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Abstract—Several key-value stores such as RocksDB and
MongoDB are implemented on the file system using the Log-
Structured Merge-Tree (LSM-tree). The LSM-tree involves
high compaction overhead. To minimize this overhead, Wis-
cKey, the state-of-the-art LSM-tree, separates key and value,
appends the value to the Value Log file, and LSM-tree
manages only the key and Value Log offset. This minimizes
the compaction overhead by reducing the number of SSTables
managed by the LSM-tree. However, WiscKey still has a
high I/O stack overhead that must go through the OS file
system and block-layer. Therefore, this paper proposes iLSM-
SSD that implements WiscKey in SSD and supports near-
data processing. iLSM-SSD has the following features: (i)
iLSM-SSD implements a key-value separation based LSM-tree
in a limited memory space inside the SSD. (ii) The Value
Log offset update management overhead incurred during the
Value Log cleaning has a significant performance impact on
CPU and memory-constrained SSD environments. To minimize
this overhead, iLSM-SSD implements Scattered Logging, which
reuses invalidated Value Log pages on the Value Log. (iii) iLSM-
SSD manages the data layout internally. This enables iLSM-
SSD to eliminate the need for file system interactions to obtain
the data layout for in-storage processing on traditional block-
interface-based SSDs. We prototyped the iLSM-SSD on the
Cosmos+ OpenSSD platform in a Linux environment. Extensive
evaluations with synthetic benchmarks have shown that the
PUT performance of iLSM-SSD is 1.6-4 times higher than that
of WiscKey implemented in RocksDB.

Keywords-Log-Structured Merge-Tree, Key-Value Store,
Solid-State Drive

I. INTRODUCTION

A key-value store is a database that manages key-value
pairs. Due to its simple key-value interface to access the
value using the key, the key-value store has been widely
employed in many modern applications [1]–[9]. For exam-
ple, it can be used as a building block in applications, such
as object stores in distributed object storage systems [1],
database storage engines [2], [3], [5], [6], and caching
systems [7]–[9] for big data storage systems. It can also be
directly employed as distributed or local key-value database
systems [10]–[14]. In particular, local key-value stores such
as RocksDB [5] and MongoDB [6] are implemented using
a Log-Structured Merge-Tree (LSM-tree) [15] on top of the
OS file system.
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Figure 1. Comparison of latency breakdown of system calls for RocksDB,
WiscKey, and NVMe SSD. The NVMe SSD was measured while issuing
4 KB writes directly on the NVMe SSD. Detail testbed configurations are
presented in Table I, II.

The user can insert a key-value pair into the key-value
store using a PUT request. In the key-value store using the
LSM-tree, key-value pairs inserted are temporarily stored
in the MemTable, an in-memory data structure. Once the
MemTable reaches a certain threshold in size, it is flushed
into persistent media in the form of Sorted String Table
(SSTable), which is an immutable file. Since the SSTable is
immutable, updating or deleting keys is handled as a PUT
request with a new value or a special value indicating that
the key has been deleted. Therefore, the old keys remain in
the old SSTables. The user can retrieve the corresponding
value of the key using a GET request. The key-value store
using the LSM-tree first searches the key in the MemTable.
If successful, it returns its value. Otherwise, it will search
it in SSTables. Besides, the LSM-tree performs compaction.
Compaction is the process of merging SSTables and sorting
them to create new SSTables. The obsolete keys can only
be reclaimed only in the compaction process because the
SSTable is immutable. However, the compaction process
incurs high write amplification because key-value pairs need
to be re-written multiple times. This increases I/O traffic
in the file system, which is a major cause of performance
degradation.

WiscKey [16] has solved the aforementioned write ampli-



fication problem that occurs during the compaction of LSM-
tree by using the key-value separation. In WiscKey, values
are appended to the Value Log, and only the key and its
Value Log offset are stored in the LSM-tree. This key-value
separation significantly reduces the total size of SSTables
and alleviates the write amplification problem that occurs
during the compaction process.

However, WiscKey does not eliminate the I/O stack
overhead because it is implemented in user-space and runs
on top of the OS file system. In particular, when the
strong consistency is to be assured, the key-value pairs
must be persisted to the Write-Ahead-Log (WAL) or Value
Log immediately on the SSD for every PUT request using
system calls such as fsync and fdatasync. Therefore, fsync
or fdatasync latencies of the file system directly affect the
performance of the key-value store.

To confirm this overhead, we implemented the key-value
separation technique from WiscKey in RocksDB (WiscKey).
And, we compared it to the default RocksDB without the
key-value separation (RocksDB). For comparative evalua-
tion, we measured the average latency of RocksDB and
WiscKey for 1 million unique 4 KB key-value PUT requests.
To guarantee strong consistency, fdatasync is called for
every 4 KB value PUT request, to persist the Write-Ahead-
Log (WAL) in RocksDB and the Value Log in WiscKey.
Figure 1 shows the time-break down of PUT requests by
separating block-level I/O time from file system overhead.
WiscKey shows a latency of 0.72 times lower than the
default RocksDB by reducing write traffic due to the key-
value separation. However, WiscKey still shows about 2.5
times higher latency compared to the conventional block-
based NVMe SSD. Thus, in this paper, we attempt to build
a Key-Value SSD which offers a key-value interface and
implements the LSM-tree using the key-value separation
within the SSD.

