
Low-overhead dynamic sharing of graphics memory space in GPU
virtualization environments

Minwoo Gu1 • Younghun Park1 • Youngjae Kim1
• Sungyong Park1

Received: 1 January 2019 / Revised: 5 June 2019 / Accepted: 23 July 2019 / Published online: 31 July 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The proliferation of GPU intensive workloads has created a new challenge for low-overhead and efficient GPU virtual-

ization solutions over GPU clouds. gVirt is a full GPU virtualization solution for Intel’s integrated GPUs that share

system’s on-board memory for graphics memory. In order to solve the inherent scalability limitation on the number of

simultaneous virtual machines (VM) in gVirt, gScale proposed a dynamic sharing scheme for global graphics memory

among VMs by copying the entries in a private graphics translation table (GTT) to a physical GTT along with a GPU

context switch. However, copying entries between private GTT and physical GTT often causes significant overhead, which

becomes worse when the global graphics memory space shared by each VM is overlapped. This paper identifies that the

copy overhead caused by GPU context switch is one of the major bottlenecks in performance improvement and proposes a

low-overhead dynamic memory management scheme called DymGPU. DymGPU provides two memory allocation algo-

rithms such as size-based and utilization-based algorithms. While the size-based algorithm allocates memory space based

on the memory size required by each VM, the utilization-based algorithm considers GPU utilization of each VM to allocate

memory space. DymGPU is also dynamic in the sense that the global graphics memory space used by each VM is

rearranged at runtime by periodically checking idle VMs and GPU utilization of each runnable VM. We have implemented

our proposed approach in gVirt and confirmed that the proposed scheme reduces GPU context switch time by up to 53%

and improved the overall performance of various GPU applications by up to 39%.

Keywords GPU virtualization � Memory management � GPU scheduling � Integrated GPU

1 Introduction

With the recent advances in computing and hardware

technologies, various types of GPUs [2, 3] have recently

been used for performance acceleration in graphics-inten-

sive applications such as 2D and 3D rendering. This has led

to a situation where cloud service providers (CSP) start

offering GPU instances over virtualized clouds. In order to

provide high performance GPU services over virtualized

clouds, many GPU virtualization techniques have been

proposed. Application programming interface (API)

remoting [4–6] is a technique that intercepts high-level

client’s API calls and forwards them to the host for pro-

cessing. Although this approach is simple to implement, it

depends on the version of API library or GPU driver, which

lacks flexibility and cannot provide full GPU features.

Direct pass-through [7] dedicates a GPU to a single virtual

machine (VM) and allows it to use GPU directly without

hypervisor intervention. This technique provides high

A preliminary version of this article [1] was presented at the

2018 IEEE 3rd International Workshops on Foundations and

Applications of Self* Systems (FAS*W), Trento, Italy,

September 2018.

& Sungyong Park

parksy@sogang.ac.kr

Minwoo Gu

mwgu@sogang.ac.kr

Younghun Park

parkyh93@sogang.ac.kr

Youngjae Kim

youkim@sogang.ac.kr

1 Department of Computer Science and Engineering, Sogang

University, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of

Korea

123

Cluster Computing (2020) 23:2167–2178
https://doi.org/10.1007/s10586-019-02967-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0309-1820
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02967-5&domain=pdf
https://doi.org/10.1007/s10586-019-02967-5

performance at the cost of prohibiting sharing of GPU

among VMs. To alleviate the problems of aforementioned

approaches, full GPU virtualization solutions at the

hypervisor level such as gVirt [8] and GPUvm [9] are

introduced.

Among these, gVirt is a full GPU virtualization solution

for Intel’s integrated GPUs that provides mediated pass-

through capability. The original gVirt could support only

up to three VMs owing to insufficient GPU memory. gS-

cale [10] solved this problem by partitioning global

graphics memory space into fixed size slots and allocating

them to each VM so that multiple VMs can share the global

graphics memory space. The accesses to global graphics

memory space are then translated to those to system

memory by using a physical graphics translation

table (GTT). Since each VM needs to see the whole view

of global graphics memory space, it also maintains a pri-

vate GTT so that the entries in a private GTT are copied to

a physical GTT whenever a VM is scheduled to run. From

an in-depth analysis of GPU context switch, which will be

discussed in Sect. 2, we found that GPU context switch

incurs non-trivial overhead and the cost of copying GTT

entries is extremely high. This leads to VM throughput

degradation.

There have been few research efforts to address the

performance problems resulting from the costs of GPU

context switch. GPUswap [11] and GPrioSwap [12] pro-

posed swapping policies to solve memory shortage prob-

lems on NVIDIA GPU. They transfer part of an application

with low priority in internal graphics memory to system

memory. Since the Intel’s integrated GPU uses system

memory as graphics memory, it is difficult to apply their

schemes directly to gVirt. Also, they mainly focus on

maintaining fairness between clients rather than reducing

the GPU context switch overhead that occurs during

memory swap. gScale recently proposed a proactive

approach [13] that copies a private GTT to a physical GTT

before context switch. However, this approach requires the

change in scheduler in order to optimize performance,

which is not portable and cannot be used in general.

In this paper, we first show that GPU context switch

creates a bottleneck in performance improvement. Based

on this inference, we propose a dynamic memory man-

agement scheme called DymGPU. DymGPU includes two

dynamic memory allocation algorithms that minimize the

overlapping of global graphics memory space used by each

VM and thus reduce GPU context switch overhead. The

selection of an appropriate algorithm is currently made by

users before starting DymGPU.

In summary, this paper makes the following specific

contributions:

– DymGPU provides two low-overhead memory man-

agement algorithms: size-based and utilization-based.

The size-based algorithm allocates global graphics

memory space based on the memory size required by

each VM such that the memory space shared among

VMs is minimized. This is because when part of global

graphics memory space is shared by two or more VMs,

the copying of the entries in private GTT to physical

GTT during GPU context switch is an unavoidable step,

regardless of the number of VMs involved. On the other

hand, in a utilization-based algorithm, if VMs with

higher GPU utilization share global graphics memory

space with other VMs, it is more likely that the copies

can be made several times. DymGPU reduces the

number of copies made as far as possible by ensuring

that VMs with higher GPU utilization do not share

memory with other VMs.

