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Abstract
Recent developments in storage class memory (SCM) such as PCM, MRAM, resistive RAM (RRAM), and spin-transfer

torque (STT)-RAM have strengthened their leadership as storage media for memory-based file systems. Traditional Linux

memory-based file systems such as Ramfs and Tmpfs utilize the Linux page cache as a file system. These file systems have

unnecessary overheads when adopted for SCM file system. Therefore, we propose a new memory-based file system using

Memory Zone Partitioning called ZonFS, by extending the Linux Ramfs. In particular, we define a storage zone for SCM,

modify the Ramfs to allocate a file system page from SCM. ZonFS avoids running Linux VM kernel codes such as

(i) inserting pages allocated from SCM into the LRU list for VM page replacement and (ii) checking dirty pages for write-

back to disk. Our extensive evaluations indicate that ZonFS has up to 9.1 and 14.1% higher I/O throughputs than native

Ramfs and Tmpfs. Moreover, we also analyze performance behavior of ZonFS under the non-uniform memory access

architecture of SCMs on a 40 manycore machine with various configurations such as file sharing level and file stripping

level. Our evaluations show that memory controller contention and inter-node link congestion significantly affect the file

system’s performance and scalability.

Keywords File systems � Storage class memory � Non-uniform memory access (NUMA)

1 Introduction

Emergences of non-volatile memory such as STT-RAM

(spin-transfer torque) [1], PRAM (phase change RAM) [2],

RRAM (resistive RAM) [3], Intel and Micron 3D

X-point [4] gave us the opportunity to use memory as a

storage, i.e., storage class memory (SCM). These memories

are expected to be directly attached to a processor along

with DRAM. SCMs fundamentally differ from traditional

block devices such as hard disk drives and solid-state

drives, which should be accessed through the I/O block

layer in OS. On the other hand, the SCM can be accessed

through memory load and store instructions by CPU. SCM

is non-volatile and provides low latency near DRAM

latency. In order to solve the high energy problem caused

by the DRAM main memory system, a hybrid memory

system combining DRAM and SCM has been proposed as

shown in Fig. 1 [5–7]. In such a hybrid configuration,

DRAM and SCM are both connected to a memory bus and

are directly accessed by the CPU.

Memory file systems such as Linux Ramfs and Tmpfs

allow us to build memory file systems with the DRAM.

These file systems are basically implemented using Linux

memory management techniques. When a file is created,

memory pages are allocated by OS. When the file is read,

its corresponding pages on the main memory (DRAM) are

referred. This allows the file system to be easily imple-

mented in main memory. However, traditional Linux-based

memory file systems, such as Tmpfs and Ramfs have not

been implemented considering such a hybrid memory

design. It allocates pages without considering a memory
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type. Hence, it is not possible to know in which area of the

memory the page is allocated. Moreover, when a system

power failure occurs, memory objects of data in the non-

volatile SCM region should be preserved. However, if file

control blocks (inode cache) corresponding to memory

objects in DRAM, the memory objects in SCM can’t be

recovered because metadata is lost. In addition, when the

system restarts, file system data of the SCM area may be

overwritten. Therefore, current Linux memory file systems

can not be directly used as a memory file system for SCM

in such a hybrid memory environment.

In this paper, we propose ZonFS, a memory file system

for SCM in a hybrid memory using Linux Memory Zone

Partitioning [8]. Memory pages are allocated according to

the memory type and zone. In Linux, memory is divided

into three zones: DMA Zone, Normal Zone and HighMem

Zone [9]. In particular, the 64-bit kernel does not use the

HighMem Zone. To isolate SCM from DRAM, we define

Storage Zone for SCM and specify the entire SCM address

space as the Storage Zone. Figure 1 illustrates our pro-

posed Memory Zone Partitioning technique for the hybrid

memory employing DRAM and SCM. When file systems

are built upon SCM, memory pages of the file system in

SCM will be separately managed from normal pages

allocated from DRAM.

These SCMs can be directly attached to the memory slot

along with DRAMs. Recent Linux kernels also have dri-

vers that automatically detect non-volatile memory

regions [10]. However, under the non-uniform memory

access (NUMA) architectures, where memory devices are

distributed to multiple nodes, memory access latency is

dependent on the location of destination memory. We also

studied the impact of the NUMA architecture to ZonFS.

In this work, we make the following contributions:

• Memory Zone Partitioning we isolate memory pages of

SCM from DRAM memory pages using Memory Zone

Partitioning. In Linux, physical memory addresses are

allocated sequentially in the memory slot. When the

SCM is plugged into the memory slot, the physical

memory address can be found in the BIOS. In this

paper, we emulate part of DRAM as SCM. We specify

the start and end addresses of the SCM in the Linux

kernel code. Hence, the pages in SCM will be used only

when file systems are built for SCM.

• Avoiding unnecessary kernel code Ramfs and Tmpfs

use page cache to perform file I/O. Since the file

operations such as read() and write() take Linux

kernel’s full generic file I/O path including functions

such as generic perform writeðÞ; unnecessary over-

heads are entailed. These include (i) checking dirty

pages and (ii) inserting pages into LRU list. When

DRAM is used for page cache, if the number of dirty

pages are bigger than a certain threshold, kernel’s

generic file I/O operations will write them back to disk

and make dirty pages under that threshold value. In

addition, page cache is managed as an LRU list. In

practice, pages in SCM do not have to be replaced, but

in current Linux kernel, all pages in SCM are added to

the LRU list for page replacement, resulting in

unnecessary search operations. Thus, we modify the

Linux kernel code to bypass the above-mentioned

unnecessary operations on the pages allocated from the

SCM.

