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Abstract—Efficient parallelization of loops is critical to
improving the performance of high-performance computing
applications. Many classical parallel loop scheduling algorithms
have been developed to increase parallelization efficiency. Re-
cently, workload-aware methods were developed to exploit the
structure of workloads. However, both classical and workload-
aware scheduling methods lack what we call robustness. That
is, most of these scheduling algorithms tend to be unpre-
dictable in terms of performance or have specific workload
patterns they favor. This causes application developers to
spend additional efforts in finding the best suited algorithm
or tune scheduling parameters. This paper proposes Bayesian
Optimization augmented Factoring Self-Scheduling (BO FSS),
a robust data-driven parallel loop scheduling algorithm. BO
FSS is powered by Bayesian Optimization (BO), a machine
learning based optimization algorithm. We augment a classical
scheduling algorithm, Factoring Self-Scheduling (FSS), into a
robust adaptive method that will automatically adapt to a
wide range of workloads. To compare the performance and
robustness of our method, we have implemented BO FSS and
other loop scheduling methods on the OpenMP framework. A
regret-based metric called performance regret is also used to
quantify robustness. Extensive benchmarking results show that
BO FSS performs fairly well in most workload patterns and is
also very robust relative to other scheduling methods. BO FSS
achieves an average of 4% performance regret. This means
that even when BO FSS is not the best performing algorithm
on a specific workload, it stays within a 4 percentage points
margin of the best performing algorithm.

Keywords-Parallel Loop Scheduling, Bayesian Optimization,
Parallel Computing, OpenMP

I. INTRODUCTION

Loop scheduling algorithms try to increase the efficiency
of parallelization by exploiting the loop structures abundant
in scientific applications. The importance of this class of
algorithms has been quickly realized and led to the creation
of various classical scheduling strategies [1]–[7]. Recent
study [8] revealed that none of these scheduling algorithms
is optimal in a general case. This is because most of these
algorithms do not exploit information about the workload.

To address this issue, workload-aware scheduling algo-
rithms such as the History-aware Self-Scheduling (HSS) [9]
and the Bin packing Longest Processing Time (BinLPT) [10],
[11] have emerged. While these workload-aware methods
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perform well when the imbalance pattern, or workload-
profile, is known beforehand, the workload-profile may not
always be available in practice. Also, their performance
becomes limited when the number of tasks greatly out-
numbers the computing units, which is typical in parallel
applications. Moreover, both classical and workload-aware
scheduling algorithms lack robustness, meaning that they do
not perform consistently well on all types of workloads. With
a lack of robustness, additional efforts should be made to
find the best algorithm suited to a particular workload.

Recent advances in machine learning and optimization
have offered new methods that can solve complex problems
using data. Such problems include compiler optimization
flag selection [12] and cloud configuration selection [13].
In this paper, we bridge the gap between classical and
workload-aware scheduling algorithms using a new data-
driven, adaptive strategy called Bayesian Optimization aug-
mented Factoring Self-Scheduling (BO FSS). Using a ma-
chine learning based optimization algorithm called Bayesian
Optimization, (BO) [14], we augment one of the classi-
cal scheduling algorithms called Factoring Self-Scheduling
(FSS) [2] into a more robust loop scheduling algorithm that
automatically adapts to the workloads. In particular, BO is
notorious for its sensitivity to tunable hyperparameters due
to its internal Gaussian Process (GP). Therefore, we use an
Auxiliary Particle Filter (APF), a Sequential Monte Carlo
(SMC) algorithm. APF marginalizes away hyperparameters
reducing the pain of hyperparameter tuning.

We have implemented BO FSS as well as other clas-
sic scheduling algorithms such as Chunk Self-Scheduling
(CSS) [1], Factoring Self-Scheduling (FSS) [2], Trapezoid
Self-Scheduling (TSS) [3], Tapering Self-Scheduling (TA-
PER) [5], HSS and BinLPT, and integrated them into
the OpenMP parallelism framework [15]. The performance
of BO FSS is evaluated against HSS, BinLPT and other
scheduling algorithms. To assess the robustness of our
method, a regret-based metric [16], [17] called performance
regret is used for quantifying robustness. Using this metric,
we show that BO FSS is more robust than other scheduling
methods on a wide range of workloads.