– DymGPU is dynamic in the sense that the global

graphics memory space used by each VM is rearranged

at runtime by periodically checking idle VMs and GPU

utilization of each runnable VM.

– We have implemented our approach in the 2016Q4

version of gVirt on a Xen hypervisor [14]. We also

incorporated gScale’s GPU memory sharing technique

into gVirt in order to scale up to 15 Linux VMs. The

benchmarking results show that DymGPU reduces GPU

context switch time by up to 53% and improves the

overall performance of various graphics applications by

up to 39%.

The rest of this paper is organized as follows. Section 2

briefly introduces gVirt and discusses the motivations

related to our proposed approach. Section 3 explains the

overall architecture of DymGPU and its implementation

issues in detail. Section 4 evaluates DymGPU against

gVirt. Section 5 presents related works and Sect. 6 con-

cludes this paper with possible future works.

2 Background and motivation

In this section, we briefly introduce gVirt and analyze its

overhead incurred by GPU context switch and memory

sharing scheme.

2.1 Background

gVirt, also known as Intel GVT-g, is a high-performance,

full GPU virtualization technique for Intel’s integrated

GPUs [8]. This technique provides mediated pass-through

capability that runs the native graphics driver in the guest.

Therefore, the performance-critical resources can be

directly accessed by a VM, while the hypervisor intervenes

2168 Cluster Computing (2020) 23:2167–2178

123

only for privileged operations. Currently, two implemen-

tations based on both Xen hypervisor (called XenGT) and

KVM hypervisor (KVMGT) are available. The initial gVirt

implementation was restricted to run only up to 3 vGPU

(virtual GPU) instances. gScale overcame this limitation by

allowing global graphics memory space to be shared

among multiple vGPU instances and scaled up to 15 vGPU

instances in Linux and 12 vGPU instances in Windows. In

this paper, we use gVirt as a GVT-g implementation for

Xen (XenGT) in which gScale modifications are added.

In gVirt, a mediator in Dom0 schedules vGPUs in a

round-robin manner for fair scheduling. Each vGPU is

allotted a 16-ms time quantum that takes into account high

GPU context switch cost and speed. After the assigned time

is elapsed, vGPU state is saved and the state of next vGPU

is restored. Since current Intel’s integrated GPU cannot

preempt GPU kernel, gVirt transmits a command to each

vGPU so that it terminates execution within the time

quantum by tracking command submission.

The 4 GB global graphics memory space in Intel’s

integrated GPU is divided into low global graphics mem-

ory that both CPU and GPU can access, and high global

graphics memory that only GPU can access. The original

gVirt partitions low global graphics memory for each

vGPU such that it is not shared with other VMs. This

restricts the number of vGPUs running at the same time.

gScale modified the layout of low global graphics memory

and creates a slot such that multiple vGPU can share the

slot and swap related contents whenever each vGPU is

ready to run. High global graphics memory is divided into

64 MB slots, and multiple contiguous slots can be assigned

to each vGPU. When a new VM is created, gVirt computes

and assigns a score for every slot based on whether the slot

is shared by other vGPUs or not. For example, if a slot is

not occupied by any vGPU, nothing is added to the score.

Otherwise, weight, which is deliberately set to a very large

value, is added to the score to minimize sharing of the slot

with other vGPUs. After analyzing the scores from each

slot, contiguous slots with the lowest scores are allocated to

the vGPU. If there are multiple minimum scores, the left-

most slots are chosen. For example, if there are 5 slots and

slots 1, 2, 3, and 4 are occupied by one VM, then the vGPU

of a newly created VM that requires 2 slots is allocated to

slots 4 and 5.

Figure 1 depicts how global graphics memory is map-

ped to system memory in gVirt. The logical address in

global graphics memory is converted to a physical address

in system memory using a physical GTT. In order to load a

large number of vGPUs in a small global graphics memory

space, gScale proposes a slot sharing mechanism that

allows vGPUs to share global graphics memory space.

Each vGPU has private GTTs for low and high global

graphics memories. To activate a vGPU to switch in,

private GTT entries of the vGPU that do not exist in the

physical GTT are copied. Whenever a vGPU modifies the

physical GTT, its private GTT is also synchronized.

However, after the vGPU is switched out, the physical

GTT which is mapped to low global graphics memory has

entries of another vGPU and the CPU can’t access the VM

through aperture. To solve this problem, gScale imple-

ments ladder mapping and fence memory space pool.

Ladder mapping maps guest physical address to host

physical address directly. Fence memory space pool allows

fence register to operate correctly.

2.2 GPU context switch overhead analysis

Global graphics memory includes frame and command

buffers that store the pixel information of display and the

graphics commands produced by CPU. In Linux VM, it is

generally known that 64 MB and 384 MB in size are suf-

ficient for low and high global graphics memory respec-

tively, while 128 MB and 384 MB are recommended in

Windows VM [15]. However, we found that small high

global graphics memory can affect the performance of

GPU workloads and can sometimes lead to a crash espe-

cially when a VM runs GPU workloads with many ren-

dering operations or involves a high-resolution display

environment such as quad-high-definition (QHD) and ultra-

high-definition (UHD).

To confirm this, we measured average frames per second

(FPS) of two 3D benchmarks, Unigine Valley [16] and

Unigine Superposition [17], by varying high global

Fig. 1 Global graphics memory space and mapping in gVirt

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

valley superpositionN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

512MB 1024MB 1536MB 2048MB

Fig. 2 Performance of 3D workloads

Cluster Computing (2020) 23:2167–2178 2169

123

graphics memory size from 512 to 2048 MB. Figure 2

shows normalized performance with respect to the perfor-

mance with 2048 MB size. As shown in Fig. 2, when high

global graphics memory size is larger than 1024 MB,

similar performance is observed. Whereas, when high

global graphics memory size is 512 MB, the performance

degrades severely because of insufficient high global

graphics memory. These results indicate that large high

global graphics memory can increase the performance of

GPU workloads. However, it should be noted that the

possibility of overlapping address spaces among vGPU

instances also gets bigger, which incurs large overhead in a

GPU context switch.

