
pNOVA: Optimizing Shared File I/O Operations of
NVM File System on Manycore Servers

June-Hyung Kim, Jangwoong Kim∗ Hyeongu Kang, Chang-Gyu Lee
Sungyong Park, Youngjae Kim

Department of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea
{junehyung,ski6812,hyeongu,changgyu,parksy,youkim}@sogang.ac.kr

ABSTRACT
NOVA is a state-of-the-art non-volatile memory file system
that logs on a per-file basis to ensure consistency. However,
NOVA does not show scalability when multiple threads per-
form I/Os to a single shared file on Manycore servers. We
identified two problems: First, when multiple threads write
to a single file restricts parallel writes because of a coarse-
grained lock on files in the file system layer. Second, when
multiple threads read to a single file, every reader lock ac-
quisition invalidates cachelines of waiting threads and block
holders. In order to solve the aforementioned problems, we
propose pNOVA, a variant of NOVA that accelerates parallel
writes and reads to the same file of multiple threads. First,
pNOVA employs a fine-grained range lock, for which we take
two implementations, an interval tree based range locking
and an atomic operation-based range locking, rather than
a coarse-grained lock on files. Second, by defining a range
locking variable per each file range, we alleviate the cache-
line invalidation problem of a single read counter. Lastly, we
address the potential consistency damage incurred by paral-
lel writes to the shared file, and provide consistency using a
commit mark based logging method. We evaluated pNOVA
on a Manycore server with 120 cores. For microbenchmark,
pNOVA showed up to 3.5× higher I/O throughput than NOVA
for concurrent shared file write workload. In the Filebench-
OLTP benchmark, pNOVA showed up to 1.66× higher trans-
action processing rate than NOVA.

CCS CONCEPTS
• Software and its engineering→ File systemsmanage-
ment;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343748

KEYWORDS
Non-Volatile Memory, File System, Operating System
1 INTRODUCTION
There have been several file system studies that use Non-
Volatile Memories (NVM) such as phase change memory [7],
resistive memory [3] and Intel and Micron’s 3D-Xpoint [4]
as a storage device [1, 2, 6, 9–12]. These NVM-based file sys-
tems provide higher throughput as well as lower read-write
latencies than block device-based file systems. Among the
most recent NVM-based file systems, NOVA [11] is one of
the most advanced persistent NVM file systems, ensuring
consistency of data and metadata in the event of a sudden
power outage. To ensure this consistency, NOVA [11] imple-
ments a per-inode logging which logs meta-data for every
write operation to each file. This per-inode logging provides
not only high concurrency for handling transactions but also
recovery process after crash, since the log of each file can
be scanned simultaneously. In addition, NOVA has per-core
data structures including NVM page allocator, inode table
and journaling space. The concurrent nature of NOVA along
with high performance NVM-based storage is expected to
boost the performance of parallel I/O.
However, we identify that NOVA does not provide any

degree of scalability in terms of I/O throughputs when con-
current I/Os are performed on a shared file on Manycore
servers. This is mainly because of a coarse-grained lock per
file in file systems [5], which negates any benefit of concur-
rent nature of NOVA and high performance NVM storage.
Specifically, in NOVA, when a thread writes to a file, all
threads attempting to write to the same file must wait until
the previous thread finishes its operation. We also address
that the single read counter variable of the read-write lock
implementation degrades the performance of parallel read
operations. In NOVA, the read thread begins by incrementing
the reader lock variable. Since the lock is a shared variable,
the increment becomes a serialization point and also invali-
dates the cachelines of other read threads and lock holders.
To solve this coarse-grained lock problem, we suggest

a range-based reader-writer synchronization mechanism,
∗He is currently affiliated with TmaxSoft.
Corresponding authors: Sungyong Park and Youngjae Kim

https://doi.org/10.1145/3343737.3343748

APSys ’19, August 19–20, 2019, Hangzhou, China J.-H. Kim et al.

which selectively blocks I/O operations only with overlapped
ranges with lock holders, and implements it in the NOVA file
system, which is called parallel NOVA (pNOVA). In pNOVA
with the range-based synchronization, there can be multiple
writers at a given time, thus achieving write concurrency. In
terms of read, we alleviate the cacheline invalidation over-
head due to a single read counter by deployingmultiple range
locks. To effectively find overlapped ranges, we attempted
to apply for an interval tree based range lock in NOVA. The
interval tree is a well known data structure for detecting
overlapped ranges. However, the range checking operation
in the interval tree begins by holding the mutex lock of the
tree and then performs tree insertion and traversal. We find
that the coarse-grained lock of the interval tree becomes
bottleneck in range checking process on Manycore servers.
Next, we suggest an atomic operation-based range lock that
performs better than an interval tree-based range lock. The
atomic operation-based range lock uses hardware-supported
atomic operations that ensure memory ordering.