To summarize, the key contributions of this paper are as
follows:



• Development of a robust, data-driven, and adap-
tiveloop scheduling algorithm. We propose a novel
loop scheduling algorithm that uses BO. The proposed
algorithm performs well on a diverse range of work-
loads without significant variation in performance.

• Application of Bayesian optimization for optimizing
the performance of computer systems. We apply
BO to directly optimize the execution time of parallel
loops. We show that our BO implementation performs
well without any workload-specific tuning. The APF
algorithm automatically marginalizes GP hyperparam-
eters, reducing the effort spent in tuning the scheduling
algorithm.

• Implementation and comparison of parallel loop
scheduling algorithms on realistic workloads. We
have implemented a variety of loop scheduling algo-
rithms, including their BO augmented versions into the
OpenMP framework. We analyze their performance and
robustness on realistic workloads from the Rodinia 3.1
benchmark.

II. BACKGROUND AND MOTIVATION

A. Background

Loops in scientific computing applications are easily
parallelizable because of their embarrassingly data-parallel
nature. A parallel loop scheduling algorithm attempts to map
each task, or iteration, of a loop to Computing Units (CU).
The most basic scheduling strategy called Static Scheduling
(STATIC) equally divides the tasks by the number of CUs
P in compile time. The execution time, or length, of the ith
task, is denoted as Ti. Usually, a barrier is implied at the end
of a loop. All the CUs must wait until all tasks have been
computed, and if an imbalance is present across the tasks,
some CUs may finish computation before other tasks. This
results in inefficient parallelization. Execution time variance
is abundant in practice because of control statements and
inherent noise in modern computer systems [18].

Dynamic scheduling was introduced to solve the ineffi-
ciency caused by execution time variance of each task. In
dynamic scheduling schemes, each CU self-assigns a chunk
of K tasks in runtime by accessing a central task queue
whenever it becomes idle. The case where K = 1 is called
Self-Scheduling (SS) [19]. The dynamic loop scheduling
problem was mathematically formalized in [1], [20] and a
review of the problem is done in [21].

B. Related Works

To improve the efficiency of dynamic scheduling, many
classical algorithms were introduced such as CSS [1],
FSS [2], TSS [3], BOLD [4], TAPER [5] and BAL [6].
However, most of these classic algorithms were derived in
a limited context with strict statistical assumptions. Such an
example is the identically, independently distributed (iid)
assumption imposed on the workload. In this case, all the

tasks are assumed to have a fixed mean execution time
E[Ti] = μ and variance V[Ti] = σ2. Even in the cases
where the workload distribution is known in advance, or an
inherent bias in the workload distribution is present, these
algorithms cannot take much advantage.

To resolve this limitation, adaptive and workload-aware
methods were developed starting from the Adaptive Factor-
ing Self-Scheduling algorithm [7]. Recently, HSS [9] and
BinLPT [10], [11] were developed. These scheduling algo-
rithms explicitly require a workload-profile before execution
and exploit this knowledge in the scheduling process. On
the flip side, this requirement makes these methods difficult
to use in practice since the exact workload-profile may not
always be available beforehand. Also, these methods tend to
scale poorly with a large number of tasks.

Machine learning, on the other hand, has been applied
to parallel scheduling just in a handful of cases. In [22],
Wang and O’Boyle used compiler generated features to
train classifiers that select the best-suited scheduling strategy
for a workload. While this approach does not improve the
effectiveness of the chosen scheduling algorithms, it has
been experimentally shown that no scheduling algorithm
dominates others in [8]. Thus, it is practical to automatically
select an optimal scheduling strategy based on the workload.
Recently, Khatami et al. in [23] used a logistic regression
model for predicting the optimal chunk size for a scheduling
strategy combining CSS and work-stealing. Their approach
is limited, however, since a basic logistic regression model
is a linear classifier.