When analyzing the data stored in the key-value store,
the user performs the following procedure – i) the value
data of the key is loaded into the user-level memory via a
GET request to the key-value store, and ii) the user uses the
host machine’s CPU and memory to run the data analysis
kernel for the data. This involves data movement between
the host and the SSD. To minimize this data movement
cost between the host and the SSD, there have been several
recent studies on near-data processing that run an analysis
kernel near data in SSD [17]–[19]. These studies are based
on block device interfaces such as NVMe SSDs for near-
data processing. Before executing the data analysis kernel in
the SSD, applications such as near-data processing analysis
frameworks need to find the data layout of the file to be
analyzed through the file system. This still entails file system
stack overhead. On the other hand, key-value SSDs keep the
data layout of the value inside the SSD, which eliminates
the cost for finding the data layout from the file system.

This paper proposes iLSM-SSD, an SSD that implements

the LSM-tree with the key-value separation and the in-
storage processing framework in the SSD. iLSM-SSD thus
enables near-data processing for data analysis in the SSD.
The iLSM-SSD is designed and implemented with the fol-
lowing design challenges:

• Storage protocol for key-value interface. The existing
SATA and NVMe protocols are intended for block-based
storage devices. The key-value SSD requires a new proto-
col definition to communicate with devices that are key-
value interfaces. For this, we extended the NVMe protocol
and support key-value operations for iLSM-SSD.

• NAND flash characteristic. As the LSM-tree is imple-
mented in the SSD, SSTables are to be written directly
on the NAND flash. Since a NAND page requires to be
erased for re-writing, the partial update consumes limited
Program/Erase cycle of the NAND flash and is also
critical in performance. As the Value Log offset is inserted
to the SSTable in the LSM-tree using the key-value
separation technique, the SSTable can be maintained in
a small and fine-grained manner. Therefore, the SSTable
can be easily aligned to the NAND page size. Thus, when
implementing the LSM-tree, the key-value separation will
benefit from it.

• Constrained memory resource. The internal memory
capacity of an SSD is highly limited compared to the host.
In this respect, we should ensure that MemTable, LSM-
tree metadata and memory space necessary for Value
Log cleaning are carefully fit in a limited amount of
memory. We analyzed the memory space overhead of
the MemTable and LSM-tree metadata for iLSM-SSD and
designed an efficient free space management technique
using the existing FTL mapping table for efficient Value
Log cleaning.

• Near-data processing capability. Near-data processing
enables to utilize computational resources in the SSD
to reduce the data movement cost between the host and
the SSD. However, it does not eliminate the file system
interaction overhead. The user application still requires
to import the file layout to get block information by
interacting with the file system, then inform the SSD of
the blocks on which the analysis kernel operates. In iLSM-
SSD, the layout of the data is managed by the LSM-tree
in the SSD. Thus, the file system interaction overhead
can be eliminated. To support this, we design a near-data
processing framework for iLSM-SSD.

We implemented iLSM-SSD on the Cosmos+ OpenSSD
Platform [20], which is the development board for imple-
menting SSD device. To show the effectiveness of iLSM-
SSD, we compared iLSM-SSD against WiscKey. From ex-
tensive evaluations with synthetic benchmarks, we observed
that PUT performance is 1.6-4 times higher than WiscKey,
but GET performance is significantly lower. This low per-
formance of the iLSM-SSD for the GET workload is due



to the limited caching effect of the SSD. However, GET
performance can be improved if user-level caching or kernel-
level caching is implemented. We also witnessed the file
system interaction overhead to find out the data layout of a
file in block-based SSDs to support near-data processing is
significantly high, whereas iLSM-SSD eliminates such over-
head, especially when there is a search hit at the MemTable.
Even in the worst case, its performance is comparable to a
block-based SSD with the file system.

II. BACKGROUND

A. Log-Structured Merge-Tree and Key-Value Separation

Log-Structured Merge-Tree (LSM-tree) is a data structure
widely employed for the key-value store. LSM-tree delivers
high throughput under write-intensive workloads by gen-
erating sequential writes from user’s put requests through
buffering and batching. LSM-tree consists of MemTable
in volatile memory and immutable SSTable in persistent
storage. MemTable temporarily stores key-value pairs in
main memory, which are to be flushed. LSM-tree manages
SSTables in multiple different levels and data flushed from
MemTable are stored in SSTable at level 0. Every SSTable
in the persistent storage covers a key range from the smallest
key to the largest key in sorted order. Except level 0,
all SSTables in each level have disjoint key ranges with
each other. Each level has a threshold in size, and when
it reaches the threshold, it triggers the compaction process.
When compaction is triggered, it selects a victim SSTable
from the level where the compaction process is triggered.
Then compaction merges the victim SSTable with SSTables
having an overlapping key range in the next level and insert
new SSTables to next level. Since SSTables are immutable,
keys that were overwritten or deleted are reclaimed during
the compaction process.

Unlike the conventional LSM-tree, WiscKey [16] pro-
poses the key-value separation, where value is appended
to the separate Value Log. Then it stores the key with its
Value Log offset in LSM-tree. As WiscKey separates values
from the LSM-tree and stores actual values in the Value
Log, it largely reduces the size of SSTables compared to
conventional LSM-tree. As a result, WiscKey reduced a
significant amount of data that has to be read and written in
the compaction process. Since both key and value are written
to the Value Log, WiscKey ensures strong consistency by
persisting every Value Log entry before sending a response
to the user.

Figure 2 depicts how the user’s key-value is stored on
a PUT request in the LSM-tree based key-value store with
key-value separation. 1© The key and value are appended to
the Value Log, which is in the persistent media. 2© A pair of
the key and its Value Log offset is inserted to MemTable. If a
power failure occurs at this moment, Value Log is utilized as
write-ahead-log (WAL) to replay user’s requests that were
in volatile MemTable. After successfully persisting Value
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Figure 2. WiscKey’s LSM-tree architecture and key-value insertion
process.

