
Gas Consumption-aware Dynamic Load Balancing in 
Ethereum Sharding Environments

Sanghyeok Kim, Jeho Song, Sangyeon Woo, Youngjae Kim and Sungyong Park  
Department of Computer Science and Engineering 

Sogang University, Seoul Korea 
{sangh228, oidwin, tkddus121, youkim, parksy}@sogang.ac.kr 

 
Abstract—Advances in blockchain technology have made a 

significant impact on a wide range of research areas due to the 
features such as transparency, decentralization and traceability. 
With the explosive growth of blockchain transactions, there has 
been a growing interest in improving the scalability of blockchain 
network. Sharding is one of the methods to solve this scalability 
problem by partitioning the network into several shards so that 
each shard can process the transactions in parallel. Ethereum 
places each transaction statically on a shard based on its account 
address without considering the complexity of the transaction or 
the load generated by the transaction. This causes the transaction 
load on each shard to be uneven, which makes the transaction 
throughput of the network decrease. In this paper, we propose a 
dynamic load balancing mechanism among Ethereum shards 
called D-GAS. The D-GAS dynamically balances the transaction 
load of each shard by relocating the accounts based on the gas 
consumption to maximize the transaction throughput. Ethereum 
gas is a unit that represents the amount of computational effort 
needed to execute operations in a transaction. Benchmarking 
results show that the D-GAS outperforms existing techniques by 
up to 12% in transaction throughput and decreases the makespan 
of transaction latency by about 74% under various conditions.  

Keywords— blockchain; ethereum; sharding; scalability; load 
balancing;  

I. INTRODUCTION  
Blockchain is a peer-to-peer (P2P) based distributed ledger 

technology that ensures integrity and reliability without an 
authorized third party's involvement. Although the blockchain 
was originally developed as part of Bitcoin [1], it has recently 
been drawing much attention as an innovative technology that 
can support a variety of fields such as health-care [2], internet of 
things (IOT) [3] or medical data management [4]. However, 
despite the worldwide interest in the blockchain, applying this 
technology to various areas is sometimes limited due to the 
scalability problem [5]. When the number of transactions 
increases, the transaction per second (TPS) of the blockchain 
decreases severely because the time for sharing a block or 
reaching a consensus is delayed. For example, when one of the 
most well-known Ethereum-based games called CryptoKitties 
[6] was released, the amount of pending transactions was 
sharply increased [7] and finally broke down the Ethereum 
network. While simply increasing the block size or shortening 
the interval to create a block can improve the transaction 
throughput, it may also weaken the network security as the 
newly created blocks cannot possibly be delivered to all the 
nodes in the blockchain network [8].  

To solve this scalability problem effectively, several 
approaches have been proposed. Those include the mechanisms 
using off-chain payment [9], using byzantine fault tolerance 
(BFT) consensus instead of existing proof-of-work (PoW) 
algorithm [10], using a permissioned (or private) blockchain that 
requires only authorized clients to participate in the consensus 
process [11], and using sharding [12][13].  

Sharding is a method to increase the transaction throughput of 
the network by partitioning blockchain into several pieces called 
shards and allowing each shard to process the transactions in 
parallel. This mitigates the amount of data transferred among the 
nodes as the size of data within the shard is smaller than that in 
the entire blockchain. Consequently, sharding can increase the 
transaction throughput. Whereas sharding seems to be a viable 
solution for scaling blockchain, it also creates other challenging 
issues that needs to be solved such as how to allocate each 
transaction to a specific shard, how to reach consensus between 
shards, how to access or synchronize the states in a shard with 
other shards, etc.  

Among those important challenging issues, this paper 
attempts to address the problem of transaction allocation to a 
shard in Ethereum sharding environments. Ethereum [14] is a 
distributed, permissionless (or public) blockchain platform that 
can run smart contracts. Due to its decentralized, secure, and 
flexible nature, Ethereum has been widely used as a platform for 
initial coin offering (ICO). Moreover, the smart contracts allow 
Ethereum to be used in various applications other than digital 
currency such as insurance, IOT, authentication of certificate or 
identity, etc. In Ethereum sharding, the client’s accounts are 
statically partitioned based on the account address [15] and 
distributed to each shard. This scheme is referred as static 
address-based placement method (S-ACC) throughout this 
paper. The S-ACC causes transaction load imbalance between 
shards as it does not consider the complexity of transactions and 
the load generated from the transactions. When such imbalance 
occurs in Ethereum sharding environments, the number of 
pending transactions may increase, which in turn lowers 
transaction throughput and increases the makespan of 
transaction latency. 