The performance of classical scheduling algorithms varies
greatly across workloads [8]. This means that it is necessary
to choose a scheduling algorithm that is appropriate for
a particular type of workload. This problem led to the
development of machine learning systems that automatically
recommend the appropriate algorithm [22]. Workload-aware
methods such as the BinLPT and HSS are not free of this
issue. Our motivation is to develop an adaptive scheduling
algorithm that is less picky about the workload and quantify
its pickiness, or in other words, its robustness.

C. Motivation

While the HSS and BinLPT strategies fully incorporate
information about the workload distribution, they have sig-
nificant drawbacks. An accurate workload-profile must be
available before execution. In situations where the workload
distribution is not known, extensive benchmarking is re-
quired to acquire a precise workload-profile. Another major
drawback of both the HSS and BinLPT methods is that they
tend to perform poorly when the number of tasks largely
surpasses the number of CUs. This phenomenon can be seen
in Figure 1, where the execution times of different schedul-
ing algorithms are compared against HSS and BinLPT by
varying their parameter. Unlike in the hotspot suite where the
tasks count is small, the HSS and BinLPT perform poorly



Figure 1: Visualization of the parameter space (θ) of schedul-
ing algorithms compared to HSS and BinLPT. (Left) kmeans
benchmark suite (N = 494020). (Right) hostpot benchmark
suite (N = 4096). N is the number of tasks. A description
of θ for each scheduling algorithm is provided in Table I.
The colored region is the 95% confidence interval.

against other scheduling algorithms on the kmeans suite. In
our terms, this makes these algorithms not robust enough
since their performance can vary depending on the workload.
Additionally, the workload-profile imposes a O(N) runtime
memory overhead for each loop. If the number of tasks is
huge, this overhead may not be negligible.

Classical scheduling algorithms such as CSS, FSS, TSS,
and TAPER have tunable parameters. When appropriately
tuned, the performance of these algorithms can sometimes
surpass that of HSS and BinLPT. This can also be seen
in the visualization of the parameter spaces (θ) shown in
Figure 1. We denoted the parameter as θ. For the case of
the kmeans benchmark where the task number is large, all
four scheduling algorithms easily surpass the performance
of HSS and BinLPT by a significant margin. Even in the
hotspot suite where the number of tasks is small, which
is in favor of HSS and BinLPT, appropriately tuning θ in
some algorithms achieves similar or better performance. This
means that the robustness of these classical algorithms can
be increased against both workloads with a large and small
number of tasks.

In summary, the performance potential of classical
scheduling algorithms points towards the possibility of cre-
ating a novel robust scheduling algorithm.

III. DESIGN OF BAYESIAN OPTIMIZATION AUGMENTED
FACTORING SELF-SCHEDULING

A. Factoring Self-Scheduling

FSS was originally developed by Hummel et al. [2]
extending the CSS algorithm. The chunk size is annealed in
multiple batches according to (1). At the ith batch, P chunks
of size Ki are allocated. Ri is the number of remaining tasks
at the ith batch.

R0 = N, Ri+1 = Ri − PKi, Ki =
Ri

xiP
(1)

bi =
P

2
√
Ri

θ (2)

x0 = 1 + b20 + b0

√
b20 + 4 (3)

xi = 2 + b2i + bi

√
b2i + 4 (4)

The parameter θ in (2) is crucial to the performance of
FSS. The analysis in [24] concluded that θ = σ/μ results
in the best performance under strict statistical assumptions.
However, we argue that determining θ by solving an opti-
mization problem yields a better, more consistent solution.

B. Formulation as an Optimization Problem

The optimization problem is formulated as follows.
First, let us denote the total execution time of a loop as
T (S, θ, P,N) in (5) where S is the chosen scheduling
strategy. The overhead caused by σ and h is denoted as
f(S, θ, σ, h, P,N). The observed total execution time T̂
in (6) contains observation noise ε. This noise term repre-
sents various real-life variations present in modern computer
systems such as Translation Lookaside Buffer (TLB) misses,
cache misses and network contentions. We assume ε to
follow a Gaussian distribution. This assumption will be
justified in Section III-C.