• Linux kernel development and evaluation we developed

a memory file system for SCM by not only extending

Linux Ramfs but also modifying the Linux kernel

memory management code. To demonstrate the effi-

cacy of ZonFS with Memory Zone Partitioning, we

compare ZonFS with native Ramfs and Tmpfs for I/O

throughputs using IOzone benchmark [11]. As a repre-

sentative example, for write operations, ZonFS showed

up to 9 and 13% performance improvements over

native Ramfs and Tmpfs.

• Analyzing the NUMA behavior of ZonFS we also

analyzed the performance behavior of ZonFS on the 40

core NUMA machine. Since remote access, memory

controller contention and inter-node link congestion are

influencing factors to memory-based file systems, we

conduct various tests to understand the effects of

aforementioned factors under several circumstances.

Experimental results show valuable findings as follow-

ing: (1) memory controller contention might hurt the

file system performance as the load grows. (2) Inter-

node link overheads also hinder file systems, especially

for overloaded and remote access-dominant circum-

stances. (3) In the overloaded circumstance, distribut-

ing SCMs and stripping file data to memory nodes can

lead to improved throughput and affect scalability

(either positively or negatively).

The rest of this paper is organized as follows. Section 2

provides some basic understandings about Linux page

Fig. 1 Illustration of memory zone partitioning for hybrid memory

combining DRAM and SCM
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cache and NUMA architecture. Section 3 describes the

memory access method and its implementation for ZonFS,

and we propose considerations that memory file systems

need to take into account under NUMA architecture. Sec-

tion 4 shows performance comparison results of ZonFS

with Linux memory file systems, Tmpfs and Ramfs along

with experimental results of ZonFS under NUMA many-

core systems with various configurations. Section 5 pre-

sents the related work. We conclude our work and suggest

design principles of memory file system in Sect. 6.

2 Background

In this section, we first discuss the memory area manage-

ment in Linux kernel. By tracking the Linux kernel func-

tion calls of write and read in Ramfs, we explain the code-

level I/O behavior of the page cache based file system.

Second, we discuss the NUMA architecture and its per-

formance impact on the file systems relying on page cache

in OS.

2.1 Memory management in Linux kernel

2.1.1 Linux memory zone management

Linux kernel manages memory region by dividing it into

three zones: ZONE_DMA, ZONE NORMAL and

ZONE HIGHMEM: The DMA zone is a memory area for

hardware that requires a specific memory range, and it uses

0–16 MB of the memory area.

The Normal zone is used for general memory alloca-

tions. The purpose of the HighMem zone is to relieve the

4 GB virtual memory space limitations of the 32-bit

instruction set architecture system. Hence, this area is not

used in 64-bit systems. During the booting phase, Linux

splits memory space into zones and divides each zone into

multiple pages. Each of the zones is managed by a kernel

structure struct zone; which also maintains a list of pages

in its zone. A page requested by the kernel is handled by

allocating a new page or simply returning an existing page.

In a hybrid memory system, the Linux kernel assigns

physical address spaces to all connected memories. In

ZonFS, we distinguish space of DRAM and SCM by

adding Storage Zone for SCM using Memory Zone Parti-

tioning. BIOS can get the physical memory address using

the driver. When SCM is attached, the BIOS can retrieve

the physical start and end addresses of the SCM through

the SCM driver. This information includes the usage of

each memory range. In the x86 architecture, E820 memory

map contains the information, as shown in Table 1. Espe-

cially, we have added a new E820 entry called

E820 STORAGE for SCM storage usage of ZonFS.

E820 STORAGE entry is used only for file allocation in

ZonFS whereas E820 RAM and E820 RESERVED

KERN entries are used for system memory. Note that in our

implementation for ZonFS, we simulate SCM by using part

of DRAM. Hence, we have manually set the memory range

of ZONE STORAGE in the kernel code, without the aid of

the driver. Linux kernel initializes the variables, max pfn

and max low pfn based on E820 memory map. The values

of max pfn and max low pfn indicate the maximum and

minimum page frame numbers that can be used for system

memory. Then it divides the memory zone using these

variables. Figure 2 shows memory zone structure with

Storage Zone for SCM. We have created a new memory

zone, ZONE STORAGE that lies on the whole range of

E820 STORAGE: It prevents the storage zone from being

used as system memory.

2.1.2 I/O flows for write and read requests

In Linux, file I/O data goes through page cache. Since

accessing the disk for every file request is inefficient, OS

stores the data in memory’s page cache at the first access of

the data. By this way, we can access the same file data from

memory for later requests. If page cache pages need to be

used for another purpose when the physical memory is low,

kernel write-backs the pages into the backing store in case

of the dirty page. Since Ramfs does not have backing store,

all of the files of Ramfs are stored only in the page cache.