When NOVA adopts the aforementioned range-based syn-
chronization and multiple writers perform writes in parallel,
the file system consistency might be broken. This is con-
tributed by NOVA’s log-structured logging for consistency:
multiple writers have to write on the log simultaneously,
competing for a single log pointer, which can damage consis-
tency. We guarantee the file system consistency by adopting
commit mark. At the end of each write operation, pNOVA
commits the log entry by putting commit mark on the entry
along with memory fence and cacheline flush instructions.
Then in recovery phase, only entries with commit mark be-
come recovery candidates. This commit mark-based logging
safely completes the transaction with simultaneous multiple
writers and makes the file system consistent after power
failure.

For evaluations, wemeasure the performance of pNOVA us-
ing a mix of micro and realistic benchmarks, FxMark [5] and
Filebench-OLTP [8] respectively. The experimental results
show that pNOVA provide 3.5× and 1.66× higher throughputs
for micro and macro benchmark respectively.

2 BACKGROUND AND MOTIVATION
NOVA is a hybrid memory file system which uses both per-
sistent memory and DRAM. The consistency is guaranteed
by using per-inode logging in persistent memory. The log
records every modification of that file or directory. For user
data, NOVA uses copy-on-write. Specifically, it first writes
the new user data page(s) and records the log which is led to
point the start page of user data later. Finally, the tail pointer
is updated to the new log. Logs are contained in a 4KB log
page in persistent memory. Both of log pages and user data
pages are allocated by a per-cpu memory page allocator.

Figure 1: Write operation of NOVA [11]

The NOVA File System: Figure 1 illustrates the write
operation of NOVA. For a write operation, NOVA first al-
locates data page(s) required to handle the write operation.
Since the page is 4KB, enough number of pages need to be
allocated to accommodate the range of the write operation.
Then, the data in the previous pages that do not belong to the
range of the write are copied to the new pages, followed by
user data copy from the user buffer to the new pages (step 1).
After the data pages are completely written, corresponding
log entry is written which contains the information about
the operation. The position where the log entry is written
is decided by the tail pointer. The log is written right after
the tail (step 2). However, if the tail points the last log entry
in the log page, a new log page is allocated where the log
entry is inserted in the head of the page. The tail is updated
to the new log entry (step 3). Then, the index tree in DRAM
is updated such that the new index node points to the new
log entry (step 4), which finalizes the atomic write.

At the sudden power failure, NOVA can recover the file to
a consistent status by scanning the inode’s log. Beginning at
the head pointer of the inode, all of log entries are scanned
until it encounters the last log entry which the tail points
to. This scanning process reconstructs the file index tree
correctly. The write operation is atomic in a sense that the
operation is executed completely or not executed at all at the
occurrence of a power failure. If a crash occurs after the user
data is written but before writing the log entry, the operation
is not visible because no log entry points to the user data. In
case of system crash after writing the log entry but before
the tail update, the operation is also not visible, since the log
is located after the tail, which makes the log excluded in the
scanning process. The last case is when a crash occurs after
the tail update but before the index tree update. Since the log
entry is pointed by the tail, the scanning process includes
that log entry, followed by index tree update to that log entry.
Therefore, the user can access the newest data from the index
tree, which means the write is performed completely.

Shared File I/Operformance ofNOVA:AlthoughNOVA
is a well-optimized file system for NVM with scalable data

Optimizing Shared File I/O Operations of NVM File System APSys ’19, August 19–20, 2019, Hangzhou, China

structures and strong consistency guarantee, its per-file coarse-
grained locks degrade the I/O performance in a shared file in
Manycore server environments. We describe how the coarse-
grained locks damage the performance of write and read
operation in a single shared file on Manycore servers

In the write operation in a single shared file with multiple
write threads, only one of I/O threads acquires the write
lock of the file by calling down_write. The write operation
is performed with the write lock being held, during which
other write threads are blocked waiting for the lock to be
released. Then, when the lock is released by the lock holder,
one of the waiting write threads succeeds in acquiring the
lock and performs the write. The coarse-grained write lock
only allows a single writer to perform write, which prevents
any concurrency among writers.