To analyze which operation takes the longest time

during a GPU context switch and the effect of high global

graphics memory size in VMs, we measured consumed

CPU cycles taken for each of the following three activities

in a GPU context switch by varying the number of VMs

from 1 to 15: (1) private GTT copies in low global graphics

memory, (2) private GTT copies in high global graphics

memory, (3) other activities such as restoring render con-

text, restoring ring buffers, and switching local page table.

We conducted two experiments for which high global

graphics memory size of each VM is set to 384 MB and

1024 MB, respectively. All VMs excluding Dom0 share 64

MB low global graphics memory and 3456 MB high global

graphics memory. The testbed is described in greater detail

in Sect. 4.1.

Figure 3 shows average consumed CPU cycles for pri-

vate GTT copies in low and high global graphics memory.

It also depicts the CPU cycles consumed by other activities

in a GPU context switch. Since all VMs share a single low

global graphics memory, a private GTT copy of the same

size in low global graphics memory is made for every GPU

context switch. As shown in Fig. 3a, when the number of

VMs is less than or equal to 9, private GTT copies in low

global graphics memory take most of the CPU cycles

(approximately 84%). In this case, private GTT copy in

high global graphics memory is made only the first time,

because the VMs do not share high global graphics mem-

ory. However, when the number of VMs is greater than 9,

they begin to share high global graphics memory and pri-

vate GTT copies in low and high global graphics memory

take about 17% and 79% of the total CPU cycles, respec-

tively. On the other hand, if the size of high global graphics

memory is increased to 1024 MB as shown in Fig. 3b, the

consumed CPU cycles in high global graphics memory is

more than 90% of the total CPU cycles. This explains that

private GTT copy overhead forms a very large portion of

GPU context switch overhead. Thus, private GTT copies

that occur in low and high global graphics memory should

be reduced to improve the performance of VMs.

2.3 Global graphics memory mapping analysis

As explained in Sect. 2.1, gVirt maps a vGPU to contigu-

ous slots in high global graphics memory such that the

number of shared vGPU per each slot is minimized.

However, when one slot is shared by two or more vGPUs,

GTT copy always occurs whenever vGPUs are switched in

regardless of how many vGPUs share the slot.

Figure 4 compares the gVirt’s allocation scheme with

that of optimal case, where 12 slots are initially available in

high global graphics memory and each vGPU from vGPU1

to vGPU4 requires six slots. Assume that vGPUs are

scheduled in a round-robin manner from vGPU1 to vGPU4.

At the first round of scheduling in gVirt, vGPUs are allo-

cated as shown in Fig. 4a and private GTTs from all

vGPUs are copied to physical GTT because all physical

GTT entries are initially empty. When vGPUs are sched-

uled again, private GTT copies should also be made since

the maximum number of vGPUs that can be allocated

exclusively is 2. Hence, when each vGPU is scheduled n

times, the total number of GTT entry copies for the slots is

24þ 24ðn� 1Þ, which is the sum of initial GTT entry

copies and the GTT entry copies at every iteration.

However, if vGPU4 is allocated to the same memory

space that vGPU3 is assigned as shown in Fig. 4b, vGPU2

always occupies its own slots and no private GTT copies

are needed for vGPU2. This reduces the total number of

GTT entry copies to 24þ 18ðn� 1Þ. Considering that

private GTT copies constitute a considerably large amount

of CPU cycles in a GPU context switch, the difference of

6ðn� 1Þ in private GTT copies affects the overall perfor-

mance of VM, especially when n becomes larger.

0

2*10 5

4*10 5

6*10 5

8*10 5

1 2 3 4 5 6 9 12 15

Cy
cl

es
(M

)

Number of VMs

low
high

others

0

6.0*10 5

1.2*10 6

1.8*10 6

2.4*10 6

1 2 3 4 5 6 9 12 15

Cy
cl

es
(M

)

Number of VMs

low
high

others

(a) High GM is 384 MB (b) High GM is 1024 MB

Fig. 3 Consumed CPU cycles of each context switch steps when high

global graphics memory (GM) size is 384 MB and 1024 MB

(a) Case of gVirt (b) Optimal Case

Fig. 4 Comparison of GTT copy between gVirt and optimal case with

an example

2170 Cluster Computing (2020) 23:2167–2178

123

3 Design and implementation

In this section, we present the overall architecture of DymGPU

and explore how to minimize private GTT copy overhead.

3.1 Overall architecture

Figure 5 presents the overall architecture of DymGPU.

DymGPU consists of two modules: monitor and memory

allocator. Monitor collects necessary information for each

vGPU such as memory size required by vGPU, vGPU status

(idle or active), GPU usage, and maintains a status table so

that memory allocator uses for dynamic reallocation. For

example, monitor periodically checks every vGPU and

discovers idle vGPUs that have not been used for a certain

period of time (threshold). The threshold value is config-

urable and currently set to 20 s. If an idle GPU occupies a

slot in global graphics memory alone, memory space is

wasted, which may affect the GPU throughput of the VMs

running at a physical machine. In addition, monitor peri-

odically collects GPU utilization of each vGPU every sec-

ond. Instead of using GPU usage at a certain point in time,

we average GPU utilization values for 20 s to determine the

GPU utilization of each vGPU. The 20 s value is also a

configuration parameter and can be set with different values.

Memory allocator allocates or reallocates global

graphics memory space for each vGPU. In addition to

adjusting memory space when a VM is created or

destroyed, memory allocator dynamically allocates mem-

ory space based on the information obtained from monitor.

Memory allocator provides two memory allocation algo-

rithms such as size-based and utilization-based algorithms.

In an environment where most VMs execute GPU appli-

cations with similar GPU utilization, the sized-based

algorithm is preferred. In this case, DymGPU allocates

memory space for each vGPU to minimize the number of

shared slots based on the memory size required by each

VM, which results in maximizing the number of slots that

are used by only one vGPU. Whereas, if each vGPU has

different GPU utilization patterns, the utilization-based

algorithm is preferred. If vGPUs with high GPU utilization

share the same slots, more private GTT copies are likely to

happen for the shared slots. Therefore, DymGPU prevents

vGPUs with high GPU utilization from sharing slots with

other vGPUs as much as possible. In the rest of this section,

we describe the detailed design of memory allocator.

3.2 Memory allocator

3.2.1 Size-based allocation algorithm

In order to minimize the number of private GTT copies, we

suggest a greedy algorithm, which minimizes the number

of shared slots in high global graphics memory.