To address our problem definitions and solutions, we

Fig. 2 Linux memory zone partitioning with storage zone

Table 1 E820 memory map with Storage Zone

E820 types Usage

E820_RAM System RAM

E820_RESERVED Reserved memory

E820_ACPI ACPI tables

E820_NVS ACPI non-volatile storage

E820_UNUSABLE Unusable memory

E820_PMEM Persistent memory

E820_PRAM Persistent memory (legacy)

E820_RESERVED_KERN System RAM (reserved)

E820_STORAGE SCM storage
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investigate the I/O path of Linux Ramfs in detail from

which ZonFS originates. Figure 3 describes Ramfs file I/O

paths in kernel function level starting from virtual file

system operations. Write requests are initially handled by

the virtual file system, which then calls the file system’s

own write function. Since Ramfs takes advantage of ker-

nel’s generic I/O functions, generic perform writeðÞ is

called. Then it follows simple write beginðÞ; where the

file is locked and the page searching occurs.

For write operations, there are two scenarios: initial

write and normal write (update). Initial writes happen when

pages for required file offset are not previously allocated,

and normal writes happen when already allocated. In case

of an initial write, pagecache get pageðÞ is called to

check whether the desired page exists. If the page was not

allocated, page alloc node maskðÞ determines proper

memory zone and allocates the page. Without any specified

zone option, ZONE NORMAL is the default allocation

area. However, ZonFS can assign pages to

ZONE STORAGE: For updates, since desired pages were

already allocated, page allocation is not needed. If it

acquired that page, function iov iter copy from

user atomicðÞ performs actual write and sim-

ple_write_end() releases the lock. These steps are repeated

until all the requested data is written. Read operations

follow a similar process like the write operations. But, it

never allocates pages because the required pages always

exist. This is because absence of pages means that they

need to be copied from backing store, which is not the case

of memory-based file systems. Even after acquiring

required pages, actual read is delayed until the pages are

ready to use, since other processes may be writing on the

pages. Data is read in copy page to iterðÞ: The details of

kernel function calls for complete read and write I/Os are

shown in Fig. 3a, b. page cache. Therefore, page cache

pages of Ramfs are never write-backed.

2.2 Non-uniform memory access

In the traditional Von Neumann architecture, memory

plays an intermediate role between fast CPU(s) and slow

disk. Therefore, the performance of the memory system has

a significant impact on the entire system. With the help of

the memory system, the data on the disk can be cached in

memory, which accelerates data access time. However,

after the advent of multi-core systems for parallel com-

puting, memory bottlenecks occur. This is because only

one CPU can access memory at a time. In spite of the

architectural techniques to mitigate the effect of long

memory latencies such as pre-fetching, out-of-order exe-

cution, speculation and multi-threading, memory wall

problems still remain as a performance degradation factor

that hinders the optimal use of processor’s capabilities

gained by multi-core technologies [12].

To overcome the problem, memory devices began to be

partitioned into groups of memories along with private

CPU(s) as shown in Fig. 4. Each group is called a memory

node. Memory accesses by a CPU on the same node is

called local access and on another node, is called remote

access by a CPU.

Each memory node has its memory controller which

manages incoming memory requests. Two nodes are con-

nected via inter-node link through which memory requests

Fig. 3 Write and read I/O flow of Ramfs

Fig. 4 An example of NUMA architecture with four sockets

(Testbed-II)
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are transferred. Two nodes have n-hop distance if they are

able to reach each other by traversing at most n inter-links.

2-Hop distance incurs longer latency than 1-hop or 0-hop

distance.

Since remote access needs to pass through inter-node

link, remote access is slower than local access In such

NUMA systems, remote node memory access, memory

controller and inter-node link contention can adversely

affect the performance of the memory file systems that we

have designed for SCM. Under the NUMA environment,

SCM devices can be directly attached to the system via

memory slots along with DRAMs as shown in Fig. 4. In

such cases, both DRAMs and SCMs together contribute to

constructing the memory address space based on the order

in which each memory is physically attached.

3 Storage class memory file systems

3.1 Design and implementation for ZonFS

In this section, we describe the design principles for the

SCM file system using the Linux page-cache. We imple-

ment ZonFS with the following design goals—(i) ZonFS

manages the pages in storage zone separately from those in

DRAM memory zone, and (ii) it optimizes the current

Linux kernel code for SCM file systems. We achieve these

goals by adding a new memory zone in the Linux kernel

and thus allowing the kernel to distinguish pages of DRAM

and SCM.

ZonFS uses Linux page cache to store file data. In cur-

rent Linux kernel, all the page cache pages are the potential

victims of virtual memory management. They can be

swapped out by kernel when the physical memory is low.

The kernel periodically checks dirty pages and writes back

to save VM resources for later use. However, although a

page in page cache that belongs to ZonFS is selected as the

victim of above VM management, PG UNEVICTABLE

flag, set to all of pages for ZonFS, prevents the page from

being swapped out. Therefore, a ZonFS page in page cache

will not be write-backed by VM management.

Unnecessary operations on the above-mentioned mem-

ory access paths include the followings: first, when a page

cache page is allocated, although the page is set flag

PG UNEVICTABLE which prevents the page from being

swapped-out, the kernel needlessly adds pages into LRU

list which is a list containing page replacement candidates.

This causes the LRU list maintaining overhead. Second, it

has dirty page check overhead. Write processes periodi-

cally count dirty pages in page cache. If the number of the

dirty pages exceeds a certain threshold, it write-backs all

the dirty pages and in the worse case, throttles the process

for some time.