T (S, θ, P,N) =
N

P
μ+ f(S, θ, σ, h, P,N) (5)

T̂ = T (S, θ, P,N) + ε , ε ∼ N (0, σ2
ε ) (6)

Our goal is to minimize the imbalance term f from
the observations of T̂ . Since μ is assumed to be fixed,
T is proportional to f . Thus, optimizing T is equivalent
to optimizing the execution time imbalance. Assuming the
noise to have zero mean, we can optimize T by optimizing
the expectation of T̂ . The problem is stated as (7)

minimize
θ

E[ T̂ (S, θ, P,N) ] (7)

Since we do not have an exact model of
f(S, θ, σ, h, P,N), we cannot use gradient-based methods.
To make things worse, most optimization algorithms
perform poorly in the presence of noise. These difficulties
motivates us to use BO for solving this optimization
problem.

C. Solution using Bayesian Optimization

BO is a gradient-free black-box optimization algorithm.
BO has been shown to be successful in optimizing complex
real-life systems that are often noisy and non-convex [12],
[13], [25], [26].

The BO algorithm is explained in Algorithm 1. BO first
fits a surrogate model, in which we used the Gaussian
Process (GP) algorithm. GPs assume the target function to
be a sequence of jointly Gaussian random variables with
covariance between arbitrary points given by a covariance
kernel function k(xi, xj). Under the Gaussian assumption,
we can predict the mean μ(x|D) of a point. The uncer-
tainty of the prediction is quantified as prediction variance



Algorithm 1 Bayesian Optimization
1) Initially sample enough observations and form a dataset

D0 = {(x0, y0), (x0, y0), . . . , (xN , yN )}
2) Run Bayesian Optimization.

Until stopping criterion is met. i = 0, 1, . . . T

a) Fit surrogate model from observation data.
Fit GPi from Di

b) Optimize acquisition function.
xi = argminx α(x|GPi)

c) Evaluate objective function.
yi ← f(xi)

d) Add observation to dataset.
Di+1 ← Di ∪ (xi, yi)

3) Return point with lowest predicted mean.
argminx μ(x|DT ).

σ2(x|D). We used the Squared-Exponential Covariance
Kernel for computing the covariance.

GPs can naturally express the noise present in program
execution time. This is done by adding a small constant σ2

ε

to the diagonal of the covariance matrix. In the GP setting,
this is equivalent of assuming Gaussian noise, which justifies
our assumption about execution time noise in Section III-B.
We describe a process for automatically estimating σ2

ε in
Section III-D.

αLCB(x| GPt ) = μ(x|Dt)−
√

βtσ2(x|Dt) (8)

βt = 2 log(
t2π2

6δ
), δ = 0.1 (9)

After approximating the execution time resulting from
scheduling parameters, it is important to decide which value
of the scheduling parameter we will explore next. Exploring
a point that has high uncertainty might reveal points with
good performance that were previously unknown. Points
that are already known to result in good performance could
also be exploited. The acquisition function is in charge of
solving this decision problem often called the exploration-
exploitation tradeoff. We chose the Lower Confidence Bound
(LCB) acquisition function [27]. From its formulation in (8),
we can see that the LCB policy balances the influence of
the objective value μ(x|D) and the uncertainty σ2(x|D) by
a constant βt. By optimizing the acquisition function, BO
explores the parameter space and gradually improves the
performance of BO FSS.

D. Marginalization of Bayesian Optimization Hyperparam-
eters Using Sequential Monte Carlo

GPs have multiple hyperparameters that determine its
performance. These hyperparameters are directly related to
the attributes of the workload. Since real-life workloads
are very diverse, it is important to automatically handle
these parameters to prevent the need for manual tuning.
Such parameters include the characteristic length l of the
covariance kernel, objective function mean μf , objective
function variance σ2

f and the noise variance σ2
ε . We denote

these parameters with the parameter vector θ. Instead of
hand-tuning θ, it is possible to estimate it by maximizing

the likelihood of the GP, p(D|θ). Instead, we chose to take
the Bayesian way of threating θ by marginalizing it away.
This is done by computing the intractable integral in (10).