Log and inserting to MemTable, a response to the user’s
request is sent. 3© When the size of MemTable reaches a
threshold, LSM-tree marks the MemTable as immutable to
prevent any further modification, then, converts it into an
SSTable file and write it to Level 0. If the total size of
SSTable in Level 0 reached the threshold, LSM-tree triggers
the compaction process as a background job. 4© Compaction
process will select a victim SSTable and merges it with
SSTables in the next level. During this process, if any deleted
or overlapping keys are found, they are removed from the
SSTable. Compaction process could be recursively triggered
if SSTables newly added to the next level make the total
size of next level reaches to the threshold.

For a GET request, the Value Log offset corresponding to
the key is required to get the actual value. LSM-tree searches
the key in the following order: first at MemTable, second at
immutable MemTable, and then at all the levels of SSTables.
If the key is found in multiple different levels, the key at
the lowest level has the latest Value Log offset. For example,
if the key is found in level 0 and level 2, then the key in
level 0 has the latest Value Log offset. After retrieving the
Value Log offset successfully, the actual value is read from
the Value Log to return to the user.

B. Value Log Cleaning

In a conventional LSM-tree where key-value separation
is not employed, after the compaction process, deleted or
overwritten keys and their values are removed from the
LSM-tree. However, when the LSM-tree employs the key-
value separation, their corresponding Value Log entries are
not removed from Value Log until Value Log cleaning is
triggered. During Value Log cleaning, invalid log entries
should be removed and, at the same time, consecutive free
space should be reclaimed for log entries to be newly
appended. For Value Log cleaning, WiscKey appends both
key and value to the Value Log and maintains the head and
tail pointer of the Value Log. The Value Log cleaning is
performed as follows. (1) From tail pointer, read a fixed-size
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Figure 3. Architecture overview for an SSD.

chunk. (2) Search the keys inside the chunk from LSM-tree.
(3) Compare current log offset and log offset generated from
search results. If Value Log offsets are the same, the Value
Log entry is valid. Otherwise, it is invalid. Valid log entries
are appended at the head pointer whereas invalid log entries
are deleted. After safely persisting valid log entries, a chunk
from the tail pointer is truncated.

C. Solid-State Drives (SSD)

1) SSD Architecture: Figure 3 shows a simple example of
the SSD internal structure. SSD consists of hardware com-
ponents such as NAND flash chips, NAND flash controller,
CPU and Memory. Unlike HDD, SSD runs software such as
flash translation layer (FTL), garbage collection, and wear-
leveling on the CPU using DRAM buffers. NAND flash
employs page and block (a set of pages) as the units for
I/O. Read and write are performed in the unit of NAND page
and erase in the unit of block. In order to re-write a written
page once before, erase must be implemented. NAND flash
controller implements I/O operations for NAND flash chip.
FTL running on the CPU provides an abstraction layer to
the host by maintaining a mapping table that maps logical
pages to physical pages. Since NAND flash does not allow
overwrites, it uses the FTL to implement an out-of-place
update operation.

2) I/O Flow: When a host requests a write to a specific
logical page number (LPN), the FTL finds the corresponding
physical page number (PPN) corresponding to the LPN in
the mapping table. If the PPN mapping does not exist,
the new free page is allocated to update the mapping
information, and then the NAND flash controller performs
I/O on the NAND flash channel corresponding to the PPN.
If I/O is successfully performed, the SSD responds to the
host. If there is a PPN corresponding to the LPN, an out-of-
place update is performed by allocating a free page, and the
previous PPN is made as an invalid page. Garbage collection
is triggered if there is no free space. In this case, a victim
block is selected, valid pages of the victim block are copied
to the free block, and the LPN-to-PPN mapping information
of the valid pages is updated accordingly. When the copying
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value pages of the victim block is completed, erase the block
and mark all the pages that belong to that block as free
pages. When a host requests a read to a specific logical page
number (LPN), the FTL finds a corresponding physical page
number (PPN) corresponding to the LPN in the mapping
table. Then, it returns the data at that PPN to the host. If
it does not exist, it means the LPN has never been written.
Therefore, it will return some arbitrary data.

In this paper, we implement the LSM-tree with the key-
value separation by utilizing the CPU and DRAM of an SSD.
The LSM-tree is a memory data structure that shares CPU
and DRAM resources with FTL in the SSD. In particular,
since the SSD’s internal DRAM size is limited, the memory
usage for the LSM-tree operation must be optimized for this
small memory space.

III. DESIGN AND IMPLEMENTATION

In this section, we provide the design and implementation
details of each component of iLSM-SSD in a top-down
fashion – key-value API library, key-value device driver,
NVMe protocol extension for key-value SSD, LSM-tree
implementation in the SSD, and in-storage processing for
data analytics.

A. Overview for iLSM-SSD

Figure 4 depicts an architecture overview of iLSM-SSD.
iLSM-SSD consists of (i) a set of user-level key-value APIs,
(ii) key-value device driver, and (iii) iLSM-SSD device. The
key-value API library provides a set of key-value operations
such as PUT, GET, and DELETE to the user. Key-value
requests of the user are passed to the key-value device driver



through system calls. The key-value device driver is a kernel
module that is responsible for communicating with iLSM-
SSD through the key-value device communication protocol.
We designed the key-value protocol by extending an existing
PCIe-based NVMe protocol. The key-value device driver
delivers the user’s key-value request to iLSM-SSD. Then,
key-value commands are handled by the iLSM-SSD device.

B. Key-Value API and Device Driver

Key-value operations such as PUT, GET, and DELETE
are implemented via system calls. These system calls pass
these operational commands to the key-value kernel driver,
which implements a key-value communication protocol to
iLSM-SSD. Existing storage protocols such as SATA and
NVMe were designed for block-based storage devices. Since
the NVMe protocol is designed considering low latency and
high parallelism of the modern SSD, the NVMe protocol
becomes the most popular storage communication protocol
for high-performance PCIe-interface SSDs. We carefully
extended the NVMe protocol for the key-value protocol
while taking full advantage of the existing NVMe protocol.