For the read operation, read threads also begin by holding
the read lock using down_read function. Unlike the write
lock, the read lock can be held by multiple readers, which
means multiple read operations can be performed in parallel.
However, the single read lock variable can be the perfor-
mance bottleneck in Manycore environments. When a read
thread acquires the read lock by calling down_read, the read
lock variable is incremented by one. This increment invali-
dates the cachelines that correspond to the read lock variable
of other waiting threads and also lock holders. In Manycore
servers over a hundred of cores, the overhead of this cache-
line invalidation can be critical.

3 DESIGN AND IMPLEMENTATION
3.1 Interval Tree Based Range Locking
Interval Tree: Interval tree is a well-known data structure
designed to find all intervals overlapping with any given
interval, which is also shipped in Linux kernel. Figure 2
illustrates interval tree. Each interval is represented as a node
in a tree. A node consists of start and end of the interval.
We can use any kind of ordered tree structures including
binary search tree or red-black tree. A node is inserted with
its start value as a key for sorting. While being inserted, it
executes in-order traversal to find all overlapping intervals.
We can skip this brute-force traversal by adding an extra
value representing the maximum end value of all intervals
in its child nodes, and this value will be denoted by max in
this paper.

Withmax value in each tree node, when traversing the tree
to find overlapping intervals, we can skip when satisfying
one of the following conditions:

• all nodes to the right of nodes whose start value is
bigger than the end value of the given interval

• all nodes that have their max values smaller than the
start value of the given interval

Figure 2: Interval tree

By the characteristic of an interval tree above, the time com-
plexity of finding an overlapping interval can be O(1) with n
as the number of intervals in the best case.

Interval Tree Based Range Locking: Range locking is a syn-
chronization mechanism which locks only a part of an object.
There exists a range lock implementation based on an in-
terval tree in the form of Linux kernel patch. In the range
locking mechanism, each range lock is represented as an in-
terval tree node. And there is a single mutex lock to protect
the interval tree.

For example, in the Figure 2, there are two range lock hold-
ers (with num_blockings zero) and two range lock waiters
(with non-zero num_blockings), and a range lock (E) with
range [22, 2] is trying to acquire the range lock. To acquire
the range lock, E locks the tree by holding mutex and finds
all overlapping intervals by traversing the tree. The traversal
can be shortened by skipping some eligible nodes.

Then, E stores the number of overlapping nodes to
num_blockings. If num_blockings is zero, since it means there
is no overlapping lock holder, E adds itself to the node, re-
leases the mutex and acquires the range lock. Otherwise, E
cannot acquire the range lock since there are overlapping
lock holder(s). Therefore, E adds itself to the node, releases
the mutex and blocks. Later, E is woken up when there is no
overlapping lock holder.
To allow parallel I/Os on a single file, we can simply try

applying the range locking to a file system. We used the
interval tree based range lock primitive for our pNOVA im-
plementation. An interval tree is defined for each file and it
resides in DRAM, since the locking status does not need to be
stored persistently. At the beginning of the file system’s I/O
function, pNOVA generates an interval tree node using start
and end page numbers of the write request as its start and
end value of the node. Then, pNOVA traverses the tree to find
intervals that overlap with the given interval. During the
traversal, pNOVA stores the number of overlapping intervals
(which will be denoted by num_blockings) to its node. After
the traversal, pNOVA inserts the node to the tree by using
the start value as the key of sort.

However, we need to be aware that lock and unlock oper-
ations for a range lock are done while holding a mutex of a
interval tree. The coarse-grained mutex of an interval tree
can seriously damage the parallelism in Manycore server

APSys ’19, August 19–20, 2019, Hangzhou, China J.-H. Kim et al.

Algorithm 1 Atomic Operation-based Range Write Lock
1: void nova_atomic_write_lock (inode, start, end) {
2: atomic_t *rwlock = inode.rwlock;
3: unsigned int wlock = 1 << 31;

/* 100000....0, when write lock is held */

4: for (cur=start ; cur <= end ; cur++)
5: while true :
6: smp_mb_before_atomic() // barrier
7: old=atomic_cmpxchg(&bitmap[cur], 0, wlock);
8: smp_mb_after_atomic() // barrier
9: if old_rwlock == 0:
10: break // write lock succeeds only when 000000....0

// namely, there is neither writer nor reader
11: return;

environments, since the mutex lock serializes all incoming
I/O requests. In particular, in NVM file systems with fast
storage devices, the overhead can be more critical.