This paper proposes a dynamic load balancing mechanism in 
the Ethereum, D-GAS, which balances the transaction load of 
each shard based on the gas consumption. The D-GAS is 
dynamic in the sense that the accounts between shards can be 
relocated to improve the transaction throughput and minimize 
the makespan of transaction latency by periodically checking the 
gas consumption in each shard. To summarize, this paper makes 
the following specific contributions:  
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 The method proposed in this paper uses the gas consumption 
as an indicator for the complexity of transaction load that 
changes over time. The gas in the Ethereum is a unit of fee 
that is paid for the computation resources consumed to 
execute operations in a transaction. Therefore, the amount 
of gas consumption in a transaction represents the 
transaction load more accurately than the number of 
transactions since each transaction may have different 
complexity.  

 The D-GAS consists of two sub-components: transaction 
load prediction algorithm and account relocation algorithm. 
Instead of using transient load in the Ethereum, the amount 
of gas consumption requesting to the account group is 
predicted. Based on the prediction, the account relocation 
algorithm dynamically relocates the account groups of each 
shard by using a heuristic algorithm. This balances the 
transaction load of each shard and minimizes the makespan 
of the transaction latency. 

 To evaluate the performance of the proposed technique, we 
have conducted various experiments with the OMNeT++ 
5.4.1 simulator [16]. Because of the difficulty of using real 
workloads, we generated a variety of synthetic workloads 
that mimic the real workload as much as possible by 
analyzing the real trace log from the Etherscan [17]. The 
performance results showed that the transaction throughput 
is improved by up to 12%, while the makespan of the 
transaction latency is decreased by up to 74%. 

The rest of the paper is organized as follows. Section 2 
presents an overview of Ethereum sharding and the motivation 
behind the proposed mechanism. Section 3 defines the problem. 
Section 4 discusses the design issues of the D-GAS and Section 
5 evaluates the performance of the proposed method.  Chapter 6 
finally concludes the paper with future challenges. 

 

II. BACKGROUND AND MOTIVATION 
This section briefly introduces the Ethereum and its sharding 

mechanism, and discusses the motivation for the proposed load-
balancing algorithm. 

A. Ethereum  
Ethereum is a permissionless blockchain platform for 

creating and executing Dapps through the smart contract [14]. 
Smart contract is an application executed on all participating 
blockchain nodes, which ensures integrity and reliability of its 
execution results.  

Ethereum provides users with the Turing-complete 
programming language and Ethereum virtual machine (EVM) to 
enable them to create various smart contracts. Ethereum users 
create a smart contract using the Turing-complete programming 
language. The smart contracts created by users are compiled into 
the bytecode to be deployed in the blockchain network. As a 
deployed smart contact is considered as an account, the contract 
can be executed in the similar way that users send a transaction 
to the account. The EVM is a 256-bit virtual machine (VM) that 
can execute the deployed smart contract. All nodes can execute 
the deployed smart contract by using the EVM. Therefore, based 
on the information in the smart contracts that are deployed 

through blockchain, all nodes can execute all smart contracts 
and validate the results executed by other nodes. 

Ethereum uses a unit called gas that represents the amount of 
computational effort needed to execute operations in a 
transaction. For example, if we need to run transactions that 
require more execution cycles, more gas consumption is 
expected. As shown in Table 1, the amount of gas required to 
execute a transaction is calculated based on the gas consumption 
defined for the operation code executed in the transaction. Thus, 
the gas consumption of a transaction indicates the complexity of 
the transaction. 