The basic operations of key-value interface are PUT, GET,
and DELETE. We redefined key-value operational com-
mands by using the areas defined in the NVMe commands
such as vendor-specific OpCode, LBA start address, and
reserved area. Figure 5 shows our newly defined NVMe
commands for PUT, GET, and DELETE. In each command,
the opcode area specifies these operations. The LBA start
address area is used to specify an 8 bytes length key. Each
NVMe command includes a page list to transfer physical
addresses of pages on DRAM. Using these addresses, the
SSD is able to pull data from the host for write command
or push them to the host for read command. PUT and GET
commands in the key-value extension of NVMe protocol
utilize the page list for the value data of the key. However,
for a key-value interface, the length of value data may not
be expressed with the block size and the number of blocks
because of variable value size. To solve the problem, we
used some reserved area of the NVMe protocol to specify the
length of value data for PUT command and the size of buffer
for GET command. To implement key-value commands, we
modified the NVMe device driver in Linux Kernel. All key-
value commands are handled as same as any other NVMe
commands and transferred through the PCIe interconnect.

C. LSM-tree based Key-Value SSD

To implement an LSM-tree based key-value SSD, we
adopted the design idea of WiscKey [16]. It is because Wis-
cKey offers small LSM-tree and less compaction overhead.
The host-side implementation of WiscKey relies on the file
system since SSTables and Value Log are stored as files.
On the other hand, when WiscKey is implemented inside of
an SSD, it has to deal with NAND pages rather than files
because FTL does not provide the file interface. To reduce
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the semantic gap between LSM-tree and NAND flash, iLSM-
SSD implements the WiscKey over the logical address space
offered by the FTL. Thus, in iLSM-SSD, SSTables and Value
Log are all managed in a log fashion on the logical address
space of NAND pages.

Figure 6 shows the architecture of iLSM-SSD. It consists
of LSM-tree, SSTable Log, Value Log and FTL. The FTL
provides logical address space on top of physical NAND
chips. The logical address space is partitioned into two areas
– SSTable Log and Value Log. SSTables generated from the
LSM-tree are stored in the SSTable Log area, and values
are stored in the Value Log area. SSTable Log and Value
Log provide free space through compaction and Value Log
cleaning respectively.

An SSTable consists of a metadata block, bloom filter
blocks and index blocks. Metadata of the SSTable includes
SSTable id, SSDTable size, level it belongs to, location of the
bloom filter and index blocks. Due to key-value separation,
SSTable stores pairs of key and Value Log offset that are
small and fixed. Thus, we embedded the Value Log offset
corresponding to a key into index block. When searching
a specific key in the SSTable, it first examines the bloom
filter block. Then, it searches the key from index block for
the Value Log offset. Note that the key may not be found
in the index block due to false positive of the bloom filter.
The metadata block of the SSTable is also cached in DRAM
as per-SSTable metadata with maximum and minimum keys
of the SSTable. Because SSTable searches involve reading
multiple NAND pages, the maximum and minimum keys
help filter out SSTables that do not need to be searched.

D. Memory Consideration

Since SSDs have a very limited internal memory capacity,
it is crucial to evaluate the memory space overhead of
iLSM-SSD. Compared to the in-memory data structure of
the existing block-based SSD, the primary data structure
added in the iLSM-SSD is MemTable for LSM-tree and per-
SSTable metadata. Also, there is a reserved working space
for holding SSTables during compaction and SSTable search.

1) Memory Overhead of MemTable: MemTable is one of
the key data structures of LSM-tree. The input key-values
are first stored and searched in the MemTable. Therefore,
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size and number of MemTable directly affect to PUT perfor-
mance. MemTable is usually implemented using a skip list.
We can estimate the memory space overhead of a single
MemTable from expected memory consumption of a skip
list as the following example. A single node in the skip
list has key, value and level pointers. The number of level
pointers of each node starts from 1, and a level is added with
probability p until it fails to add a level. In our design, we
used p = 1

2 . Also we limited the maximum number of level
as MaxLevel. We can get the expected number of pointers
of a single list node in the skip list as

∑MaxLevel
i=1 ( 12 )

i.
When MaxLevel = 10, the expected number of pointers of
a list node is about 8. We use 4 bytes pointer, 8 bytes key,
and 8 bytes Value Log offset in the skip list. When the skip
list has 2,048 pairs of key and Value Log offset, the expected
size of a full skip list is (8B+8B+4B×8)×2048 = 64KB.
Since the memory space overhead of a single MemTable is
small, the number of MemTables can be determined by the
memory constraint of SSD.

2) Memory Overhead of per-SSTable Metadata: The
memory overhead of per-SSTable metadata is dominated by
the total number of SSTables in LSM-tree. With the key-
value separation technique, the size of SSTable can be kept
small compared to the conventional LSM-tree regardless of
the value size. In other words, a single SSTable can cover
more key-value pairs with the key-value separation. Thus,
the same amount of key-value pairs can be managed with
fewer SSTable. Also, it is essential to reduce the number
of SSTables through compaction due to the characteristics
of LSM-tree. Therefore, the memory space overhead of per-
SSTable metadata is kept low through periodic compaction.

3) Memory Overhead of Working Area for Compaction
and SSTable Search: Compaction and GET operation re-
quire working area in memory to load SSTables. Since

invalid pages to be reclaimed by Garbage Collection of
SSD are generated only after compaction, we can share
memory space reserved for Garbage Collection of FTL with
compaction of LSM-tree. For GET operation, only part of
SSTable is loaded because bloom filter is examined first then
index block is searched. So, we can limit the working space
for the GET operation to multiple NAND pages.