Let the set of vGPUs be V ¼ fV0;V1; . . .;VN�1g, where
N is the number of vGPUs. Each Vi has two parameters: Si
which is the number of required slots, and Pi which is the

start slot index of Vi. Suppose that we place V on high

global graphics memory with M slots. Figure 6 depicts the

vGPU mapping scheme. Memory allocator sorts V in non-

increasing order of required slots and places vGPUs in

order of slot size beginning from the leftmost free slots

until the vGPU does not share slots with another. In Fig. 6,

V0, ..., VK�1 belong to that case. And then VK is placed at

the rightmost end of the high global graphics memory.

Finally, the remaining vGPUs are allocated starting from

the leftmost VK , so that VKþ1, ..., VN�1 are allocated on top

of the overlapping L slots formed by VK�1 and VK . For

example, if M is 5 and there are four vGPUs, V0;V1;V2;V3

require 4, 4, 3, and 2 slots respectively. V0, requiring the

largest slot, is placed from slot 0 to slot 3. And V1 is placed

at the rightmost slot, because V1 cannot be placed in the

remaining one slot. And then remaining vGPUs, V2;V3 are

placed on top of three shared slots made by V0 and V1.

Therefore, P0, P1, P2, and P3 are 0, 1, 1, and 1, respec-

tively. In this case, L is 3 and the private GTT copy occurs

only on slot 2, 3, and 4 in a GPU context switch.

Fig. 5 Architecture of DymGPU Fig. 6 Size-based allocation algorithm

Cluster Computing (2020) 23:2167–2178 2171

123

This algorithm is activated when a new vGPU instance is

created or an existing vGPU instance is terminated. If the

number of required slots for new vGPU is less than or equal

to L, the vGPU is mapped to PK which is on top of shared

slots. Otherwise, memory allocator compares the number of

shared slots when the vGPU is mapped to PK with the

number of shared slots when all vGPUs are reallocated.

Then memory allocator chooses the case where the number

of shared slots is smaller. Likewise, when an existing vGPU

is terminated, memory allocator reallocates the memory

space used by other vGPUs if the terminated vGPU has slots

that have not been shared with other vGPUs. Memory

allocator also checks idle vGPUs every second, and pro-

cesses them as if the vGPU were terminated. Algorithm 1 is

the pseudo-code of size-based allocation algorithm.

Algorithm 1 Size-based Algorithm
Require:

M : the number of the slots of high GM
N : the number of vGPUs
V = {V0, V1, ..., VN−1}: a set of vGPUs
S = {S0, S1, ..., SN−1}: a set of the number of required
slots of vGPUs

Ensure:
P = {P0, P1, ..., PN−1}: a set of start slot index of vGPUs

1: Sort V and S in non-increasing order of S
2: sum ← 0
3: index ← 0
4: while sum < M do
5: if sum+ Sindex < M then
6: Pindex ← sum
7: else
8: Pindex ← M − Sindex

9: K ← index
10: end if
11: sum ← sum+ Sindex

12: index ← index+ 1
13: end while
14: while index < N do
15: Pindex ← PK

16: index ← index+ 1
17: end while
18: return P

3.2.2 Utilization-based allocation algorithm

As mentioned before, if vGPUs with low GPU utilization

occupy slots alone, the memory space used by those

vGPUs is wasted, resulting in performance degradation.

The performance degradation increases as the difference in

GPU utilization between VMs increases. Therefore, we

suggest an additional greedy algorithm that considers the

GPU utilization of vGPUs as shown in Fig. 7.

In this algorithm, DymGPU sorts V in non-increasing

order of GPU utilization and places them in order of large

GPU usage starting from leftmost free slots until the vGPU

doesn’t share the slots with other vGPUs. V0;V1; . . .;VK�1

are in that case. Remaining vGPUs, VK ;VKþ1; . . .;VN�1,

are allocated to rightmost slots in high global graphics

memory.

Memory allocator reallocates memory space every 20 s

based on GPU utilization. When each vGPU is reallocated,

the slots occupied by the vGPU are invalidated and the

private GTT entries mapped to the slots are copied to a new

position. In the worst case, all slots in high global graphics

memory are invalidated and many private GTT entry

copies can be made. For this reason, memory allocator uses

a relatively large interval to mitigate invalidation overhead.

Since utilization-based allocation algorithm doesn’t con-

sider the number of slots allocated to vGPUs, it is possible

that a large number of slots can be shared. However, this

algorithm can reduce context switch overhead further than

size-based allocation algorithm, as the frequency of GPU

context switch generally depends on the GPU utilization of

each vGPU. Algorithm 2 is the pseudo-code of the uti-

lization-based allocation algorithm.

Fig. 7 Utilization-based allocation algorithm

Algorithm 2 Utilization-based Algorithm
Require:

M : the number of the slots of high GM
N : the number of vGPUs
V = {V0, V1, ..., VN−1}: a set of vGPUs
S = {S0, S1, ..., SN−1}: a set of the number of required
slots of vGPUs
U = {U0, U1, ..., UN−1}: a set of the GPU utilization of
vGPUs

Ensure:
P = {P0, P1, ..., PN−1}: a set of start slot index of vGPUs

1: Sort V , S and U in non-increasing order of U
2: sum ← 0
3: index ← 0
4: while sum < M do
5: if sum+ Sindex < M then
6: Pindex ← sum
7: else
8: Pindex ← M − Sindex

9: end if
10: sum ← sum+ Sindex

11: index ← index+ 1
12: end while
13: while index < N do
14: Pindex ← M − Sindex

15: index ← index+ 1
16: end while
17: return P

2172 Cluster Computing (2020) 23:2167–2178

123

3.3 Discussion

The main purpose of this paper is to propose a low-over-

head dynamic sharing mechanism of graphics memory

space for integrated GPUs and prove the proposed ideas

over a publicly available software platform. Because the

proposed mechanism should be implemented at the driver

level and the availability of source code was very impor-

tant, we chose the open source-based gVirt as a software

platform to verify the proposed ideas.

Although DymGPU is currently targeted only at Intel’s

integrated GPUs, its design principle can be applied to

other architectures such as AMD GPU as well, where the

system memory is also used as GPU memory.