 
TABLE 1. Gas consumption by operation [18] 

Name Value Description 
Gbase 2 gas gas for {ADDRESS, ORIGIN, CALLER …} 
Gverylow 3 gas gas for {ADD, SUB, NOT …} 
Glow 5 gas gas for {MUL, DIV, SDIV …} 
Gmid 8 gas gas for {ADDMOD, MULMOD, JUMP …} 
Ghigh 10 gas gas for {JUMPI} 
Gextcode 700 gas gas for {EXTCODESIZE} 
Gbalance 400 gas gas for {BALANCE} 

 
Due to the inherent scalability limitation on the 

permissionless blockchain networks, Ethereum proposed a 
mechanism called sharding that partitions the Ethereum 
network into several shards so that each shard executes the 
transactions in parallel as shown in Figure 1. Each shard 
contains a collation chain (collation is a block in a shard), which 
is a data structure to process and store transactions in each shard. 
One of the challenging issues in Ethereum sharding is how to 
allocate transactions to each shard. Ethereum assigns each 
account to a shard statically according to its address prefix (we 
call this as S-ACC). This leads to a load imbalance problem as 
the complexity of each transaction and the load condition in 
each shard are not properly considered.  

 

 
 

Fig. 1. Overview of Ethereum sharding 

B. Motivation 
We conducted a preliminary experiment with the OMNeT++ 

5.4.1 simulator to identify the load imbalance problem between 
shards based on the S-ACC. We measured the average collation 
utilization of each shard during the 50 collation cycle, assuming 
an environment where there are 20 shards. The collation 
utilization of a shard denotes the actual gas consumption versus 

189

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore.  Restrictions apply. 



the maximum gas consumption that can be included in the 
collation (i.e., gas consumption / gas limit). 

The transaction load used in this experiment was generated 
using poisson distribution and the gas limit of a collation was set 
to 8,000,000 gas. Figure 2 shows the average collation 
utilization of each shard. As shown in Figure 2, only 25% of all 
20 shards show the maximum utilization, while other 25% 
shards were under 60% utilization. This indicates that placing 
accounts on each shard regardless of the complexity of 
transaction load may cause imbalance in the transaction load. 
When such imbalance occurs in Ethereum sharding environment, 
pending transactions may increase, which in turn lowers the 
transaction throughput and extends the makespan of transaction 
latency. 

 
Fig. 2. Collation utilization of 20 shards 

 

III. PROBLEM DEFINITION 
   The basic system model assumed in the D-GAS conforms to 
the Ethereum sharding architecture presented in Figure 1, 
where the number of shards is fixed. As the Ethereum sharding 
uses the proof-of-stake (PoS) consensus algorithm, every shard 
has the same collation cycle. Therefore, we can apply the D-
GAS to all shards simultaneously. We also assume that the size 
of collation is limited according to the amount of gas 
consumption and no malicious attack occurs on the sharding 
network. All accounts belong to one account group that each 
account group includes the same number of accounts.  

Let us assume that ܣ௜ refer to the i-th account group and ௜ܵ 
refer to the i-th shard, respectively. Also assume that ௔ܰ௚  refers 
to number of account group and the number of shards 
composing the sharding network is defined as ௦ܰ௛ . Unlike 
traditional systems, which create and manage user accounts in 
the central server, the D-GAS manages the accounts by dividing 
their addresses into ௔ܰ௚ groups. The problem in this study is to 
assign ௔ܰ௚ account groups to ௦ܰ௛ shards as evenly as possible 
so that the transaction throughput is maximized as shown in 
Figure 3. This is a variation of number partitioning problem [19] 
that minimizes the difference of the sum of elements in the 
partitioned subsets. Therefore, the goal of this study is to 
minimize the sum of the differences between the gas 
consumption of each shard as shown in Equation (1). ෍ ௟௜௠௜௧ݏܽܩ) − ෍ ௝௨௦௘ௗ௙௢௥ ௔௟௟ ஺ೕ∈ௌ೔ݏܽܩ )ேೞ೓୧ୀଵ  (1) 

, where ݏܽܩ௟௜௠௜௧  is the maximum amount of gas that can be 
included in a collation, and ݏܽܩ௝௨௦௘ௗ  is gas consumption of j-th 
account group. Since this problem is considered as NP-complete 

[20], we propose a heuristic algorithm to solve this problem in 
the following section. 

 
Fig. 3. Problem definition  

 

IV. DESIGN OF D-GAS 
This section provides an overview of the D-GAS and 

presents the two algorithms such as the transaction load 
prediction algorithm and the account relocation algorithm in 
detail.   