E. Scattered Logging

Value Log cleaning is required to reclaim invalid areas
that occur in the middle of the log. In WiscKey, value and
key are appended to the Value Log. And WiscKey maintains
a log head pointer and a log tail pointer for the Value Log.
The log head points to the location where the new entry
will be written, and the log tail pointer points to the log
entry where Log cleaning will begin. The detail of Log
Cleaning is described in Section II-B. WiscKey stores key
and Value Log offsets in LSM-tree, and locates Value Log
entry using the offset. Therefore, if the Value Log entry is
moved from the log tail to head during Value Log cleaning,
the Value Log offset already stored in SSTables is needed
to be updated. Due to the nature of LSM-tree, Value Log
offset has to be inserted to LSM-tree again. However, this
approach increases the compaction overhead because new
offsets are added to the MemTable.

Compaction overhead caused by Value Log cleaning is
fundamentally due to the offset change of Value Log entries.
To minimize the offset change of Value Log entries during
Value Log Cleaning, we propose the Scattered Logging by
utilizing the mapping table of FTL already existing in SSD.
A key idea of Scattered Logging is to reuse invalidated
pages, the invalid LPNs, in the Value Log. Since pages in
the Value Log are invalidated by update or deletion of keys,
it is safe to record new Value Log entries. Therefore, the
Scattered Logging allows writing new Value Log entries to
the invalid LPN area and deferring the offset change of valid
log entry during the Value Log cleaning.

To write new Value Log entry promptly in Scattered
Logging, it is necessary to keep track of invalid areas (LPNs)
scattered across the LPN space of the Value Log. Managing
sparsely invalidated LPNs is challenging, mainly because of
the size of the data structures required for tracking LPNs.
Memory optimization is essential because the space cost of
DRAM in SSDs is very high. For example, consider a list
of invalid LPNs for the Value Log in 1 TB SSD with 16 KB
page size. Assuming that each list node has an LPN and a
pointer to the next list node, and each occupies 4 bytes, the
maximum size of the list will be 512 MB. The maximum size
is the case that all LPNs are in the list. However, in Scattered
Logging, we utilize an existing FTL data structure to manage
invalid LPNs without any additional spatial overhead.

The page-level mapping (FTL) already manages LPN-to-
PPN mappings. The PPN field corresponding to invalid LPN
in FTL mapping table can be used as pointers for invalid
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Figure 8. Free LPN List update with Garbage Collection.

LPN list management. This is because the invalidated LPN’s
PPN field is no longer valid. Scattered Logging manages the
scattered invalid space by managing the invalidated LPNs as
a linked list with corresponding PPN fields. Each PPN field
has a next invalid LPN. Therefore, the invalid LPN list can
be managed by only two additional variables in memory,
head and tail pointers.

Figure 7 illustrates the difference between Value Log
cleaning and Scattered Logging. Suppose we want to insert
three log entries, but there is no free space and value log
cleanup is called (Figure 7(a)). A valid Value Log entry
at LPN2 is moved to LPN6 and Log Tail is updated to
LPN4. After that, new log entries can be appended to
log head consecutively. Since LPN2 is moved to LPN6,
corresponding Value Log offsets in LSM-tree are need to
be updated. On the other hand, in the Scattered Logging
(Figure 7(b)), invalid LPNs (which are actually free to be
written) are managed by the invalid LPN list using PPN
fields of the page-level mapping table. Thus, new log entries
can be written at LPN1, LPN3, and LPN6. Since no LPN’s
data needs to be moved, Scattered Logging does not require
updates in LSM-tree for any other than new Value Log
entries.

Figure 8 details how the PPN fields of the mapping table
are used for Scattered Logging while the GC is running.
In the Figure 8, there are two blocks, victim block and new
block. During the GC, valid pages of the victim block are to
be copied to new block. Figure 8(a) shows the invalid LPN

list with head and tail pointers. In the example, during GC,
two physical pages at PPN520, PPN522 are copied to new
block at PPN600 and PPN601. In the mapping table, the
PPN field of the corresponding LPN (LPN20 and LPN22)
is automatically updated. On the other hand, PPN field in the
mapping table at LPN21 and LPN23 become reusable, as
their physical pages corresponding to PPN are to be erased
during the GC. Thus, these fields are managed by partial
head and tail pointers (Figure 8(b)), and they will end up
being merged with the head and tail pointers of the invalid
LPN list (Figure 8(c)).

However, if the size of a single Value Log entry is
larger than the page size and consecutive invalid LPNs are
not found from the invalid LPN list, the valid Value Log
entries have to be copied to make consecutive free space as
conventional Value Log cleaning.

F. iLSM-SSD Operations

PUT, GET and DELETE operations of iLSM-SSD handled
as follows:

1) PUT Operation: First, the user application issues PUT
request using the Key-Value API library. The Key-Value API
library uses the system call to pass PUT request to Key-
Value SSD Device Driver and copy the key and value to the
kernel space. The Key-Value SSD Device Driver packs the
corresponding PUT request into the NVMe PUT command,
inserts the kernel buffer page addresses into the page list, and
sends it to the iLSM-SSD device via PCIe. iLSM-SSD fetches
the PUT command, checks the page list, and copies the value
into the internal memory using DMA. The value is appended
to Value Log then the key, and the corresponding Value
Log offset is pushed to MemTable. If the MemTable is full,
MemTable is switched to Immutable MemTable and then
flushed. In MemTable flushing, bloom filter and index block
are created and packed into NAND page-aligned SSTable.
After that, SSTable is inserted into SSTable log. At this
point, NAND Flash Write is sent to NAND Flash Controller
asynchronously. Then the per-SSTable metadata is updated
and sends a response for the PUT command.

