
Scalability Analysis of F2FS for Concurrent Writes

on Shared Files on Manycore servers
Sunghyun Noh and Youngjae Kim

Department of Computer Science and Engineering
Sogang University, Seoul, Republic of Korea

{nsh0249, youkim}@sogang.ac.kr

 In F2FS, concurrent write requests to a file are serialized
by inode mutex lock.

 If the writing ranges of each thread do not overlap, the
file system may allow parallel writes.

 In our previous work[1], we allowed parallel writes to files
using Range-Lock instead of inode mutex lock, but the
performance increased only up to 15 cores out of 120
cores.

 We analyze the causes of these performance scalability
limitations and suggest ideas to reduce the lock
contention overhead in F2FS that occurs when searching
for a direct node in the page cache.

 get_dnode_of_data function has the purpose of
getting the direct block information of the corresponding
data.

 This function iteratively searches for a node log entry in
the page cache and finds the direct node of the data.

Procedure of get_dnode_of_data
 Assume that get_dnode_of_data retrieves direct node

of data block A.

Step 1 Find an inode page in the page cache and acquire

an exclusive lock on that page. (See A in Figure)

Step 2 Because inode does not directly reference the data

block A, the lock to the inode page is released

Step 3 Find an indirect node referenced by the inode from

the page cache

Step 4 Acquire an exclusive lock on an indirect node.

(See B in Figure)

Step 5 Until the direct node which directly references

the data block A is found, repeat Step 2~4.

(See C in Figure)

Step 6 After finding a direct node, the lock to the direct

node is released. Then only required information

of direct node is returned to the caller.

Introduction Direct Node Search in F2FS

Experimental Setup
 We evaluate F2FS with Range-Lock on a testbed

equipped with 120 cores and 740GB DRAM.
 We used a 400GB Intel 750 NVMe SSD. (Sequential I/O

bandwidth: 900 MB/s, Random IOPs: 230 KIOPS)
 We evaluated the DWOM workload using a FxMark

benchmark tool with direct IO.
 In a DWOM workload, multiple threads write to non-

overlapping areas of the same file.
 We use perf to profile the result.

F2FS Scalability

 Throughput of F2FS with Range-Lock does not scale after
15 cores.

Overhead Profiling
 CPU cycles consumed by the get_dnode_of_data

function has drastically increased after 15 cores.
 We define 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 as follows.

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝒈𝒆𝒕_𝒅𝒏𝒐𝒅𝒆_𝒐𝒇_𝒅𝒂𝒕𝒂

𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑤𝑟𝑖𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 get_dnode_of_data occupies more than half of the
total CPU cycles consumed by an entire write function
after 15 cores.

 To mitigate performance bottleneck, we analyzed the
behavior of get_dnode_of_data function.

Motivation

 When performing concurrent writes, a page-level lock at
the page cache cause lock contention which seriously
degrades file system scalability.

 get_dnode_of_data requires an exclusive lock on each
page from the page cache to prevent pointer changes
during direct node searching.

 However, get_dnode_of_data returns only required
information without modification in direct node.

 Therefore it is possible to consider to employ a shared
read lock on each node page while searching.

 To mitigate the lock contention occurred in
get_dnode_of_data, we will implement a page cache
that uses a reader/writer-aware lock for each page entry.

Summary and Future Work

of Cores 15 42 70 98 120

Overhead ratio 16% 49.3% 66.4% 68.3% 67.6%

[1] C. Lee et al. “Write Optimization of Log-structured Flash File System for Parallel I/O on
Manycore servers.” The 12th ACM International Systems and Storage Conference (Systor 19).

Acknowledgement
This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No. 2014-0-00035, Research on High Performance and
Scalable Manycore Operating System).