Figure 5a describes the step-by-step process of memory

management. When a write request arrives, if it is the first

write, then a new page is allocated from OS page cache. It

then sets the page with PG Dirty flag and adds the page to

LRU list for later VM management. Then, it checks if

write-back operations for dirty pages need to be performed.

Definitely, these tasks are essential for virtual memory

management that critically has an impact on the entire

system performance. However, pages allocated from SCM

for storage are not subject to management. Therefore, we

follow different memory access paths for DRAM and SCM

requests in VM management. DRAM accesses are trig-

gered by application memory requests, and SCM accesses

by requests for files. For DRAM accesses, we fully exploit

the Linux virtual memory layer. However, for SCM

accesses, we provide a simple access path which uses the

OS page cache to store files but prevents them from being

virtual memory management candidates.

To differentiate memory access paths for DRAM and

SCM, we must be able to distinguish file requests from

process memory requests. As mentioned earlier, we have

achieved this by adding a new memory zone in Linux

called ZONE STORAGE; which is allocated to SCM for

storage usage. But since we implement our design by only

using DRAM, we have allocated new storage zone in a

specific range of DRAM. All the flags GFP STORAGE

corresponding to the file inodes in ZonFS, are set to let the

kernel know this is a file and store its data into our new

zone. This Zone Partitioning method enables us to bypass

LRU list insertion process for the pages of

ZONE STORAGE: LRU list insertion was done after page

cache allocation. We do not add the pages to the list in the

case of file pages residing in ZONE STORAGE: We also

skip dirty page check for the file page writes in

ZONE STORAGE: We have restricted write operation to

execute dirty check for process memory requests only, thus

preventing write-back operations and I/O process throt-

tling. The new management of page cache for ZonFS is

described in Fig. 5b.

The addition of new SCM zone also lessens zone con-

tention. For a memory zone, each CPU has per-CPU page

list for that zone. When a memory request arrives, the per-

CPU list for that CPU is locked and the page allocation is

handled, while other memory requests to that CPU

blocked. However, by adding a new zone, we can reduce

per-CPU page list contention, since the zone is devoted to

only SCM page requests but not for DRAM requests. This

allows parallelized allocation request for DRAM and SCM

from a same CPU.

Note that storing only file contents into

ZONE STORAGE does not make the data durable after

crash and File metadata, inodes must be kept in that zone.

Failure of this will result in inaccessible isolated data. In
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Linux kernel, inode structure is allocated by slab allocator,

which is used to allocate frequently allocated structures

such as inode, per-thread structure, etc. Slab allocator

reduces the allocation and de-allocation overhead. It pre-

allocates caches dedicated to a certain structure, and actual

structure is allocated from those pre-allocated caches. The

structure cannot be de-allocated, but handed over to cache

so that future inode allocations can occur from it. Since

slab allocator allocates caches from normal zone, an

unexpected power failure can cause loss of inodes, which

makes it impossible to reach the corresponding files.

Therefore, for ZonFS, we modify Ramfs such that the

inode cache is allocated in ZONE STORAGE at the mount

time of the file system. Since actual inode structures are

allocated from the inode cache, all the inode structures are

persistent.

3.2 Design considerations for NUMA-aware
memory file systems

In this section, we discuss several consideration points that

memory file systems need to take into account when

implementing the NUMA-aware ZonFS.

NUMA latency the asymmetric NUMA latency of

memory access makes it difficult to guarantee stable file

request time [13], since latency is significantly affected by

the location of required memory. Memory accesses to

remote memory node incur far slower latency. Therefore,

for I/O intensive applications, excessive remote accesses

can hurt the performance. Placing data and threads on the

same socket is recommended for high performance. In

current Linux kernel, page allocation in page cache follows

first-touch policy, where a page allocation occurs at the

moment when data is initially ‘‘touched’’, or accessed.

Therefore, pages for files are allocated in the node of the

thread that initially writes to those pages. This first-touch

policy, however, can not guarantee data-thread affinity,

since thread scheduler or memory subsystem can migrate

threads or data to another NUMA node, which leads to sub-

optimal I/O performance. JeriFS [14] dynamically

migrates threads upon issuing I/O request, thus fully

achieving thread-data affinity.

Memory controller congestion the degree of memory

controller congestion also affects the performance of the

file system. Chandru and Mueller [15], addresses the

detrimental effect of memory controller contention to

manycore systems. Each memory node has a maximum

memory controller bandwidth. Since the ‘‘local only’’ data

placement policy can cause congestion of the controller,

file system must be carefully designed to ensure that the

controller on each node is not overloaded. There can be a

file system solution to reduce the contention of a memory

controller. For example, in case file requests begin to be

concentrated to a single NUMA node, it possibly is bene-

ficial if it allocates data to another node for later first-touch,

although it will generate remote memory requests. When

the congestion is extremely intensive, migrating residing

local data to another node can also help to reduce controller

contention.