The flushed SSTable may trigger the compaction on level
0. Following that, the rest of level also may trigger another
compaction. Our iLSM-SSD performs all compaction until
there is no level triggering compaction.
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2) GET Operation: When a user application issues GET
request, the corresponding request is passed to the iLSM-
SSD through the Key-Value Device Driver. At this point, the
page list includes kernel buffer pages allocated by the device
driver, so that the value can be copied from the iLSM-SSD
via DMA. When the GET request reaches the iLSM-SSD, it
first examines the MemTable and the Immutable MemTable.
If it finds the corresponding key, it reads the value using
Value Log offset and copies the value to Host. Otherwise,
it starts searching SSTable from the most recent SSTable of
level 0. For each SSTable, first, check the key range from
per-SSTable metadata. If requested key is in the key-range
of SSTable, the bloom filter is loaded and examined. Finally,
the index block is searched when result of bloom filter is
positive. However, because the result of bloom filter can be
false positive, the key may not be found in index block. In
case of false positive, iLSM-SSD continues searching from
next SSTable. Once the key is found the corresponding value
is sent to host. Otherwise, it returns an error to host.

3) DELETE Operation: In case of DELETE operation,
we simply issue PUT request with special value which
indicates the key is deleted. The special value for DELETE
operation is handled as same as PUT Operations in iLSM-
SSD.

G. Data Analytics in iLSM-SSD

Near-data processing is a method of reducing data move-
ment by performing data analytics at the location where the
data is stored. Recent studies introduced near-data process-
ing frameworks to process data in SSDs using internal com-
puting resources such as CPU and memory [17], [18], [21].
These studies assume that near-data processing is performed
on a block-by-block basis. That is, the user or application
must tell the SSD which blocks to perform operations on.
To do this, users and applications must find the data layout
through the file system before performing near-data process-
ing. This process still results in non-negligible file system
interaction overhead and requires data movement between
the host and the device. On the other hand, with iLSM-SSD,
when performing near-data processing, the data layout can
be obtained directly from the SSD, thus eliminating data
movement. To this end, we design a key-value analytics
framework to allow near-data processing in iLSM-SSD. In

order to implement and use near-data processing in iLSM-
SSD, it considers the followings: data analysis kernels to be
served in the SSD, NVMe command definition for executing
the data analytic kernels, and APIs to be used by data
analytics logic.

1) Data Analytics Logic of User: In near-data processing,
data analytics logic has to be provided by the user. For the
user provided analytics logic, we store the binary of user-
defined program as an executable key-value pair in iLSM-
SSD. The executable key-value is stored in the same manner
as any other key-value pairs using a PUT command of iLSM-
SSD.

2) Storage Protocol for Key-Value Analytics: For the
executable key-value, a protocol needs to be defined for the
key-value data analytics. As shown in Figure 9, the EXE-
CUTE and STATUS commands are defined by extending
the NVMe protocols. The EXECUTE command has RUN
ID, key, and parameter list field. The RUN ID is a unique
identifier for each EXECUTE command and is used to find
the status and return value of the command. The parameter
list field holds a list of keys to be used as a parameter
of the executable key-value by reusing the page list field
in the PUT and GET commands. To query the current
status of the EXECUTE command, we use the STATUS
command with corresponding RUN ID. Possible states are
WAITING, RUNNING, and EXITED, indicating when the
EXECUTE command is waiting, running, or ended. When
the EXECUTE command is terminated, it can return an
8 Byte single integer to the host that can be obtained by
the STATUS command. Using the return value, the user can
send back the result of the job as a single integer or a new
key containing the result.

3) API for Key-Value Analytics: The data analytics logic
may need to dynamically load keys that are not in the
parameter key list during execution. For this end, we provide
the same API as the NVMe key-value extension to the
executable key-value. For example, consider a job is flipping
all bits for every key in the parameter key list. The job can
store the result of each key using the PUT command and
create a meta key-value that contains the list of output keys.
Then, the key of the meta key-value can be returned to the
host.

IV. EVALUATION

A. Evaluation Setup

To demonstrate the design of iLSM-SSD, we prototyped
it on the Cosmos+ OpenSSD platform. Table I shows the
details of the hardware we prototyped on. The Cosmos+
OpenSSD equips Xilinx Zynq-7000, which has an ARM
Cortex-A9 processor with two cores, each running at 1GHz,
FPGA and 1GB DDR3 DRAM. The FPGA operates SSD
controller including NAND Flash controllers, NVMe con-
trollers, and PCIe controllers. The page-level FTL and
garbage collection are running at CPU. Though the Cosmos+



Table I
COSMOS+ OPENSSD PLATFORM SPECIFICATION.

SoC
Xilinx Zynz-7000
ARM Cortex-A9 (up to 1000MHz)
HYU Tiger 4 Controller (NVMe Controller in FPGA)

NAND Module
1TB module, NVDDR2
4 Channel, 8 Way
18048B Page (1664B Spare)

Interconnect PCIe Gen2 8-lane
FTL Page-level Mapping, On-demand GC

Table II
HOST MACHINE SPECIFICATION.

CPU Intel Core i3-2100@3.1GHz 2C/4T
RAM 8GB
OS Linux Kernel 4.19.43

OpenSSD has two cores, our iLSM-SSD software implemen-
tation utilizes only single core. The Cosmos+ OpenSSD is
connected to the host machine via PCIe Gen2 8-lane with
NVMe protocol. All experiments are run on the host ma-
chine as shown in Table II. The host machine has two cores
and 4 threads with 8GB of DRAM, and runs Linux Kernel
4.19. For evaluation purposes, we implemented WiscKey
based on RocksDB. We assume strong consistency scenario
for key-value queries, which means that user’s requests get
responses only when changes are durable.

