to minimize

the miss penalty of address translation from SRAM in

DFTL.

A lot of work has been done to solve the performance

issue in an SSD, caused by Garbage Collection (GC)

[3, 17]. In an SSD, the erase operation takes around 1.5 m

and write/program operations take around 200 ls [8, 9]

whereas read operation takes less than 50 ls. When GC is

triggered on SSD, many page read/write operations and

block erase operations occur internally. Current work has

covered the conflict between host I/O requests and internal

activities even though the approaches differ from our RFTL

[3, 16, 18]. Such interference occurs when internal activi-

ties such as GC are activated within a flash memory chip

while another host I/O request is issued to the same chip

before the ongoing activity is completed for example. This

will therefore imply queuing the host request until chip

release thereby causing long wait time if this ongoing

process is GC. A GC aware request scheduling scheme is

proposed by delaying the request scheduling to the chip on

which the GC is being processed [18].

 0

 100000

 200000

 300000

 400000

 500000

0 0.2 0.4 0.6 0.8 0.9

M
ap

pi
ng

 W
rit

es
 #

Miss Ratio

DFTL
RFTL(1)
RFTL(2)
RFTL(3)

 0

 100000

 200000

 300000

 400000

 500000

0 0.2 0.4 0.6 0.8 0.9

M
ap

pi
ng

 W
rit

es
 #

Miss Ratio

DFTL
RFTL(1)
RFTL(2)
RFTL(3)

(a) (b)80% Read dominant. 80% Write dominant.

Fig. 15 Comparing the number of mapping writes (#) for RFTL and DFTL

Cluster Computing (2019) 22:25–41 39

123

In order to avoid such high delay overhead by GC,

several ideas to preempt GC have been proposed [3]. The

work proposed the preemptive GC scheme by dividing GC

process into several atomic processes, which can be

delayed and prioritizing the service of upcoming host I/O

requests. However, this approach has drawbacks when

taking into account the reason for GC being triggered. If

the incoming request is a write for example then it has to

wait for GC to provide new fresh blocks since flash

memory might be in short of free blocks for the incoming

write operation. [16] proposed a dynamic page replication

(DPR) approach through issuing conflict requests to dif-

ferent chips where these requests can be processed in

parallel with internal activities but this approach does not

consider chip idleness and moreover, is not selective to

which type of requests to be replicated thereby becoming

uneconomical to SSD space and lifespan.

Our work differs from the existing work because we

propose to exploit the parallelism and idleness in multi-

channel SSD chips by using only translation page replicas

to skip busy channels so as to reduce the cache-miss pen-

alty of DFTL. Replicating only translation pages has a

negligible effect on the SSD space and lifespan but reduces

flash memory access time during a cache-miss thereby

improving the overall system performance.

7 Conclusion

In this paper, we investigate the problem of high address

translation miss penalty caused by flash memory access

when the size of the working set is larger than the SRAM

that stores the FTL in the existing Demand-based Flash

Translation Layer (DFTL). In order to minimize the

aforementioned high miss penalty of address translation,

We present an idea for replicating the FTL across multiple

channels (RFTL). When an address translation miss occurs

from the SRAM, the address translation time can be greatly

increased when the busy channel is accessed. On the other

hand, RFTL can minimize the address translation time by

using the address translation page on the idle channel. We

evaluated the performance and lifetime of RFTL through

both analytical modeling and simulation. Our evaluation

results show that significant performance improvements

can be achieved without significantly degrading the life-

time of the flash memory.For example, using one replica

can result in a 20% performance increase.

Acknowledgements This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. NRF-2015R1C1A1A01052105).

References

1. Schroeder, B., Lagisetty, R., Merchant, A.: Flash reliability in

production: the expected and the unexpected. In: 14th USENIX

Conference on File and Storage Technologies (FAST 16),

pp. 67–80. USENIXAssociation, Santa Clara (2016). http://usenix.

org/conference/fast16/technical-sessions/presentation/schroeder

2. Chang, Y.-H., Kuo, T.-W.: A management strategy for the reli-

ability and performance improvement of mlc-based flash-memory

storage systems. IEEE Trans. Comput. 60, 305–320 (2010)

3. Lee, J., Kim, Y., Shipman, G.M., Oral, S., Kim, J.: Preemptible

I/O scheduling of garbage collection for solid state drives. In:

IEEE Transaction on CAD of Integrated Circuits and Systems,

vol. 32, no. 2, pp. 247–260 (2013). http://dx.doi.org/10.1109/

TCAD.2012.2227479

4. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: a flash translation

layer employing demand-based selective caching of page-level

address mappings. In: Proceedings of the 14th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ser. ASPLOS XIV, pp. 229–240

(2009)

5. Ma, D., Feng, J., Li, G.: Lazyftl: a page-level flash translation

layer optimized for nand flash memory. In: Proceedings of the

2011 ACM SIGMOD International Conference on Management

of Data, ser. SIGMOD ’11, pp. 1–12. ACM, New York (2011).

http://doi.acm.org/10.1145/1989323.1989325

6. Dayan, N., Svendsen, M.K., Bjørling, M., Bonnet, P., Bouganim,

L.: Eagletree: exploring the design space of SSD-based algo-

rithms. In: Proceedings of VLDB Endowment, vol. 6, no. 12,

pp. 1290–1293 (2013). http://dx.doi.org/10.14778/2536274.

2536298

7. Kim, Y., Gupta, A., Urgaonkar, B.: A temporal locality-aware

page-mapped flash translation layer. J. Comput. Sci. Technol.

28(6), 1025–1044 (2013)

8. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse,

M.S., Panigrahy, R.: Design tradeoffs for SSD performance. In:

Proceedings of 2008 USENIX Annual Technical Conference,

Boston, MA, USA, June 22-27, pp. 57–70 (2008). http://www.

usenix.org/events/usenix08/tech/fullpapers/agrawal/agrawal.pdf

9. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic

characteristics and system implications of flash memory based

solid state drives. In: Proceedings of the Eleventh International

Joint Conference on Measurement and Modeling of Computer

Systems, ser. SIGMETRICS ’09, pp. 181–192. ACM, New York

(2009). http://doi.acm.org/10.1145/1555349.1555371

10. Park, S.Y., Seo, E., Shin, J.Y., Maeng, S., Lee, J.: Exploiting

internal parallelism of flash-based SSDs. IEEE Comput. Archit.

Lett. 9, 9–12 (2010)

11. Jung, M., Kandemir, M.: Revisiting widely held SSD expecta-

tions and rethinking system-level implications. In: Proceedings of

the ACM SIGMETRICS/International Conference on Measure-

ment and Modeling of Computer Systems, ser. SIGMETRICS

’13, pp. 203–216. ACM, New York (2013). http://doi.acm.org/10.

1145/2465529.2465548

12. Park, S.-H., Ha, S.-H., Bang, K., Chung, E.-Y.: Design and

analysis of flash translation layers for multi-channel nand flash-

based storage devices. IEEE Trans. Consum. Electron. 55(3),
1392–1400 (2009)

13. Mativenga, R., Paik, J., Lee, J., Chung, T., Kim, Y.: Minimizing

CMT miss penalty in selective page-level address mapping table.

In: 2016 IEEE International Conference on Cluster Computing,

CLUSTER 2016, Taipei, Taiwan, September 12-16, pp. 152–153

(2016). http://dx.doi.org/10.1109/CLUSTER.2016.81

14. Kawaguchi, A., Nishioka, S., Motoda, H.: A flash-memory based

file system. In: Proceedings of the USENIX 1995 Technical

40 Cluster Computing (2019) 22:25–41

123

http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://dx.doi.org/10.1109/TCAD.2012.2227479
http://dx.doi.org/10.1109/TCAD.2012.2227479
http://doi.acm.org/10.1145/1989323.1989325
http://dx.doi.org/10.14778/2536274.2536298
http://dx.doi.org/10.14778/2536274.2536298
http://www.usenix.org/events/usenix08/tech/fullpapers/agrawal/agrawal.pdf
http://www.usenix.org/events/usenix08/tech/fullpapers/agrawal/agrawal.pdf
http://doi.acm.org/10.1145/1555349.1555371
http://doi.acm.org/10.1145/2465529.2465548
http://doi.acm.org/10.1145/2465529.2465548
http://dx.doi.org/10.1109/CLUSTER.2016.81

Conference Proceedings, ser. TCON’95, pp. 13–13. USENIX

Association, Berkeley (1995)

15. Karedla, R., Love, J.S., Wherry, B.G.: Caching strategies to

improve disk system performance. IEEE Comput. 27(3), 38–46
(1994)

16. He, B., Yu, J.X., Zhou, A.C.: Improving update-intensive work-

loads on flash disks through exploiting multi-chip parallelism.