Whereas, in the dedicated GPUs that are equipped with

separate graphics memory such as NVIDIA, we believe

that DymGPU can help as they also use graphics transla-

tion table for address translation. However, the lack of

zero-copy mechanism and unavailability of source code

make it difficult to experiment our ideas over this platform.

4 Evaluation

This section compares the performance of two algorithms

proposed in DymGPU with that of gVirt and shows how

much overhead DymGPU can reduce in a GPU context

switch. In order to conduct the experiments with up to 15

Linux VMs, we have extended gVirt so that it contains the

scalability features provided by gScale such as ladder

mapping and fence memory space pool.

For the extensive comparison with different workload

patterns, we use Phoronix Test Suite [18] and Cairo-perf-

trace [19], where various 3D and 2D workloads are

included. Among them, we use lightsmark, openarena,

nexuiz, urbanterror for 3D workloads and firefox-asteroids

(firefox-ast), firefox-scrolling (firefox-scr), gnome-system-

monitor (gnome), midori for 2D workloads. The perfor-

mance of 3D benchmark is measured by average frame per

second (FPS) and the performance of 2D benchmark is

measured by execution time, and normalized with respect

to that of single VM.

4.1 Experimental setup

Table 1 summarizes the configurations of a physical

machine (PM) and virtual machines (VM) running on the

PM used for experiments. The size of global graphics

memory in the PM is set to 4 GB, where the low and high

global graphics memory sizes are set to 256 MB and 3840

MB, respectively. While Dom0 uses global graphics

memory alone, DomU shares low and high global graphics

memory excluding the area reserved by Dom0. For

experiments, we vary the size of high global graphics

memory size in each VM from 384 to 1024 MB.

4.2 Overall performance

4.2.1 Performance Comparison with Similar GPU Utilization

In order to evaluate the performance of DymGPU where

the GPU utilization of VMs is similar, we run the same

workload in each VM and check the performance as the

number of VMs is increased by 3. Furthermore, the size of

high global graphics memory in VMs participating in the

experiment is varied among 384 MB, 704 MB, and 1024

MB with the same ratio (i.e., 1:1:1). It is worth mentioning

that the performance of VMs with different high global

graphics memory sizes varies as discussed in Sect. 2.2. The

performance of DymGPU is normalized to that of gVirt.

Figure 8a, b show the normalized performance of two

algorithms when all VMs execute the same workloads.

When the number of VMs is 3, the performance of

Table 1 Experimental setup
Physical machine

Processor Intel Core i7-6700 3.40GHz (4 cores / 8 threads) / Intel HD Graphics 530

Memory 32 GB

Disk Samsung SSD 850 PRO 256GB * 3

Host virtual machine (Dom0)

vCPU / Memory 8/4 GB

Hypervisor Xen version 4.6.0

OS Ubuntu 16.04.1 (kernel version 4.3.0)

Low/high GM 64 MB / 384 MB

Guest virtual machine (DomU)

vCPU / Memory 2/2 GB

OS Ubuntu 16.04 (Kernel version 4.3.0)

Low GM 64 MB

Cluster Computing (2020) 23:2167–2178 2173

123

DymGPU is similar to that of gVirt because the total

required size for high global graphics memory is still less

than available size. However, as we increase the number of

VMs, DymGPU outperforms gVirt for all workloads. It

should be noted that DymGPU reduces the number of

shared slots in the size-based algorithm and it also con-

siders GPU utilization when allocating memory space.

Moreover, the average performance improvement of size-

based algorithm relative to the utilization-based algorithm

for all benchmarks is 7%, 4%, 2%, and 1% for 6, 9, 12, and

15 VMs, respectively. That is, the performance of the size-

based algorithm is better than that of the utilization-based

algorithm when all VMs actively use GPUs. This is

because reducing the number of shared slots is more

important in a situation where all VMs have similar GPU

usages. In case of gnome and midori, DymGPU shows little

improvement than other workloads because the workloads

submit few GPU commands and thus generate infrequent

GPU context switches.

4.2.2 Performance comparison with various GPU utilization

To evaluate the performance with various GPU workloads,

we define five sets of benchmarks by mixing workloads

with different GPU utilization as shown in Table 2. That is,

lightsmark is classified as a workload with low GPU uti-

lization, while the firefox-asteroids and urbanterror are

workloads with medium and high GPU utilization,

respectively. For experiments, we run a total of 15 VMs

and the number in the table represents the number of

instances for each workload.

Figure 9 shows performance comparison with various

workload sets. It is observed that the performance of

DymGPU is better than gVirt for all five sets. Specially, the

utilization-based algorithm outperforms the size-based

algorithm except for set 2 and set 5. This can be explained

by the fact that set 2 is mainly composed of urbanterror,

which requires high CPU and GPU computations. In this

case, GPU context switch overhead is hidden because CPU

computation is already a performance bottleneck.

Furthermore, set 5 requires CPU computation more than

GPU computation, resulting in less GPU context switches.

4.3 Private GTT copy overhead

In this experiment, we analyze private GTT copy overhead

in high global graphics memory using the same workload

types and benchmark sets explained in Sect. 4.2. The

experiments are conducted by using nexuiz (3D workload)

and midori (2D workload) as we increase the number of

VMs.

Figure 10a, b show the number of private GTT copies

normalized to that of gVirt when VMs execute the same

workloads. As shown in Fig. 10a, both size-based and

utilization-based algorithms reduce private GTT copies by

up to 35% and 30% against gVirt for 3D workload. When

the number of VMs is small, the size-based algorithm

reduces private GTT copies further compared with the

utilization-based algorithm. However, as we increase the

number of VMs, the difference of overhead optimization

 0

 0.5

 1

 1.5

lightsmark

openarena
nexuiz

urbanterror

fire
fox-ast

fire
fox-scr

gnome
midori

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce 3VM 6VM 9VM 12VM 15VM

 0

 0.5

 1

 1.5

lightsmark

openarena
nexuiz

urbanterror

fire
fox-ast

fire
fox-scr

gnome
midori

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce 3VM 6VM 9VM 12VM 15VM

mhtiroglAnoitacollAdesab-noitazilitU)b(mhtiroglAnoitacollAdesab-eziS)a(

Fig. 8 Performance comparison with similar GPU utilization (3D and 2D workloads)

Table 2 Benchmark sets

Set sumber Lightsmark Firefox-asteroids Urbanterror

Set 1 11 2 2

Set 2 2 2 11

Set 3 3 6 6

Set 4 6 3 6

Set 5 6 6 3

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

set1 set2 set3 set4 set5N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

size-based utilization-based

Fig. 9 Performance comparison with various GPU utilization

2174 Cluster Computing (2020) 23:2167–2178

123

shrinks because the degree of memory sharing and the

overhead of competition between two processors increase.