B. Results

For fair evaluation, the WiscKey was implemented in the
RocksDB. And the performance of iLSM-SSD for PUT and
GET operations are compared with the RocksDB perfor-
mance.

1) PUT Performance: To evaluate the PUT performance,
we generated sequential and random PUT workloads using 1
million of unique keys. We measured throughput and average
latency by varying the value size.

Figure 10 shows average throughput and latency com-
parison results for WiscKey and iLSM-SSD. In the se-
quential PUT workload, all keys are sorted. There is no
SSTable where key ranges overlap, even if compaction
occurs. Therefore, compaction overhead is very negligible.
As shown in Figure 10(a), iLSM-SSD shows twice as much
throughput as WiscKey for all value sizes regardless of write
patterns (sequential and random). In the case of WiscKey,
compaction can be handled in the background using the
host’s spare CPU, but iLSM-SSD using single core has to
deal with compaction too. This means that the iLSM-SSD is
a better option than the WiscKey running on the host, even
though iLSM-SSD has much less computing resources than
the host.

We also observe that the throughput of both iLSM-SSD
and WiscKey decreases as the value size increases. This
is because time it takes to copy the key-value into device

increases with value size. WiscKey should also call the
fdatasync function to persist the value log for every PUT
request. Unlike iLSM-SSD, WiscKey has to pay for not
only the cost of data copying, but also the sync overhead
of the file system. However, since the iLSM-SSD does not
go through the file system, it only has the overhead for
transmitting key-values.

Figure10(b) shows the throughput comparison for random
PUT workload. In the case of random PUT workload,
the compaction cost increases because key ranges occur
where SSTables overlap each other. iLSM-SSD showed
similar throughput to sequential PUT for all value sizes.
For WiscKey, compaction must read SSTables and write
to them. Therefore, compaction and value log writes share
I/O bandwidth between the host and the device. On the
other hand, in case of iLSM-SSD, compaction consumes the
internal bandwidth of SSD because compaction is performed
inside of the device.

WiscKey showed lower throughput than sequential PUT
when value size was 4 KB. However, iLSM-SSD showed
similar throughput to sequential PUT for all value sizes.
For WiscKey, compaction must read SSTables and write to
them. Therefore, compaction and value log writes share I/O
bandwidth between the host and the device. However, in case
of iLSM-SSD, compaction consumes internal bandwidth of
SSD because compaction is performed inside of the device.
Therefore, even if compaction occurs, the PUT request uses
all I/O bandwidth between the host and the device.

Figure 10(c)&(d) show average latency in sequential and
random PUT workloads. In the case of WiscKey, compaction
is performed using the background thread pool, and the
foreground thread writes the value log. Thus, since multiple
threads of the host can be used, the latency of WiscKey
is relatively free from compaction overhead. However, SSD
has a limited number of CPU cores. In the case of sequential
PUT, compaction overhead is less than random PUT. Be-
cause iLSM-SSD performs compaction using a single core,
the latency of PUT request includes compaction overhead.
Nonetheless, in both sequential and random workloads,
iLSM-SSD shows half-latency compared to WiscKey.

We also measured average latency of fdatasync in the
WiscKey. fdatasync is called to persist Value Log entries
for every PUT request. As shown in Figure 10(c)&(d),
since WiscKey relies on the file system for persisting data,
the average latency of PUT requests is mainly contributed
by fdatasync. On the other hand, iLSM-SSD shows lower
latency than fdatasync because PUT requests for iLSM-SSD
do not involve the file system.

2) GET Performance: To evaluate the performance of a
GET request, we generated a sequential and random GET
workloads using 1 million unique keys. Figure 11(a)&(c)
show throughput and latency comparisons for sequential
GET workload. For sequential GET workload, WiscKey
shows high throughput since it utilizes the iterator which
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(a) Sequential PUT (b) Random PUT (c) Sequential PUT (d) Random PUT

Figure 10. Performance comparison of iLSM-SSD and WiscKey for PUT workloads.
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Figure 11. Performance comparison of iLSM-SSD and WiscKey for GET workloads.

is designed for the sequential access. Thus, when the next
key is stored at the same SSTable, WiscKey can get the value
by simply moving the iterator forward. Because consecutive
keys do not require reading SSTable, the latency of pread is
higher than GET latency of WiscKey. However, iLSM-SSD
handles GET requests individually even if the access pattern
is sequential. Therefore, the next key has to be searched
through whole LSM-tree even if it is stored at the same
SSTable.

Figure 11(b)&(d) show the performance comparison of
random GET workload. In random GET Workload, the
WiscKey can not utilize the iterator. Thus WiscKey and
iLSM-SSD process each GET request separately even if
GET requests are accessing consecutive keys. WiscKey
shows better throughput than iLSM-SSD, but the throughput
decreases as the value size increases. On the other hand,
iLSM-SSD shows similar throughput for all value sizes. As
shown in Figure 11(d), the latency of the GET request in
the WiscKey is mostly contributed to pread latency. This
is because WiscKey utilizes host’s CPUs, which is more
powerful than the CPU in SSD, for searching SSTables.
The latency of iLSM-SSD shows higher than pread, because
iLSM-SSD has to search SSTables serially since it uses a
single core.

3) File System Layout Overhead: Near-data process-
ing of block-based SSDs (NDP-SSD) must find out the
physical layout of the data in user space and push it to
the SSD. Time overhead can be divided into two time
steps - (i) time to extract the phyaical data layout from
the file system (TFS Extract) and (ii) time to send it to

Table III
AVERAGE TIME (μSEC) OF EACH DELAY TO FIND OUT THE PHYSICAL

LAYOUT OF THE DATA FOR NEAR-DATA PROCESSING.