Eθ[μ(x|D) ] =
∫

μ(x|θ,D)p(θ|D)dθ (10)

≈
N∑
i

wi∑N
i wi

μ(x|θi,D) (11)

Since computing the likelihood of a GP is expensive as
it requires inverting a matrix, there have been approaches
that exploit the iterative nature of BO by using Sequential
Monte Carlo (SMC) methods [14], [28]–[30]. We used
the Auxiliary Particle Filter (APF), a SMC method that
approximates (10) using the finite sum (11). Using APF,
we automatically infer the characteristics of the workload.
As a detailed description of APF is out of our scope,
readers interested in particle based SMC methods are pointed
to [31].

E. Implementation

We implemented our BO FSS scheduling algorithm on the
GCC implementation of the OpenMP 4.5 framework [15].
To compare the performance of BO FSS against other
scheduling algorithms, we also implemented the CSS, FSS,
TSS and TAPER scheduling algorithms, and their augmented
versions. The scheduling algorithm can be selected by set-
ting the OMP_SCHEDULE environment variable, or by the
OpenMP runtime API as in the Listing 1. We followed a sim-
ilar implementation with the GCC version of the GUIDED
schedule using compare-and-swap (CAS) synchronization.

Listing 1: Selecting a scheduling algorithm
omp_set_schedule(BO_FSS); // selects BO FSS

Listing 2: Modified GCC OpenMP ABI
void GOMP_parallel_loop_runtime(void (*fn) (void *), void

*data, unsigned num_threads, long start, long end,
long incr, unsigned flags, size_t loop_id)

void GOMP_parallel_runtime_start(long start, long end,
long incr, long *istart, long *iend, size_t loop_id)

void GOMP_parallel_end(size_t loop_id)

Our method explained in Section III-B requires the iden-
tification of the individual loops in the OpenMP runtime.
A major issue we encountered is that the current OpenMP
ABI does not provide a way for such identification. We
instead had to modify the GCC 8.2 [32] compiler’s code
generating backend and the OpenMP ABI. The modified
GCC OpenMP ABI is listed in Listing 2. During com-
pilation, a unique token for each loop is generated and
inserted at the end of the OpenMP procedure calls. Using
this identification token, we can store and manage the state
of each loop. Measurements of loop execution time are done
by starting the system clock in OpenMP runtime entries such
as GOMP_parallel_runtime_start and stopping in
exits such as GOMP_parallel_end.



Figure 2: Benchmark results on the Rodinia 3.1 workloads. The error bars show the 95% confidence intervals. Workloads
with a relatively small task count are grouped in the grey rectangle.

We implemented the BO algorithm described in Sec-
tion III-C with the GP algorithm described in III-D. For
solving the subproblem of optimizing αLCB , we experi-
mented with multiple optimization algorithms and settled
with the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm [33]. Both the BO and GP algorithms
were implemented from scratch using C++, the Blaze linear
algebra library [34] and CMA-ESpp library [35] for CMA-
ES.

IV. EVALUATION

A. Experiment Setup and Performance Metric

All experiments were conducted on a single shared-
memory node with an AMD Ryzen Threadripper 1950X
3.4GHz CPU which has 16 cores (32 threads). The GCC
8.3 compiler was used with -O3, -march=native opti-
mization flags enabled.

In order to evaluate BO FSS from different perspectives,
we also augmented other classic scheduling algorithms such
as the CSS, TSS, and TAPER, apart from FSS. These
schemes were used as baselines for comparison marked with
a BO prefix. The internal parameters of these algorithms are
summarized in Table I.