For 2D workload, we observe similar results as shown in

Fig. 10b. Figure 10c shows the number of private GTT

copies when VMs execute various workloads with different

GPU utilization. We observe that the utilization-based

algorithm shows fewer slot copies than the size-based

algorithm for all sets. Specially, the number of slot copies

in the utilization-based algorithm is reduced by about 40%

compared to the size-based algorithm for set 4. This is

because set 4 consists of GPU workloads with various GPU

utilization.

4.4 GPU context switch overhead

Reducing the number of GTT copies does not fully explain

that GPU context switch overhead is definitely decreased.

In order to analyze GPU context overhead further, we have

conducted additional experiments using the NW, LUD, and

K-MEANS applications from Rodinia [20] benchmark. For

this, we measured the number of GPU context switches,

CPU cycle consumed in each context switch, and total CPU

cycles consumed in all GPU context switches by varying

the number of VMs from 2 to 7. Figures 11 and 12 depict

the corresponding results of the size-based algorithm and

gVirt.

As we can see from Fig. 12, total CPU cycles consumed

in all GPU context switches are significantly reduced for all

three applications. The performance gap is bigger when the

number of VMs is relatively small, and the gap becomes

narrow as we increase the number of VMs. Interestingly,

the size-based algorithm creates more GPU context

switches than gVirt, while the number of consumed cycles

per context switch is considerably reduced, as shown in

Fig. 11. This is because the reduction of private GTT

copies reduces the time spent in a context switch and

allows CPU to schedule other VMs, which may cause more

context switches.

4.5 Fairness

In DymGPU, the private GTT copy occurs only among the

VMs that share the slots in the global graphics memory

space. Therefore, the two memory allocation algorithms

provided by the DymGPU seem to be unfair at the cost of

minimizing private GTT copy overhead.

DymGPU schedules each vGPU in a round-robin man-

ner based on the actual execution time which does not take

the GPU context switch time into account. That is, the time

spent for GPU context switch is excluded from the actual

execution time and each vGPU is given a fair chance to run

regardless of the location at which each vGPU resides.

To confirm this, we compare the GPU utilizations of

three allocation algorithms (e.g., gVirt, size-based algo-

rithm, utilization-based algorithm) when 15 VMs run

nexuiz (3D workload). As shown in Fig. 13, the GPU uti-

lizations of three algorithms fluctuate initially up to about

15 s and all of them finally converge to a similar utilization

value (around 80–90%) after 20 s. The similar results were

also observed when we run Urbanterror that is 2D work-

load with many I/O operations.

5 Related works

The main contribution of DymGPU is to propose a low-

overhead dynamic memory management technique in a

GPU virtualization environment. DymGPU targets at

achieving high performance by reducing the number of

GTT copies in a GPU context switch. Although there are

few research activities to reduce the GPU context switch

overhead, the rest of this section is devoted to introduce

relevant research efforts related to GPU memory manage-

ment techniques in a GPU virtualization environment.

Multiple vGPUs in gVirt [8] can share low global

graphics memory by swapping GTT entries whenever they

are ready to run. However, the exclusive allocation

scheme of GTT entries on high global graphics memory

restricts simultaneous VMs up to 3. By adopting a sharing

mechanism also in high global graphics memory, gScale

[10] increased the number of simultaneous VMs to 15. The

round robin-based allocation strategy in gScale still incurs

a considerable overhead in a context switch. Recently, a

low-overhead mechanism called predictive copy [13] that

switches private GTT entries before context switch is

proposed. Although this study aims to minimize context

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6VMs 9VMs 12VMs 15VMs

N
or

m
al

iz
ed

 o
ve

rh
ea

d size-based
utilization-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6VMs 9VMs 12VMs 15VMs

N
or

m
al

iz
ed

 o
ve

rh
ea

d size-based
utilization-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

set1 set2 set3 set4 set5

N
or

m
al

iz
ed

 o
ve

rh
ea

d size-based
utilization-based

steSkramhcneBdenfiederP)c(kramhcneBD2)b(kramhcneBD3)a(

Fig. 10 Normalized number of private GTT copies

Cluster Computing (2020) 23:2167–2178 2175

123

switch overhead, which is similar to ours, this approach

requires a predictive copy aware scheduling and is thus

dependent on a scheduler. Whereas, our approach does not

require scheduler change and the number of GTT copies is

the same as that in predictive copy approach.

Gdev [21], GDM [22], RSVM [23] and VMBR [24]

solve a GPU memory insufficiency problem. They use

system memory as backup memory, and copy data from

GPU memory to system memory at runtime when appli-

cations need more memory to run. GPUswap [11] and

GPrioSwap [12] propose swapping policies in NVIDIA

GPU that aim to achieve resource fairness among appli-

cations and high GPU memory utilization. GPUswap

divides buffer into fixed-size chunks called swap unit.

When more memory is needed, GPUswap randomly

chooses chunks from an application that occupied the lar-

gest memory space. Since a victim is randomly selected,

the performance of the application can be degraded if the

chunks include actively used or reusable data. To overcome

this problem, GPrioSwap also proposes a technique to

profile the number of memory accesses of GPU applica-

tions and selects a victim based on the priority defined by

the number of accesses.