NDP-SSD iLSM-SSD

Delay TFS Extract TPush SSD TMemTable TSSTable

(μsec) 4.25 522.00 1.14 663.62

SSD (TPush SSD). On the other hand, in iLSM-SSD, the
layout of the data is managed by the LSM-tree. Therefore,
only the LSM-tree search delay is added to the overhead for
extracting the data layout in iLSM-SSD. More specifically, an
LSM-tree search may be hit in the MemTable (TMemTable),
or it must search for the SSTable (TSSTable).

We measured each time delay for NDP-SSD and iLSM-
SSD. Table III shows the average time of each delay.
WiscKey has to pay a time delay overhead of 526.25 μsec.
On the other hand, iLSM-SSD only has to pay 1.14 μsec for
the time delay in case of hit on the MemTable, or 664.76
μsec about 26% higher delay than NDP-SSD. However, the
temporal locality of workloads and an appropriate amount
of MemTables can reduce the miss rate in the MemTable.

V. RELATED WORK

Key-Value Store for SSD: Various approaches have been
proposed for building the key-value stores for SSD in
host-side without the file system intervention [22]–[26].
NVMKV [22] proposed a hash-based key-value store to
eradicate the write amplification by exploiting advance
features of FTL such as sparse mapping. NVMKV uses



the hash value of the key as an LBA and only maps
the LBA range to NAND flash where key-value is stored.
SkimpyStash [25] also proposed a hash-based approach
to minimize DRAM footprint. SkimpyStash manages hash
buckets using linear chaining while storing the head of the
chain in DRAM and the rest of chain in SSD. SkimpyStash
reduced latency for querying non-existing key by employing
the per-bucket bloom filter. SILT [23] also employed the
hash-based approach, but it also combines Log and Sorted
Table. LOCS [26] implements an LSM-tree on open-channel
SSD which exposes the internal geometry of SSD to the
host. LOCS optimized compaction by locating SSTable
considering NAND flash channel conflict. These approaches
are optimized for memory footprint and do not have file
system overhead because they are directly built on SSD.
However, management of data stored in SSD such as linear
probing in the hash table, data movement between layers
or compaction still incur data movement between host and
device. In iLSM-SSD, all management of LSM-tree such as
compaction, GC and log cleaning is performed inside of
SSD.

Implementing Key-Value Store in SSD: Several recent
researches proposed the key-value store implementations
inside of the SSD [27]–[30]. KAML [27] introduced hash-
based key-value SSD to optimize the key-value performance.
However, due to the hash table, it is difficult to perform
operations requiring key order such as sequential scanning
over keys. Also for the hash table, the load factor is crucial
for the performance due to the hash collision. KVSSD [28]
proposed the LSM-tree approach for Key-Value SSD and
evaluated with the simulator. To mitigate write amplification
problem caused by compaction, the remapping compaction
is proposed that the resulting SSTable from compaction has
a pointer to old SSTable to prevent rewriting same Key-
Values. However, remapping compaction still leave inval-
idated key-value pairs. Thus, it will require to rewrite all
SSTables which have been remapped before at some point
later. LightStore [29] proposed the Key-Value SSD cluster.
LightStore proposed LSM-tree based Key-Value SSD which
is directly attached to the network and operates as a single
server. On the other hand, iLSM-SSD attached as a local
device to a host system. Kim et al. introduced the compound
operation to hash-based Key-Value SSD to optimize key-
value I/O performance [30].

Near-Data Processing Framework: SmartSSD [18], [19]
enables users to launch customized tasks using CPU in-
side of SSD. Tasks running inside of SSD can be like
map functions in Map-Reduce framework [18] or database
query [19]. Biscuit [17] introduced near-data processing
framework considering practical aspects. Biscuit defines the
protocols for near-data processing and eases the development
by supporting the full-featured standard library and modern
C++ standards. BlueDBM [31] introduced flash array with
near-data storage capability. In BlueDBM, storage nodes

connected by dedicated storage network each other it can
fully utilize the computing power of all nodes in the clus-
ter. Summarizer [21] proposed the dynamic load balancing
scheme for the near-data processing by implanting resource
monitor in SSD. These studies propose and optimize the
near-data processing frameworks on various dimensions
such as load balancing between host and device, resource
utilization in a storage array, and programmability. However,
all these frameworks need to acquire the data layout on
NAND flash via the file system [17], [31] or dedicated
protocol [18], [19], [21]. In addition, when the key-value
store is implemented inside of SSD like iLSM-SSD, near-
data processing requests only need to inform which key to
process to the device because the device already manages
the data layout.

VI. CONCLUSION

The LSM-tree based key-value store operates on file
systems and involves file system overhead. In particular,
WiscKey, which is an approach to implement key-value sep-
aration, minimizes the write amplification problem caused
by compaction of LSM-tree by writing value into Value Log
and managing only key and value offset by LSM-tree. But
WiscKey still could not completely hide the file system over-
head. In this paper, we design and prototype an iLSM-SSD
that runs WiscKey, an LSM-tree with key-value separation,
in the SSD firmware. In particular, we propose scattered
logging techniques to minimize the overhead of WiscKey’s
Value Log cleaning in a memory-constrained SSD envi-
ronment. For fair evaluation, we implemented WiscKey in
RocksDB and compare iLSM-SSD and the WiscKey. From
extensive evaluations with synthetic benchmark workloads,
we observed PUT performance was 1.6-4 times higher than
WiscKey, but GET performance can be significantly lower.
This low GET performance of iLSM-SSD can be improved
if user-level caching or kernel-level caching is implemented.
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