3.2 Range Locking using Atomic Operation
We propose a hardware atomic operation-based range lock-
ing that is more efficient than the interval tree-based range
lock. Specifically, we define segment, a contiguous set of
pages of a file. The segment size is a multiple of the page size.
For each segment of a file, a 32-bit variable is defined which
is used for a reader-writer lock for the segment. The left-
most bit is for a writer lock. If the segment is being written,
the bit is one and else the bit is zero. The remaining 31 bit
work as a reader counter, the value of which is the number
of active readers for the segment.

Algorithm 1 and 2 describe the implementation of writer
and reader lock functions. To atomically acquire the writer
and reader lock, we used atomic operations supported by
the hardware. In Algorithm 1, the writer tries to acquire a
writer lock from start to end segments. The variable wlock
is the binary representation of a reader-writer lock variable
when the writer lock is held.

For each segment in [start, end], pNOVA tries to acquire
the writer lock by calling atomic_cmpxchg function, which
is a hardware atomic operation. The function changes the
value of the reader-writer lock of the segment to wlock only
when the value of lock is 0, and returns the old value of the
lock. If the old value of the lock is 0, which means there is
no writer or reader, the value of the lock is changed to wlock,
and the writer lock succeeds. Otherwise, if the old value of
the lock is non-zero, the value of the lock is unaffected, and
the writer lock fails. Then, the writer threads tries to acquire
the writer lock again.

We also use atomic operations for the reader lock. A read
thread trie to hold a reader lock by increasing the reader
counter by calling atomic_add_unless function which is also
a hardware atomic operation. The function increments the
value of the reader counter by 1 only when the value of the
counter is not wlock, which means that the reader lock fails
only when the writer lock is held, and succeeds otherwise.

Algorithm 2 Atomic Operation-based Range Read Lock
1: void nova_atomic_read_lock (inode, start, end) {
2: atomic_t *rwlock = inode.rwlock;
3: unsigned int wlock = 1 << 31;

/* 100000....0 */

4: for (cur=start ; cur <= end ; cur++)
5: while true :
6: smp_mb_before_atomic() // barrier
7: old=atomic_add_unless(&bitmap[cur], 1, wlock);
8: smp_mb_after_atomic() // barrier
9: if old_rwlock != 0:
10: break // read lock always succeeds but when

// 100000....0. namely, when there is a writer
11: return;

Figure 3:Anexample of inconsistent file system status after
a power failure and a description of the Commit Mark data
structure. T 1, T 2, and T 3 threads represent the order of time
intervals, and C represents commit mark.

This also implies that there can be multiple readers for the
segment, since writer lock always succeeds unless the left-
most bit is 1.
To unlock the writer and reader lock, it does not need to

repeatedly try atomic operations. For writer unlock, we sim-
ply clear the left-most bit using clear_bit atomic operation.
Note that since any writer or reader lock acquisitions cannot
succeed until the writer lock holder releases the lock, it is
always safe to clear the left-most bit. In reader unlock, we
just decrease the reader counter by 1 using atomic_dec.
For the correctness of the range locking, we call

smp_mb_before_atomic and smp_mb_after_atomic before
and after of each atomic operation. They are memory barri-
ers that prevent memory ordering for the atomic operation.
The atomic operation-based range locking has less overhead
than the interval tree-based range lock because it is not a
coarse-grained locking, which was the major problem of the
range lock based on an interval tree.

Analysis of Memory Space Overhead: Each segment
requires a 32-bit variable. That is, the size of the segment
and the maximum size of the file determine the additional
memory space required for atomic operation-based range
locks. For example, when the maximum file size is 1GB and
the segment size is 4KB, 218 segments are required and 1MB
of memory space is required for lock variables.