Inter-node link congestion along with controller con-

tention, file system I/O can occur due to inter-node link

congestion. When a file is requested from a remote thread,

data of the file is requested to be transferred through the

inter-node link. Each link also has a maximum data transfer

rate, which is usually lower than maximum memory

bandwidth. Therefore, this also restricts us to design

memory file system by considering the contention of inter-

node links. The effect is harmful, especially for applica-

tions with lots of remote accesses. For example, our test-

bed’s single node has 59.7 GB/s memory bandwidth, while

a QuickPath Interconnect, Intel (QPI) has 7.87 GB/s data

transfer rate [16]. Namely, 7.87 Giga-bytes file request per

a second is sufficient to stress the inter-node link, which

severely hurts the performance. In that case, where a cer-

tain links are highly contended, we can bypass the con-

gested links by selecting an alternative path. For example,

if node 0 is accessing data from node 2 and the links 0–1

and 1–2 are contended, redirecting the route to the path of

(a) (b)

Fig. 5 Illustration of the

relationship between Write

operation and Page Cache.

a and b Operation procedures

for Ramfs and ZonFS,

respectively
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links 0–3 and 3–2 goes through less congested paths, thus

lowring file request latency.

I/O buffer placement I/O buffer placement is an another

factor that file systems need to take into account. POSIX-

compliant file systems’ requests use read() and write()

system calls which entail buffer allocation. Afterwards, all

of file requests are handled via the buffer, except for files

which are memory-mapped by the mmap() system call.

Buffer allocations also follow first-touch policy, therefore

the location of the buffer significantly affects the entire I/O

subsystem due to the NUMA effect. JeriCache [14] is a

replacement of Linux page cache, and it partitions the

DRAM cache into ‘‘slices’’. Each slice is dedicated to a

specific NUMA node. This design maximizes data-buffer

affinity and also enables user-level applications to place

data to proper node, thus achieving layout-aware data

placement.

4 Experimental results

In this section, we compare the performance of ZonFS with

traditional memory file systems in Linux such as Ramfs

and Tmpfs and evaluate the performance impact of NUMA

architecture over ZonFS. Consistency guarantee is one of

the most significant factors in designing file systems.

However, since the primary contribution of this paper is to

present Zone Partitioning technique to design SCM file

systems, ZonFS currently does not support consistency

guarantee.

4.1 Experimental setup

4.1.1 Testbed

To compare the performance of ZonFS, we use Intel server

of eight cores with two 4-Core Intel Xeon Processor E5410

CPUs (Testbed-I). The server is equipped with a total of

16 GB DRAM, where 10 GB of DRAM area is assigned as

storage zone to simulate non-volatile memory. In addition,

to analyze the performance behavior of ZonFS in the

NUMA server architecture, we use Intel server of 80 cores

with four 20-Core Intel Xeon E5-4650 processor CPUs

(Testbed-II). The server is installed with 240 GB DRAM,

where 200 GB of DRAM area is allocated to emulate non-

volatile memory.

4.1.2 Workloads

We have employed IOzone [11] benchmarking tool to

evaluate the performance of ZonFS against other Linux

memory file systems such as Ramfs and Tmpfs. All the

experiments were conducted for basic file operations such

as Write, Re-Write, Random Write, Read, Re-Read, and

Random Read. We have evaluated ZonFS using

IOzone [11] by changing record size and the number of

threads. We have varied the file record size from 4 KB to

1 MB and the number of threads from 1 to 40. For write

operations in IOzone benchmark, we have not issued file

flush operations.

To evaluate behavior of ZonFS under the NUMA server

environment, we have developed an in-house benchmark-

ing tool to measure file system throughputs. In particular,

the benchmarking tool allows to measure throughputs of

ZonFS by changing not only file striping level such as one,

two, and four , but also file sharing level such as low,

medium and high.

4.1.3 Implementation

We have modified the Ramfs in Linux kernel version 4.7.4.

to develop ZonFS. The total number of modified kernel

code lines is approximately 50. ZonFS source code is

downloadable at https://github.com/wanyaworld/ZonFS.

4.2 Performance evaluation of ZonFS

In this section, we show our performance evaluation results

for ZonFS with a variety of workload patterns.

4.2.1 Impact of record size

Figure 6 compares ZonFS with native Tmpfs and Ramfs

for different file operations by varying record size. In this

experiment, we have measured the performance of single

I/O thread file operations on a single 10 GB file.

Figure 6a–c show results for write workloads. Figure 6a

shows the performance comparison for initial write. We

have observed that ZonFS shows the maximum perfor-

mance improvement of 7.5 and 11.4% for 4K record size

over Ramfs and Tmpfs, respectively. We have similar

performance improvement for bigger record size as well.

Figure 6b shows results for re-write. ZonFS shows

improvement, but overall performance improvement of

initial write is much bigger than that of re-write. This is

because, for every Ramfs page allocation, always the page

has to be pushed to LRU list, whereas in ZonFS it is not.

Since, we have eliminated that overhead, initial write

shows much better improvement than re-write. In Tmpfs

initial write case, there is some degree of performance

degradation, because it requires an additional step to check

whether the allocated page has exceeded the file system

capacity. For re-write, for every process that writes or re-

writes to a Ramfs file, it validates whether it exceeded the

dirty page limit of the system. Since ZonFS bypasses dirty

check, it slightly improves re-write performance compared

Cluster Computing

123

https://github.com/wanyaworld/ZonFS


to Ramfs. For all file systems, re-write shows higher

throughput than initial write. We suspect that this can be

attributed to CPU cache effect: although ZonFS uses page

cache as storage area, the data is also cached in CPU cache.

For initial and random operations, however, caching effect

barely helps since they have little locality. In Fig. 6c, we

can see random write performance is same or slightly better

than Ramfs for 64K, 256K and 1M records.