A. Overview 
This paper proposes a gas consumption-aware dynamic load 

balancing (D-GAS) mechanism for balancing the transaction 
load between shards in Ethereum sharding environment. The 
proposed method consists of the transaction load prediction 
algorithm and the account relocation algorithm. The D-GAS is 
executed in a regular interval according to the number of 
generated collation. Assume that the time interval between two 
consecutive collations is CT and the number of collations 
generated in one shard at every load balancing cycle is ௖ܰ௢௟ . 
Then, PT, the execution cycle of the D-GAS, is defined as 
Equation (2). For example, if ௖ܰ௢௟  is 5, the D-GAS is executed 
when 5 collations are generated in one shard.                     ்ܲ = ௖ܰ௢௟ ×  (2)  ்ܥ

 

 
Fig. 4. Overall flow of D-GAS 

 
Figure 4 presents the overall flow of the D-GAS. The D-GAS  

initially places ௔ܰ௚/ ௦ܰ௛ account groups in each shard so that the 
same number of accounts can be located in each shard. When 
the number of generated collations reaches to ௖ܰ௢௟ , the D-GAS 
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runs the transaction load prediction algorithm for each account 
group based on the gas consumption. With the predicted values, 
the D-GAS invokes the account relocation algorithm to 
determine whether the accounts should be relocated or not. 

B. Transaction Load Prediction Algorithm  
The transaction load prediction algorithm predicts the 

transaction load that will occur in the future, based on the gas 
consumption of the previous transactions. This algorithm has the 
following features. First, it predicts the transaction load with the 
gas consumption instead of the number of transactions. This is 
because the transactions in the Ethereum are much more 
complex and the number of transactions cannot properly reflect 
the complexity of the transactions. Second, it predicts the future 
transaction load using the gas consumption that has been 
processed in one cycle before the last cycle. This allows the 
Ethereum to have enough time to prepare and validate the 
collations that were newly relocated in each shard.  

Let us assume that ݏܽܩ௜,௝௨௦௘ௗ  is the gas consumption of the i-th 
acoount group in the j-th collation and ௝ܹ is the weight value for 
the j-th collation. Then, ݏܽܩ௜௣௥௘ௗ, the predicted gas consumption 
of the i-th account group defined in Equation (3) is the sum of 
product of ݏܽܩ௜,௝௨௦௘ௗand ௝ܹ , where j is increased from 1 to ௖ܰ௢௟ . 
Moreover, the ௝ܹ  in Equation (4) is defined such that the 
weighting for each older gas consumption values decreases 
exponentially (i.e., put more weight on the nearest past). Figure 
5 shows the detailed steps of ݏܽܩ௜௣௥௘ௗ  calculation in each 
account group when the ௖ܰ௢௟  is 5. 

௜௣௥௘ௗݏܽܩ  = ෍ ௜,௝௨௦௘ௗݏܽܩ) × ௝ܹ)ே೎೚೗௝ୀଵ  (3) 

௝ܹ = ݆∑ (݇)ே೎೚೗௞ୀଵ = 2 × ݆௖ܰ௢௟( ௖ܰ௢௟ + 1) (4) 

 
Fig. 5. Transaction load prediction overview 

C. Account Relocation Algorithm 
The account relocation algorithm uses the predicted 

transaction load obtained from the transaction load prediction 
algorithm described above. Figure 6 shows an overview of 
account group relocation based on the predicted transaction load. 
The account relocation algorithm creates a priority queue based 
on the information from the ௔ܰ௚ account groups, and puts the 

account group with the bigger transaction load to come first. 
Then, it selects an account group from the queue and relocates it 
to a shard with the minimum gas consumption. That is, the 
destination shard is the one with the smallest ∑ ௝௣௥௘ௗ஺ೕ∈ௌ೔ݏܽܩ  
value, where the set of account groups in the i-th shard is defined 
as Si. Finally, the previous steps are repeated until every account 
group is relocated. In order to minimize the time complexity of 
ordering the account groups in the descending order, we used a 
max heap data structure for the priority queue. On the other hand, 
we used a min heap data structure for finding the shard with the 
smallest ∑ ௝௣௥௘ௗ஺ೕ∈ௌ೔ݏܽܩ  value to minimize the time complexity.  