3.3 Guaranteeing Consistency
The NOVA write operation updates the tail after appending
the log entry to validate the corresponding log entry. Tail

Optimizing Shared File I/O Operations of NVM File System APSys ’19, August 19–20, 2019, Hangzhou, China

Algorithm 3 Commiting Log Entry
1: new_tail = append_to_log(tail, entry)
2: clwb(tail) /* writes back the log entry cachelines */
3: sfence() // orders the subsequent store
4: entry− >committed = TRUE // commit the entry

update, however, might lead the file system to an inconsis-
tent state when multiple threads perform shared file writes
concurrently. Figure 3 illustrates an example of potential
inconsisteny problem. Suppose in time interval T1, three
threads (t1, t2, t3) are trying to perform write to a shared
file. At this time, each thread is given one log entry. Figure 3
shows each thread is given one log entry. In T 2, suppose the
second thread (t2) writes data pages and writes the log entry,
before the first thread (t1) and third thread (t3) write their
log entries. Then, inT 3 the tail is updated to point to the log
entry of the second thread. Suppose a sudden power failure
occurs. After the system is restarted, the file is recovered by
scanning log entries until it encounters the last entry which
the tail points to. Then, recovery will include the invalid log
entry such as that of t1 in this example. This leads to an
inconsistent file system status.
To solve this problem, pNOVA adopts commit mark to

validate the log entry. Algorithm 3 describes the consistency
guarantee using commit mark. After a log entry is appened,
pNOVA adds a commit mark to the entry. Memory fence and
cache line flush operations are also used to guarantee the
memory order of the commit mark and log entry update. This
is the same method used to update tail in the original NOVA.
Therefore, commit mark allows to guarantee consistency
with the same overhead as NOVA.

4 PERFORMANCE EVALUATION
Experimental Setup:We measure the parallel I/O perfor-
mance of pNOVA and NOVA on a Manycore server with 120
cores. The detail specification of our testbed is described in
Table 1. Three versions of NOVA were compared: baseline
NOVA, pNOVA that uses an interval-tree based range lock
(pNOVA-interval), and pNOVA that uses an atomic opera-
tion based range lock (pNOVA-atomic). The segment size
is 4KB, which is the page size. We used a mix of synthetic
and realistic benchmaraks (FxMark [5] and Filebench-OLTP).
In particular, FxMark [5] is a file system scalability micro-
benchmark. FxMark includes several patterns of workloads.
Of these, we specifically use DWOM and DRBM workloads.
The DWOM workload performs multi-threaded shared file
writes and the DRBM workload performs multi-threaded
shared file reads. In each workload, each thread continu-
ously issues a write/read request to a mutually exclusive
area of a file between threads.

Microbenchmark Results: Figure 4 and Figure 5 show
the I/O throughput comparisons of NOVA and pNOVA for
DWOM and DRBMworkloads of FxMark. In DWOM, among

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1

 3
0

 6
0

 9
0

 1
2

0

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Cores

NOVA
pNOVA-interval
pNOVA-atomic

Figure 4: DWOM workload results in FxMark

the three, pNOVA-atmoic shows the highest throughput.
However, its performance scalability is only guaranteed to a
certain number of cores. Both pNOVA-interval and pNOVA-
atomic scale up to 7 threads because the threads can per-
formwrites with non-overlapping ranges in parallel. pNOVA-
atomic shows 3.5X improvement compared to NOVAwith 15
cores, which has higher improvement than pNOVA-interval.
This is due to its light way implementation of acquiring the
lock which is simply setting the corresponding bit in pNOVA-
atomic. However, NOVA does not provide any scalability due
to its coarse-grained lock.

In DRBM, NOVA provides some degree of scalability up to
15 cores. This is contributed by the use of inode_lock_shared,
the reader lock of NOVA. Multiple readers can increment
the reader counter while allowing read operations in parallel.
However, since each lock acquisition modifies the value of a
reader lock variable, this invalidates the cachelines for the
lock varaible of the waiting readers and even lock holders.
This cacheline invalidation overhead becomes more critical
after 15 cores, which is the NUMA boundary of the testbed
machine. Therefore, NOVA fails to scale after 15 cores.
pNOVA-interval does not provide any scalability. For ev-

ery reader lock acquisition, the reader first holds the coarse-
grained interval tree lock, inserts itself to the tree, traverses
the tree to find overlapping nodes, and then releases the
lock. The coarse-grained lock of the interval tree completely
serializes the reader lock acquisition process and negates
any benefit of multiple threads.
However, pNOVA-atomic shows great scalability up to

120 cores. Since the reader-writer lock varaible is defined for
each segment of the file, the reader lock acquisition does not
invalidate the cachline. Therefore, there does not exist any
serialization point in acquiring the reader lock. In addition, in
the DRBM workload, since each thread reads the same data