Figure 6d–f show results for read operations. For the

read operation, no page allocation occurs because it is

performed on an existing file. Therefore, it shows similar

performance to Ramfs. But re-read results show noticeable

improvement of maximum 6.4 and 5.8% compared to

Ramfs and Tmpfs.

We have also observed that the performance gradually

improved as the size of the record grows, whereas the

performance degraded for the 1 MB record. To explain this

performance variance, we need to take into account the

effect of record size. Note that, as the size of the record

grows, a smaller number of requests occur, because the size

of the data requested at a time increases. Thus, it reduces

the number of function calls, resulting in performance gain.

The reason for the performance degradation in 1 MB

records can be explained by cache effect: bigger record size

means greater CPU cache miss penalty, which can negate

the benefit of decreased number of write requests.

4.2.2 Impact of multiple threads

Figure 7 shows the throughput comparisons of ZonFS,

Ramfs and Tmpfs while changing/varying number of I/O

threads. In this experiment, we have used a mix of read and

write threads for files of different sizes. In all cases, there

was no significant performance difference as compared to

the existing Linux memory-based file systems. We can see

dramatic performance gain as the number of threads

increases from 1 to 10. This is because, multiple threads

leads to parallel file I/Os. But, those gains are saturated

around 5 GB/s (write) and 5.6 GB/s (read) for 20 and 40

threads, respectively. The reason for this saturation is, we

suspect, 10 threads sufficiently exploits memory bus

bandwidth. Note that our experimental test-bed in this test

was not a NUMA memory architecture. However, NUMA

system enables us to solve the problem of memory bus or

controller contention by assigning independent memories

to each processor node. Hence throughput will increase

after 10 threads for NUMA, but it will compel NUMA-

aware file page allocations.

4.3 Evaluating the scalability of ZonFS
under the NUMA architecture

In this section, we have evaluated the performance impact

of ZonFS over the NUMA architecture.

4.3.1 Local and remote memory latency

To measure memory latency, we use Memory Latency

Checker (MLC), a benchmark tool provided by Intel [17].

The test was conducted on Testbed-II, which is the NUMA

architecture. MLC measures memory latencies for every

possible pair of cores and calculates the average latencies

between nodes. Specifically, a thread is bound to a node,

and the thread in the source node issues a memory access to

(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparing ZonFS with Tmpfs and Ramfs for varying record size. We used a single thread for I/O operations on a 10 GB file

Cluster Computing

123



the destination memory node. Table 2 shows memory

latency measurements from source memory nodes to des-

tination nodes. The value of each cell in the table repre-

sents measured memory latency for the pair of source and

destination nodes. For example, the cell value of

(src:dest) = (0:0) is a latency of memory access from node

0 to 0, which is a local memory latency, and

(src:dest) = (0:1) represents a latency from node 0 to 1,

which is a 1-hop remote memory latency, since the mem-

ory access goes through only one inter-node link. In the

same manner, (src:dest) = (0:2) indicates a 2-hop remote

memory which traverses two inter-node links. The average

latencies of local, 1-hop and 2-hop are on average 75, 195

and 220 ns, respectively. From Table 2, we can observe

that memory accesses which span several inter-node links

lead to higher latency.

4.3.2 Single SCM module and distributed SCM modules

In the NUMA architecture, memory controller congestion

and inter-node link congestion may occur depending on the

memory access location of a thread. In order to identify

these problems, we have experimented with the following

three configurations:

• Single in this configuration, only one memory module

is active. That is, a thread accesses a local memory only

from one node, and accesses remote memory from three

other nodes. Therefore, only 25% of memory accesses

are local while 75% are remote.

• Local this configuration distributes the memory mod-

ules one by one to each of the four memory nodes. All

threads in this configuration perform local memory

accesses.

• Fair this configuration also allows each node to have

one memory module as a storage, similar to Local.

However, in this setting, threads perform 25% of local

memory accesses and 75% of remote accesses. This

remote access ratio is equal to that single. The only

difference is contention of inter-node links. In config-

uration single, every remote access is transferred

through inter-node links connected to one node, while

in fair, they are uniformly transferred via all inter-node

links. This configuration can contribute to different

contention of inter-node links, which helps understand

the effect of inter-node contention to memory file

system performance.

Figure 8 shows the results of the experiments to compare

throughputs measured for three different configurations by

varying the number of threads. Each thread repeatedly

reads two files thus for 80 threads and 160 files are read in

total. Specifically, this experiment aims to observe an

increase in memory access time when the memory

(a) (b) (c)

(d) (e) (f)

Fig. 7 Scaling performance comparisons of ZonFS with Tmpfs and Ramfs by varying the number of I/O threads

Table 2 Memory latency of NUMA system

Source nodes (ns) Destination nodes

0 1 2 3

0 76.9 212.2 228.3 210.9

1 196.3 75.6 194.9 240.1

2 227.4 195.1 75.4 193.9

3 195.0 227.2 195.9 76.1
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controller in the memory module becomes congested or the

inter-node links between nodes become congested.

Note that in single, every request is concentrated into a

single node, which stresses the memory controller and two

QPIs connected to that single node. In Fig. 8, we can

observe that when the number of threads is eight, there is

little difference in throughput between three configurations.