IEEE Trans. Parallel Distrib. Syst. 26(1), 152–162 (2015)

17. Lee, J., Kim, Y., Shipman, G.M., Oral, S., Wang,F., Kim, J.: A

semi-preemptive garbage collector for solid state drives. In:

ISPASS, pp. 12–21. IEEE Computer Society, Washington, DC

(2011). http://dblp.uni-trier.de/db/conf/ispass/ispass2011.html#

LeeKSOWK11

18. Mao, B., Wu, S.: Exploiting request characteristics and internal

parallelism to improve SSD performance. In: 2015 33rd IEEE

International Conference on Computer Design (ICCD), vol. 00,

pp. 447–450 (2015)

Ronnie Mativenga received his

B.S.C Honors degree in Com-

puter Science from National

University of Science and

Technology (NUST), Bul-

awayo, Zimbabwe in 2010. He

is currently a PhD student in

Computer Engineering at Ajou

University, Suwon, Korea. His

current research interests

include All-Flash Array storage,

building a high-performance,

reliable all Flash (SSD) based

storage system, non-volatile

memory systems, large database

systems and simulation tools.

Joon-Young Paik received the

B.S., M.S., and Ph.D. degrees in

computer science and engineer-

ing from Chungnam National

University, Daejeon, South

Korea, in 2008, 2010, and 2013,

respectively. He is currently a

Research Professor with the

Department of Software, Ajou

University, Suwon, South

Korea. His current research

interests include flash memory

storages and storage security.

Youngjae Kim received his Ph.D

degree in Computer Science and

Engineering from Pennsylvania

State University, University

Park, PA, USA in 2009. He is

currently an assistant professor

in the department of computer

science and engineering at

Sogang University, Seoul,

Republic of Korea. Before

joining Sogang University, Dr.

Kim was a staff scientist in the

US Department of Energy’s

Oak Ridge National Laboratory

(2009–2015) and an assistant

professor in Ajou University, Suwon, Republic of Korea

(2015–2016). Dr. Kim received the BS degree in computer science

from Sogang University, Republic of Korea in 2001, and the MS

degree from KAIST in 2003. His research interests include distributed

file and storage, parallel I/O, operating systems, emerging storage

technologies, and performance evaluation.

Junghee Lee received his B.S.

and M.S. degrees in Computer

Engineering from Seoul

National University in 2000 and

2003, respectively, and his Ph.D

degree in Electrical and Com-

puter Engineering at Georgia

Institute of Technology in 2013.

From 2003–2008, he worked at

Samsung Electronics on elec-

tronic system level design of

mobile system-on-chip. Since

2014, he is with the Department

of Electrical and Computer

Engineering of University of

Texas at San Antonio as an assistant professor. His research interests

include architecture design of microprocessors, memory hierarchy,

and storage systems for high performance computing and embedded

systems.

Tae-Sun Chung received the

B.S. degree from KAIST, Dae-

jeon, South Korea, in 1995, and

the M.S. and Ph.D. degrees

from Seoul National University,

Seoul, South Korea, in 1997 and

2002, respectively, all in com-

puter science. He is currently a

Professor with the Department

of Software, Ajou University,

Suwon, South Korea. His cur-

rent research interests include

flash memory storages, XML

databases, and database

systems.

Cluster Computing (2019) 22:25–41 41

123

http://dblp.uni-trier.de/db/conf/ispass/ispass2011.html#LeeKSOWK11
http://dblp.uni-trier.de/db/conf/ispass/ispass2011.html#LeeKSOWK11

	RFTL: improving performance of selective caching-based page-level FTL through replication
	Abstract
	Introduction
	Background and motivation
	Background
	Motivation

	Design and implementation for RFTL
	RFTL architecture
	RFTL operation
	Mapping operation
	Read operation
	Translation page write
	Fault tolerance
	Garbage collection

	Best and worst cases for CMT misses

	Modeling and analysis of RFTL
	Performance modeling
	Performance analysis

	Evaluation
	Experiment setup
	Experimental results
	Mapping I/O performance
	End-to-end I/O performance
	Analysis

	Related work
	Conclusion
	Acknowledgements
	References