Heuristic versions of the FSS, TSS, TAPER algorithms
initially introduced in their original works are also included
for evaluation. These are denoted FAC2, TAPER, TRAP1
respectively. Statistics of the workloads μ, σ, and the
workload-profile were acquired by executing multiple pro-
filing runs. The parameter h required by CSS was calculated
according to [36]. BO augmented scheduling strategies were
trained for 50 iterations starting from 30 warmup iterations.
The workloads used for experiments are from the Rodinia
3.1 benchmark [37]. The characteristics of the benchmark
workloads are summarized in Table II. In the case of TSS,
(which has two tunable parameters Kf and Kl), the original
authors suggested Kf = N/2P , Kl = 1 as a rule of thumb.
Following this recommendation, we optimized θ = δ where
δ is the difference between subsequent tasks.

The performance of previously developed scheduling al-
gorithms tends to vary greatly across workloads. This lack

Table I: Parameters of considered
baselines

Scheduling Alg. Parameter θ

CSS [1] h/σ h/σ
TAPER [5] ασ/μ ασ/μ
TSS [3] Kf , Kl

1 δ

1 Kf ,Kl is the size of the first and last
chunk.

Table II: Benchmark workloads

Suite Characterization N Application Domain

kmeans Linear Algebra 494020 Data Mining
lavamd N-Body 8000 Molecular Dynamics
nn Linear Algebra 8192 Data Mining
streamcluster Linear Algebra 65536 Data Mining
hotspot Structured Grid 4096 Physics Simulation
hotspot3D Structured Grid 209715 Physics Simulation
cfd Unstructured Grid 193474 Fluid Dynamics
bfs Graph Traversal 1000000 Graph Alorithms
srad Structured Grid 229916 Image Processing
backprop Unstructured Grid 1048592 Deep Learning

of robustness complicates the process of developing parallel
applications since searching for the best-suited scheduling
strategy is necessary. To quantify the robustness of schedul-
ing algorithms, we propose to use a regret-based robustness
measure [16], [17]. We call this the performance regret,
denoted in (12). Regret is computed by the latency relative
to the best performing scheduling algorithm on a workload.
Denoting the set of scheduling algorithms as {S} and the
set of workloads as W , the average regret and the standard
deviation of regret are computed as (13). A robust scheduling
algorithm achieves consistently low regret overall, hence
minimizing the regret mean μR and standard deviation σR.
For example, an algorithm that performs the best on all
workloads will measure as μR = 0, σR = 0.

R(S) = T (S, θ, P,N)−mini∈{S}{T (Si, θ, P,N)}
mini∈{S}{T (Si, θ, P,N)} × 100

(12)

μR = EW [R(S) ], σR = VW [R(S) ] (13)



Table III: Performance regret of scheduling algorithms

Benchmark HSS BinLPT BO FSS BO CSS BO TAPER BO TSS CSS FAC2 FSS TAPER3 TRAP1

backprop 11.2 4.2 0.2 4.9 6.7 4.6 7.9 5.3 0.0 7.4 7.2
bfs 308.7 224.5 6.9 12.3 19.6 0.0 28.8 8.4 22.0 24.0 15.8
cfd 51.1 41.6 4.5 1.9 2.4 11.5 107.5 5.3 8.8 10.1 0.0
hotspot 364.0 215.1 4.1 0.0 3.3 18.0 11.9 6.8 10.2 9.7 2.1
hotspot3D 58.5 4.9 6.5 0.0 43.2 6.0 232.0 46.4 8.7 97.8 8.9
kmeans 7.7 29.6 0.0 0.3 3.3 0.5 91.0 0.2 17.9 2.9 0.2
lavamd 5.4 61.5 0.0 8.4 0.2 4.1 30.7 0.3 14.7 52.6 11.4
nn 27.4 34.4 14.1 13.5 9.0 0.0 54.1 12.7 29.6 17.5 16.9
srad 126.0 41.1 3.1 3.2 8.0 6.7 117.4 5.0 3.0 25.5 0.0
streamcluster 5.2 36.6 0.4 9.9 3.2 0.7 519.3 0.0 35.6 1.5 1.6
μR 96.5 69.4 4.0 5.4 9.9 5.2 120.1 9.0 15.1 24.9 6.4
σR 125.5 77.0 4.2 4.9 12.3 5.5 147.6 13.0 10.8 28.2 6.3