It means that a small number of threads do not cause the

memory controller or QPIs to become congested. However,

as the number of threads increases, we can see that single

begins to suffer from performance degradation while local

and fair linearly increase throughputs with respect to the

increased number of threads up to 40 threads. We suspect

that it is due to the contention of the memory controller and

QPI. For example, fair shows less than 1% higher perfor-

mance than single for 8 threads, while 351% higher for 40

threads. Therefore, uniformly distributing SCMs into nodes

in the NUMA architecture can help to obtain higher

throughput by relieving the contention of memory con-

troller and QPI especially for I/O intensive applications.

When comparing throughputs of Local and Fair in

Fig. 8, we can see that Local shows lower throughputs than

Fair. We suspect that the performance difference between

them is due to the congestion of the inter-node links

between the nodes. Inter-node links such as QPI or IF

(Infinity Fabric, AMD) connecting NUMA nodes are

responsible for transferring data between them. Cheng

et al. [18], discusses data traffic stagnation due to QPI

congestion. The Intel server of Testbed-II has QPIs of

8 GT/s transfer rate [16], which is approximatively equal

to 7.87 GB/s. Note that in case of Local, threads do not

cause remote request while in fair configuration, as shown

in Fig. 8, the throughput is about 40 GB/s with eight

threads, which means 10 GB/s for every single node and

25% of requests are remote accesses. Accordingly, roughly

7.5 GB of remote access is being transferred per a second

in a single node, which does not congest the QPI of Test-

bed-II. However, with a larger number of threads, heavier

I/O request arrivals begin to stress QPIs exceeding its

maximum link bandwidth, 7.87 GB/s and the gap between

Fair and Local gets bigger. This makes the throughput of

Fair 49% worse than that of Local for 40 threads. It is a

valuable finding in that we have discovered that the per-

formance difference does not simply come from an

inequality between local and remote memory latencies.

With Local and Fair, we also observe distributing

storage memory modules to nodes scales up throughputs up

to 40 threads, whereas single never shows any scalability.

Memory controller congestion and QPI contention are

possible factors that prevent performance scalability of

ZonFS. For example, with 80 threads, every I/O rushes to a

single node and stresses the controller and QPIs inten-

sively. Although other two configurations show a degree of

scalability, we can see that scalability limitation is 40

threads. We suspect that memory bandwidth limits the

scalability of ZonFS. Testbed-II with four nodes is able to

offer theoretical bandwidth, 238 GB/s [16]. Figure 8

shows that 40 threads are performing 160 GB/s throughput,

which is roughly 61% of theoretical memory bandwidth. 80

Threads exceed the theoretical memory bandwidth along

with controllers and QPIs extremely congested, which all

could lead to degraded performance for 80 threads.

4.3.3 Impact of file stripping

We have evaluated the impact of file stripping of ZonFS to

throughput with respect to the number of I/O threads. We

have conducted experiments by stripping a file into dif-

ferent number of nodes and under different file sharing

levels. Especially, we divide a file into chunks and dis-

tributed them to memories of NUMA nodes. In terms of file

sharing level, we have considered three levels: low, med-

ium and high.

• Low when a sharing level is low, threads perform I/Os

with their private files.

• Medium in medium, threads can write on the same file.

Specifically, each thread handles mutually exclusive

chunks of the same file.

• High high is similar to medium because threads can

write on the same file, however, all threads can write on

the entire chunks of a file, thus two or more than two

threads can access the same chunk of a file.
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Fig. 8 Evaluation of distributed storage memory

Fig. 9 Threads execute I/Os with private files, shared file of different

parts and shared file of the whole part each for low, medium and high,

respectively
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Figure 9 shows results for three different sharing levels.

When a file is not stripped, every memory page of the file is

stored in local memory. For two-stripping configuration,

pages are sequentially distributed both in local node and its

next neighbor node. Four4-stripping uses all the nodes as

storage memory. Therefore, one, two and four stripping

settings generate 0, 50 and 75% of remote access, respec-

tively. We have also changed the number of threads to

evaluate the scalability for both node distribution and file

stripping experiments. To fully understand the effect of

first-touch policy, workloads are limited to read requests of

4 KB page size.

Figure 10 describes experimental results of file stripping

with three different file sharing levels. Overall, higher

sharing level leads to poorer performance. Sharing level

low, which only performs I/Os with private files, shows

better performance than the remaining levels. Son

et al. [19], addressed that the update overhead of atime of

inodes can degrade file system performance. When a file is

accessed, either read or write, access time field of its inode

is updated. Since in high and medium, all the I/Os belong to

a single shared file, every request generates write traffic to

update the atime of the inode [20]. We have to note that all

the writes are to the same memory address of atime field,

which might cause tremendous congestion. Medium and

high also show a remarkable difference for all number of

threads. Also, Min et al. [21], addressed the negative effect

of overhead in updating reference count, when sharing

level is high. When a page cache page is referenced, its

reference count is atomically incremented by one. In high,

all threads access the same pages, which makes atomic

integer updates the performance bottleneck. In this exper-

iment, reference counting overhead leads to lower

throughput of high than medium.