Traditional NVIDIA docker [25] environment simply

assigns a GPU to a container, which causes program failure

if multiple containers share the GPU and use GPU memory

dynamically. ConVGPU [26] proposes a solution to share

GPU among containers by restricting the use of GPU

memory at runtime. When a container tries to use GPU

memory more than allocated memory limitation, Con-

VGPU denies the memory request. When a container

requests GPU memory within the limitation but GPU

memory is not enough, the request is suspended until

requested memory size is available. On the other hand, the

GPU memory space used by running container is made

available upon exiting to other containers that are waiting

for GPU memory to be freed. ConVGPU uses a best fit

(a) (b) (c)

Fig. 11 Number of context switches and consumed cycles per context switch

(a) (b) (c)

Fig. 12 Total cycles consumed in context switches

 25

 50

 75

 100

 0 10 20 30 40 50 60

G
P

U
 U

til
iz

at
io

n
(%

)

Time (seconds)

 25

 50

 75

 100

 0 10 20 30 40 50 60

G
P

U
 U

til
iz

at
io

n
(%

)

Time (seconds)

 25

 50

 75

 100

 0 10 20 30 40 50 60

G
P

U
 U

til
iz

at
io

n
(%

)

Time (seconds)
desab-noitazilitU)c(desab-eziS)b(triVg)a(

Fig. 13 GPU utilization changes of 15 VMs running nexuiz in three algorithms

2176 Cluster Computing (2020) 23:2167–2178

123

strategy to schedule containers paused for memory

allocation.

GaiaGPU [27] proposes an approach to sharing GPU

memory and computing resources in a container-based

GPU cloud environment. GaiaGPU divides a physical GPU

into several virtual GPUs and assigns them to containers

using the device plugin framework in Kubernetes.

GaiaGPU divides memory resources into 256MB units

called vmemory devices and splits computing resources

into 100 vprocessor devices with one percent of utilization

each. GaiaGPU allocates multiple vmemory devices and

vprocessor devices to each container. The allocation status

can be changed during runtime. Two types of resource

allocation schemes are proposed in GaiaGPU: elastic

resource allocation and dynamic resource allocation.

Elastic resource allocation modifies the resource allocation

status of a container temporarily, while dynamic resource

allocation changes it permanently. In GaiaGPU, elastic

resource allocation is used for computing resources, and

dynamic resource allocation is used for both memory and

computing resources.

6 Conclusion and future work

We have observed that GPU context switch overhead in

gVirt is one of the major bottlenecks in improving the

performance of GPU VM due to the large number of pri-

vate GTT copies. This paper explored this issue and pro-

posed a low-overhead dynamic memory management

scheme called DymGPU that provides two memory allo-

cation algorithms: size-based algorithm and utilization-

based algorithm. The size-based algorithm is based on the

GPU memory size requested from a vGPU, and preferred

when the utilization of each vGPU is similar. The utiliza-

tion-based algorithm is based on the GPU utilization, and

preferred when the utilization of each vGPU is uneven. The

benchmarking results showed that the proposed algorithms

reduced the number of GTT copies by about 53% and also

improved the performance of various 2D/3D workloads by

up to 39% against gVirt.

The global graphics memory space in DymGPU is static

in the sense that when a memory space is given to each

vGPU, it should be kept until the workload running on the

vGPU is finished. As a future work, we are currently

investigating a mechanism to dynamically adjust the

memory size assigned to each vGPU at runtime. In addi-

tion, current version of DymGPU can schedule only Linux

VMs with low global graphics memory size of 64MB due

to the limitation on low global graphics memory size.

DymGPU needs to be enhanced in the future to be able to

schedule not only Linux VMs but also Windows VMs that

require 128 MB low global graphics memory.

Acknowledgements This research was supported by Next-Generation

Information Computing Development Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of

Science and ICT (2017M3C4A7080245).

References

1. Park, Y., Gu, M., Yoo, S., Kim, Y., Park, S.: DymGPU: Dynamic

Memory Management for Sharing GPUs in Virtualized Clouds.

In: 2018 IEEE 3rd International Workshops on Foundations and

Applications of Self* Systems (FAS* W), pp. 51–57. IEEE

(2018)

2. The compute architecture of Intel� processor graphics

Gen9.https://software.intel.com/sites/default/files/managed/c5/

9a/The-Compute-Architecture-of-Intel-Processor-Graphics-

Gen9-v1d0.pdf

3. Pascal GPU architecture | NVIDIA.https://www.nvidia.com/en-

us/data-center/pascal-gpu-architecture/

4. Duato, J., Pena, A.J., Silla, F., Mayo, R., Quintana-Ortı́, E.S.:

rCUDA: reducing the number of GPU-based accelerators in high

performance clusters. In: 2010 International Conference on High

Performance Computing and Simulation (HPCS), pp. 224–231.

IEEE (2010)

5. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU

transparent virtualization component for high performance com-

puting clouds. In: European Conference on Parallel Processing,

pp. 379–391. Springer (2010)

6. Xiao, S., Balaji, P., Zhu, Q., Thakur, R., Coghlan, S., Lin, H.,

Wen, G., Hong, J., Feng, W.C.: VOCL: an optimized environ-

ment for transparent virtualization of graphics processing units.

In: Innovative Parallel Computing (InPar), 2012, pp. 1–12. IEEE

(2012)

7. Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Reg-

nier, G., Sankaran, R., Schoinas, I., Uhlig, R., Vembu, B., Wie-

gert, J.: Intel virtualization technology for directed I/O. Intel

Technol. J 10(3), 179–192 (2006)

8. Tian, K., Dong, Y., Cowperthwaite, D.: A full GPU virtualization

solution with mediated pass-through. In: USENIX Annual

Technical Conference, pp. 121–132 (2014)

9. Suzuki, Y., Kato, S., Yamada, H., Kono, K.: GPUvm: why not

virtualizing GPUs at the hypervisor? In: USENIX Annual

Technical Conference, pp. 109–120 (2014)

10. Xue, M., Tian, K., Dong, Y., Ma, J., Wang, J., Qi, Z., He, B.,

Guan, H.: gScale: scaling up GPU virtualization with dynamic

sharing of graphics memory space. In: USENIX Annual Tech-

nical Conference, pp. 579–590 (2016)

11. Kehne, J., Metter, J., Bellosa, F.: GPUswap: enabling oversub-

scription of GPU memory through transparent swapping. In:

ACM SIGPLAN Notices, vol. 50, pp. 65–77. ACM (2015)

12. Kehne, J., Hillenbrand, M., Metter, J., Gottschlag, M., Merkel,

M., Bellosa, F.: GPrioSwap: towards a swapping policy for

GPUs. In: Proceedings of the 10th ACM International Systems

and Storage Conference, p. 10. ACM (2017)