B. Performance Evaluation

Performance Analysis: Figure 2 shows the comparison of
BO FSS with other scheduling algorithms. Overall, BO FSS
performed consistently well. It ended up being the best or
stayed within the confidence interval of the best performing
algorithm in 8 out of 10 workload cases. For example,
BO FSS was outperformed only in hotspot3D and cfd by
TRAP1, which is the heuristic version of TSS. This is
because the parameter found in the space of FSS did not
perform better than TRAP1 on those specific workloads.
However, among the FSS algorithm family (FSS, BO FSS,
FAC2), BO FSS performed the best. This shows the fact
that the performance of BO FSS is bounded to that of FSS.
However, within the space of FSS, BO can find the best
parameter that minimizes the relative performance loss. This
minimization of regret is what we claim to be the key to
robustness.

The grey rectangle demarks the workloads with a rela-
tively small task count N . This includes nn, lavaMD, and
hotspot. On these workloads, both BinLPT and HSS per-
formed reasonably well since they prefer a small task count.
However, the performance was inconsistent compared to that
of BO FSS. Because the parameter space of FSS allows
good performance even with small tasks, when appropriately
tuned, the performance of FSS and FAC2 can be made more
consistent. As a result, BO FSS outperformed BinLPT and
HSS despite their preference.

Robustness Analysis: To quantify the robustness of BO
FSS, we compared the performance regret against other
algorithms. We included other BO augmented algorithms
to show that BO FSS is the most consistent among BO
augmented algorithms. The performance regrets of the ex-
perimented algorithms are shown in Table III. The bottom
row is the mean and standard deviation of regret. Compared
to other methods, BO FSS achieved the lowest regret mean
and standard deviation. This means that BO FSS performs
consistently well on a wide range of workloads without
fluctuating. Compared to other BO augmented algorithms,
this can be interpreted as the FSS algorithm having the
widest, most flexible parameter space allowing for aggres-
sive workload adaptation

The BO augmented algorithms showed improvements in
robustness as much as 115 percentage points over their orig-
inal counterparts. Mainly, the CSS algorithm after applying
BO augmentation (BO CSS) performed quite competitively
with a regret of 5.4. This contradicts the previous belief
that decreasing chunk size schemes such as FSS, TSS, and
TAPER, should outperform CSS, which is a constant chunk
size scheme [1], [2]. Not restricted to CSS, It is apparent
that scheduling algorithms behave differently after properly
adapting to the workload. This observation potentially opens
the door to future parameterized scheduling algorithms de-
signed with BO augmentation in mind. These algorithms
should form a new, robust class of scheduling methods.

Overhead Analysis: BO FSS has specific duties, both online
and offline. When online, BO FSS loads the precomputed
scheduling parameter θi, measures the loop execution time
T̂i and stores the pair (θi, T̂i) in the dataset D. A storage
memory overhead of O(T ), where T is the number of BO
iterations, is required to store D. This is normally much less
than the O(N) memory requirement, where N is the number
of tasks, imposed by other workload-aware methods. The
number of tasks N tends to grow as parallel applications
scale with more data. When offline, BO FSS runs BO using
the dataset D and determines the next scheduling parameter
θi+1. Because most of the actual work is performed offline,
the online overhead of BO FSS is almost identical to that
of FSS. The offline step is relatively expensive due to the
O(T 3) computation complexity of GPs. Fortunately, we
experienced that BO FSS converges within 50 iterations for
most cases. This lets the computational cost to stay within
a reasonable range.

V. CONCLUSION

In this paper, we have presented BO FSS, a data-driven,
adaptive loop scheduling algorithm based on BO. The pro-
posed approach automatically tunes its performance to the
workload using online measurements. We implemented our
method on the OpenMP framework and quantified its perfor-
mance plus robustness. BO FSS has consistently performed
well on a wide range of real workloads, showing that it is
robust compared to other loop scheduling algorithms.
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