We also observe that the effect of degree of congestion

on the memory controller and QPI can be affected by the

file striping level. Basically, stripping file data has a trade-

off; it incurs remote accesses and thus QPI contentions, and

at the same time, it also relieves the stress of memory

controller by distributing memory accesses to nodes. In

case of low, it does not give any performance benefit by

stripping files. Specifically, for 40 threads, stripping to four

nodes degrades the performance by 145%, compared to the

case without stripping, since unnecessary remote accesses

cause QPI contentions. For four and eight threads, these

effect are not seen, because workloads are not heavy

enough to stress QPIs. Eight threads generate approxi-

mately I/Os at 5 GB/s for a single node, while a single QPI

has 7.87 GB/s of data transfer rate.

However, for medium and high, which all have higher

file sharing level, stripping to two or four nodes shows

better throughput than one without stripping for every test.

In detail, when sharing level is medium, four-stripping

begins to outperform two-stripping from eight threads. The

effect reaches a peak for 40 threads with 65% higher

throughput. For high, four-stripping performs better than

two-stripping for all number of threads with the biggest

difference of 17% for 40 threads. When a file is shared by

multiple threads, stripping helps because chunks of a file is

evenly distributed to memory nodes, which leads to

reduced contention of controllers and QPIs.

This experiment gives us another lesson: for applica-

tions that intensively share same files, especially in the

manycore NUMA architecture, striping the files into nodes

possibly helps improve the entire storage system perfor-

mance, whereas it degrades the performance when files are

rarely shared.

Aside from stripping, file sharing level remarkably

affects the scalability of ZonFS. Overall, high file sharing

degree hinders the scalability. In case of low, ZonFS scales

up to 40 threads, which is the physical number of cores of

the testbed. However, in medium, it fails to scale after eight

threads, and for high it never shows any scalability. We

also suspect that it was influenced by atime and reference

count update overhead. Especially, the overhead of atomic

reference count updates thoroughly throttles file system

operations, leading low throughputs with 80 threads.
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5 Related work

There have been several prior studies on the file system for

non-volatile memory [22, 23]. Out of those, BPFS [22] is a

file system designed for non-volatile byte-addressable

memories. It focuses on the problems of copy-on-write in

file systems and proposes shadow paging technique to

consistently update on the file system tree at fine granu-

larity. The measured file system performance was too low

to be used for actual SCM file system. SCMFS [24] is

another memory file system for SCM connected to a

memory bus. SCMFS is a file system which is developed

using the Linux memory manager, and it suggests a simple

file system structure. SCMFS uses the virtual memory page

as a file system page, thus significant TLB miss overhead

can occur, which leads to degraded overall file system

performance. SCMFS also proposes a technique for parti-

tioning memory into zones. Conquest [23] uses a battery

backed DRAM for storing file metadata and small files to

improve the overall file system performance. Unlike these

file systems, ZonFS is developed by extending Ramfs,

which implements the file system in the page cache. ZonFS

also uses the Memory Partition technique. However, Ramfs

is a DRAM-based file system, and it can not be used as a

file system for SCM. Therefore, we have modified the

Linux kernel code to develop SCM-specific file system. In

particular, it minimizes unnecessary calls to kernel code by

separating the DRAM memory pages and the SCM pages.

There also have been some NUMA-aware file systems.

NOVA [25] is a hybrid memory file system under both

SCM and DRAM. It allocates per-CPU data structures,

which helps to acquire a degree of scalability. However,

only per-CPU designs are not sufficient to fully exploit

massively manycore NUMA machines. It is basically

NUMA-oblivious because it never differentiates remote

and local access. HydraFS [26] is a file system purposed to

be optimized on NUMA machines. It adopts File-oriented

Thread Binding (FTB), which schedules a thread to the

core such that access of the thread optimally benefits from

local access. Since, it does not consider memory controller

and inter-node link congestion, it has potential to show

suboptimal performance for overloaded workloads. Jeri-

cho [14] is a new I/O stack along with its own NUMA-

aware file system. Especially, page cache is also replaced

by JeriCache, its dedicated storage cache. Then, the cache

is partitioned into slices, each of which mapped to a

specific NUMA node. This helps to allocate the data to the

optimal location by maximizing local access, and also gain

high data-buffer affinity. The file system also dynamically

migrates I/O threads to the node where the data resides,

which helps to achieve data-thread affinity. However, this

design requires rebuilding of the entire storage stack in

Linux, which makes its general use less practical.

6 Conclusion and future work

In this paper, we have proposed a memory file system that

uses partitioned Linux memory zones to efficiently utilize

SCM as storage. We have implemented the proposed

memory file system, ZonFS by extending Ramfs on Linux.

For evaluation, we have used IOzone and our experimental

results showed that the performance of initial write is

improved up to 9.1 and 13.8%, as compared to Ramfs and

Tmpfs, respectively and the read performance is gained up

to 8%, when compared against Tmpfs. We have also

evaluated the ZonFS for the NUMA manycore architec-

tures and we have identified several factors that could

cause to degrade the file system performance. Moreover,

ensuring the file system consistency in case of power-off is

an important issue in developing the SCM file system.

We have identified several future works. First, currently,

ZonFS does not guarantee consistency after sudden power

loss. We are considering the crash-consistency problem of

ZonFS for the future work. Second, current Zone structure

in Linux is locked for a memory request. Therefore, current

ZonFS can suffer from Zone contention under simultane-

ous memory allocations. To this end, we are considering

parallelizing memory allocations for a Zone using lock-free

data structures as another future work.
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