13. Xue, M., Ma, J., Li, W., Tian, K., Dong, Y., Wu, J., Qi, Z., He,

B., Guan, H.: Scalable GPU virtualization with dynamic sharing

of graphics memory space. IEEE Trans. Parallel Distrib. Syst. 1,
1–1 (2018)

14. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtu-

alization. In: ACM SIGOPS Operating Systems Review, vol. 37,

pp. 164–177. ACM (2003)

15. Intel� GVT-g setup guide.https://github.com/intel/Igvtg-kernel/

blob/2016q4-4.3.0/iGVT-g_Setup_Guide.txt

Cluster Computing (2020) 23:2167–2178 2177

123

https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://github.com/intel/Igvtg-kernel/blob/2016q4-4.3.0/iGVT-g_Setup_Guide.txt
https://github.com/intel/Igvtg-kernel/blob/2016q4-4.3.0/iGVT-g_Setup_Guide.txt

16. Valley benchmark | UNIGINE benchmarks.https://benchmark.

unigine.com/valley

17. Superposition benchmark | UNIGINE benchmarks.https://bench

mark.unigine.com/superposition

18. Phoronix Test Suite - linux testing & benchmarking platform,

automated testing, open-source benchmarking.http://phoronix-

test-suite.com/

19. cairographics.org.https://www.cairographics.org/

20. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee,

S.H., Skadron, K.: Rodinia: a benchmark suite for heterogeneous

computing. In: IEEE International Symposium on Workload

Characterization, 2009. IISWC 2009. pp. 44–54. IEEE (2009)

21. Kato, S., McThrow, M., Maltzahn, C., Brandt, S.A.: Gdev: first-

class GPU resource management in the operating system. In:

USENIX Annual Technical Conference, pp. 401–412. Boston

(2012)

22. Wang, K., Ding, X., Lee, R., Kato, S., Zhang, X.: GDM: device

memory management for gpgpu computing. ACM SIGMETRICS

Perform. Eval. Rev. 42(1), 533–545 (2014)

23. Ji, F., Lin, H., Ma, X.: RSVM: a region-based software virtual

memory for GPU. In: Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation Tech-

niques, pp. 269–278. IEEE Press (2013)

24. Becchi, M., Sajjapongse, K., Graves, I., Procter, A., Ravi, V.,

Chakradhar, S.: A virtual memory based runtime to support

multi-tenancy in clusters with GPUs. In: Proceedings of the 21st

International Symposium on High-Performance Parallel and

Distributed Computing, pp. 97–108. ACM (2012)

25. Official GitHub repository of NVIDIA Docker.https://github.

com/NVIDIA/nvidia-docker

26. Kang, D., Jun, T.J., Kim, D., Kim, J., Kim, D.: ConVGPU: GPU

management middleware in container based virtualized environ-

ment. In: 2017 IEEE International Conference on Cluster Com-

puting (CLUSTER), pp. 301–309. IEEE (2017)

27. Gu, J., Song, S., Li, Y., Luo, H.: GaiaGPU: sharing GPUs in

container clouds. In: IEEE International Conference on Parallel &

Distributed Processing with Applications (IEEE ISPA 2018),

pp. 469–476. Melbourne, Australia (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Minwoo Gu is a master’s degree

student in Sogang University,

Seoul, Republic of Korea. He

received his B.S. degree in

Computer Science and Engi-

neering from Sogang Univer-

sity, Seoul, Republic of Korea.

His research interests include

cloud computing and GPU

virtualization.

Younghun Park is an employee

of TmaxCloud, Seongnam-si,

Gyeonggi-do, Republic of

Korea. He received his B.S. and

M.S. degrees in Computer Sci-

ence and Engineering from

Sogang University, Seoul,

Republic of Korea. Now he

works for TmaxCloud as a

software engineer.

Youngjae Kim received his

Ph.D. degree in Computer Sci-

ence and Engineering from

Pennsylvania State University,

University Park, PA, USA in

2009. He is currently an asso-

ciate professor in the depart-

ment of computer science and

engineering at Sogang Univer-

sity, Seoul, Republic of Korea.

Before joining Sogang Univer-

sity, Dr. Kim was a staff scien-

tist in the U.S. Department of

Energy’s Oak Ridge National

Laboratory (2009-2015) and an

assistant professor in Ajou University, Suwon, Republic of Korea

(2015-2016). Dr. Kim received the B.S. degree in computer science

from Sogang University, Republic of Korea in 2001, and the M.S.

degree from KAIST in 2003. His research interests include distributed

file and storage, parallel I/O, operating systems, emerging storage

technologies, and performance evaluation.

Sungyong Park is a professor in

the Department of Computer

Science and Engineering at

Sogang University, Seoul,

Korea. He received his B.S.

degree in computer science

from Sogang University, and

both the M.S. and Ph.D. degrees

in computer science from Syra-

cuse University. From 1987 to

1992, he worked for LG Elec-

tronics, Korea, as a research

engineer. From 1998 to 1999, he

was a research scientist at Tel-

cordia Technologies (formerly

Bellcore), where he developed network management software for

optical switches. His research interests include cloud computing and

systems, virtualization technologies, high performance I/O and stor-

age systems, and embedded system software.

2178 Cluster Computing (2020) 23:2167–2178

123

https://benchmark.unigine.com/valley
https://benchmark.unigine.com/valley
https://benchmark.unigine.com/superposition
https://benchmark.unigine.com/superposition
http://phoronix-test-suite.com/
http://phoronix-test-suite.com/
https://www.cairographics.org/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

	Low-overhead dynamic sharing of graphics memory space in GPU virtualization environments
	Abstract
	Introduction
	Background and motivation
	Background
	GPU context switch overhead analysis
	Global graphics memory mapping analysis

	Design and implementation
	Overall architecture
	Memory allocator
	Size-based allocation algorithm
	Utilization-based allocation algorithm

	Discussion

	Evaluation
	Experimental setup
	Overall performance
	Performance Comparison with Similar GPU Utilization
	Performance comparison with various GPU utilization

	Private GTT copy overhead
	GPU context switch overhead
	Fairness

	Related works
	Conclusion and future work
	Acknowledgements
	References