Table 1: Specification of the Server Machine

Intel(R) Xeon(R) CPU E7-8870 v2 2.30GHz
CPU CPU Node (#): 8

Cores per Node (#): 15
Memory DDR3, 96 * 8 GB (=968GB)
NVM 32 GB (Emulated over DRAM)

APSys ’19, August 19–20, 2019, Hangzhou, China J.-H. Kim et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1

 3
0

 6
0

 9
0

 1
2

0

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Cores

NOVA
pNOVA-interval
pNOVA-atomic

Figure 5: DRBM workload results in FxMark

repeatedly, cache misses for the data can barely occurs. This
leads to greatly high throughput nearly up to 1,400 GB/s.

MacrobenchmarkResults:Weuse Filebench-OLTP data-
base benchmark. Table 2 summarizes the detail of the bench-
mark. We preliminarily ran benchmark with 64 threads and
gathered all write I/O, and calculate parallelizable write ra-
tio. We grouped every write request such that each group
includes 8 sequential writes. Then, we say a group is paral-
lelizable if all 8 writes have exclusive ranges, AND all 8 writes
are issued by different threads. In Filebench-OLTP, threads
issue 4 KB writes at a random offset. Then, it periodically
issues 16 KB bulk writes to the database file, followed by
fsync. The fsync system call of NOVA is, however, a NULL
function, because NOVA ensures that once a write operation
is performed, it is persistently stored on the storage medium
immediately. Therefore, the overhead of fsync is not counted.
Figure 6 shows the performance comparisons of NOVA

and pNOVA for Filebench-OLTP. Unlike DWOM, NOVA also
shows scalability up to 60 cores. In DWOM, threads only
request write system calls to a single file, and a single file
write takes an absolutely large portion of the program’s
execution time. However, since Filebench-OLTP is designed
to mimic database systems, I/O is not as frequent as DWOM.
Therefore, single file writes do not take an absolutely large
portion of the execution time of the program, making NOVA
also show some degree of scalability.

Table 2: Specification of Benchmarks

filebench-OLTP
size of DB file 100 MB
of DB files 1

size of buffer pool N/A
of I/O threads 8
write I/O size 4 KB

parallelizable write ratio 69.04%

Table 3: CPU Utilization in Filebench-OLTP

range check spinlock logging etc
NOVA 98.42% 0% 0.2% 1.38%

pNOVA-interval 93.94% 3.88% 0.58% 1.6%
pNOVA-atomic 1.83% 95.06% 1.33% 1.78%

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1

 3
0

 6
0

 9
0

 1
2

0

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c
o

n
d

Number of Cores

NOVA
pNOVA-interval
pNOVA-atomic

Figure 6: Scalability evaluation for Filebench-OLTP

Both pNOVA-interval and pNOVA-atomic provide im-
provements compared to the original NOVA. In 64 cores,
pNOVA-atomic provides 1.6X improvement, which is slightly
higher than pNOVA-interval. As shown in Table 2, paralleliz-
able write ratio of filebench-OLTP is 69.04%, so concurrent
writes of pNOVA contributes to the improvement of perfor-
mance.
Table 3 shows the CPU usage by functions in Filebench-

OLTPwith 64 threads. The ratio of each function is calculated
by taking the CPU usage of NOVA’s write function as 100%.
Spinlock is used for pNOVA to protect ciritical sections in
the write function, including atime update and log pointer
increment. Original NOVA does not need spinlock because
only one thread writes to a file. For every case, range check
and spinlock accounted for more than 95% of CPU usage.
Original NOVA spends more than 98% CPU time in coarse-
grained file lock. Interval tree lock spends about 94% of CPU
time to check the overlapping ranges. This accouts for large
portion because of the contetion to the interval tree. Atomic
lock spends less than 2% of CPU time to hold range lock
due to its simple way of range checking. However, spinlocks
account for about 95% of CPU time to protect critical sections.
CPU time spent by logging and others, which are the actual
parts of thewrite process, is 1.58%, 2.18% and 3.11% for NOVA,
pNOVA-interval and atomic respectively.