 

V. PERFORMANCE EVALUATION 
    In this section, we evaluate the performance of D-GAS and 
present the comparison with existing approaches. 

A. Experiment Setup 
In order to evaluate the performance of the D-GAS, we used 

OMNeT++ 5.4.1 simulator [16]. For the simulation, we 
assumed that an Ethereum sharding environment consists of 20 
shards and there exist 100 account groups. The gas limit of each 
collation is set to 8,000,000 gas as is the case in current 
Ethereum. 

TABLE 2. Transaction load workload 

Gas consumption 
Type Value (gas) Ratio 

G-Small 20742 30% 
G-Medium 51857 40% 

G-High 105153 30% 
 

Table 2 shows the types of workload generated for the 
simulation. As shown in Table 2, we generated three types of 
workload based on the amount of gas consumption in a 
transaction: G-Small, G-Medium, and G-High. For this, we 
analyzed about 1400 most recent transactions from Etherscan 
[17] that have actually occurred and classified them as G-Small, 
G-Medium, and G-High. For example, G-Small includes the 
transactions with the gas consumption of bottom 30%, while G-
Medium and G-High include the transactions with the gas 
consumption of medium 40% and high 30%, respectively. The 
gas value represents the average gas consumption of each 
category.   

In order to analyze the performance of the D-GAS, we have 
also implemented two different allocation schemes: S-ACC and 

Fig. 6. Account group relocation by predicted transaction load  
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D-TX. The S-ACC is a static address-based placement method 
currently used in the Ethereum and the D-TX is an allocation 
scheme based on the number of transactions. For the 
comparison, we measured transaction throughput, makespan of 
the transaction latency and load balancing efficiency 

B. Ethereum Performance 
In order to analyze the Ethereum performance, we carried out 

an experiment by varying load balancing execution cycle PT 
(5CT, 10CT, 15CT). As discussed in Section 4 (Equation 2), PT 
is a value obtained by multiplying ௖ܰ௢௟  and CT, where ௖ܰ௢௟  is 
the number of collations generated in one shard at every load-
balancing execution cycle and CT is a time interval between two 
consecutive collations.  

Figure 7 (a) and (b) show the transaction throughputs and 
makespans of three allocation mechanisms normalized with the 
S-ACC by varying load-balancing execution cycle PT. As 
shown in Figure 7 (a), the D-GAS outperforms other allocation 
schemes by about 9% on average and up to 12% to the 
maximum in all load-balancing execution cycles. Furthermore, 
the D-GAS also shows smaller makespans compared to the S-
ACC and the D-TX as shown in Figure 7 (b). Compared to the 
makespan of the S-ACC, the D-GAS lowers the makespan by 
about 55% on average and by about 74% at the short load-
balancing execution cycle. This indicates that the gas-based 
load balancing mechanism proposed in this paper is efficient in 
improving the transaction throughput and reducing the 
makespan of the transaction latency. 
 

 
 

 
Fig. 7. Normalized performance  

C. Load Balancing Efficiency 
Figure 8 depicts the standard deviations of transaction 

throughputs in three allocation mechanisms normalized with 

the S-ACC. Similarly, as shown in Figure 8, the D-GAS 
balances the transaction load more evenly than the S-ACC and 
the D-TX. For example, the standard deviation of the D-GAS 
is lower than that of the S-ACC by about 55% on average and 
75% to the maximum. Moreover, as we shorten the load 
balancing execution cycle, the performance gap widens. This is 
because the short execution cycle can easily react to the changes 
in transaction load. 
 

Fig. 8. Normalized load balancing efficiency  
 

VI. CONCLUSION 
This paper proposed a gas consumption-aware dynamic load 

balancing mechanism called D-GAS for balancing the 
transaction load of each shard by periodically relocating the 
accounts between shards. In order to evaluate the performance 
of the D-GAS, we have implemented two existing allocation 
algorithms such as the S-ACC and the D-TX, and compared the 
performance under various conditions. The performance results 
confirmed that the D-GAS was efficient in load balancing and 
outperformed other mechanisms in terms of transaction 
throughput and makespan. 

Further investigations on the overhead analysis of the D-
GAS mechanism and the evaluation under real workloads will 
be needed in the future study.  
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