5 CONCLUSION
We have addressed that coarse-grained lock incurs perfor-
mance bottleneck in shared I/O of NOVA file system. There-
fore, we have proposed pNOVA, a variant of NOVA file sys-
tem with range reader-writer locking method that locks
only a part of the file, thus allowing parallel I/O in a sin-
gle shared file. To implement pNOVA, we used two range
checking mechanisms. We have adopted interval tree, a well-
known data structure for checking overalpping ranges. We
also have proposed a new range checking machanism built
with hardware atomic operations, which is more paralleliz-
able than interval tree. Experimental results including mi-
cro and macro benchmarks have shown that pNOVA using
atomic operations outperforms the original NOVA, while
guaranteeing file system consistency.

Optimizing Shared File I/O Operations of NVM File System APSys ’19, August 19–20, 2019, Hangzhou, China

ACKNOWLEDGMENTS
This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Ko-
rea government(MSIT) (No. 2014-0-00035, Research on High Per-
formance and Scalable Manycore Operating System) and Basic
Science Research Program through the National Research Foun-
dation of Korea(NRF) funded by the Ministry of Education(NRF-
2017R1D1A1B03032763).

REFERENCES
[1] Jeremy Condit, Edmund B. Nightingale, Christo-

pher Frost, Engin Ipek, Benjamin Lee, Doug Burger,
and Derrick Coetzee. 2009. Better I/O Through
Byte-addressable, Persistent Memory. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Oper-
ating Systems Principles (SOSP). 133–146.

[2] Subramanya R. Dulloor, Sanjay Kumar, Anil Ke-
shavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh
Sankaran, and Jeff Jackson. 2014. System Software
for Persistent Memory. In Proceedings of the 9th Eu-
ropean Conference on Computer Systems (EuroSys).
15:1–15:15.

[3] Richard Fackenthal, Makoto Kitagawa, Wataru
Otsuka, Kirk Prall, Duane Mills, Keiichi Tsutsui,
Jahanshir Javanifard, Kerry Tedrow, Tomohito
Tsushima, Yoshiyuki Shibahara, et al. 2014. 19.7 A
16Gb ReRAM with 200MB/s write and 1GB/s read
in 27nm technology. In Proceedings of the 2014 IEEE
International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). 338–339.

[4] Intel. 2017. Revolutionizing Memory and Storage.
https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html.

[5] Changwoo Min, Sanidhya Kashyap, Steffen Maass,
and Taesoo Kim. 2016. Understanding Manycore
Scalability of File Systems. In Proceedings of the
2016 USENIX Conference on Usenix Annual Techni-
cal Conference (ATC). 71–85.

[6] Jiaxin Ou, Jiwu Shu, and Youyou Lu. 2016. A High
Performance File System for Non-volatile Main
Memory. In Proceedings of the 11th European Con-
ference on Computer Systems (EuroSys). 12:1–12:16.

[7] Simone Raoux, Geoffrey W Burr, Matthew J Bre-
itwisch, Charles T Rettner, Y-C Chen, Robert M
Shelby, Martin Salinga, Daniel Krebs, S-H Chen, H-
L Lung, et al. 2008. Phase-change random access
memory: A scalable technology. IBM Journal of
Research and Development 52, 4.5 (2008), 465–479.

[8] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
2016. Filebench: A Flexible Framework for File Sys-
tem Benchmarking. ;login: The USENIX Magazine
41, 1 (March 2016), 6–12.

[9] Haris Volos, Sanketh Nalli, Sankarlingam Panneer-
selvam, Venkatanathan Varadarajan, Prashant Sax-
ena, and Michael M. Swift. 2014. Aerie: Flexible
File-system Interfaces to Storage-class Memory.
In Proceedings of the 9th European Conference on
Computer Systems (EuroSys). 14:1–14:14.

[10] Xiaojian Wu and A. L. Narasimha Reddy. 2011.
SCMFS: A File System for Storage Class Memory.
In Proceedings of the 2011 International Conference
for High Performance Computing, Networking, Stor-
age and Analysis (SC). 39:1–39:11.

[11] Jian Xu and Steven Swanson. 2016. NOVA: A Log-
structured File System for Hybrid Volatile/Non-
volatile Main Memories. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST). 323–338.

[12] Shengan Zheng, Linpeng Huang, Hao Liu, Linzhu
Wu, and Jin Zha. 2016. HMVFS: A Hybrid Memory
Versioning File System. In 2016 32nd Symposium
on Mass Storage Systems and Technologies (MSST).
1–14.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design and Implementation
	3.1 Interval Tree Based Range Locking
	3.2 Range Locking using Atomic Operation
	3.3 Guaranteeing Consistency

	4 Performance Evaluation
	5 Conclusion
	References

