
Gas Consumption-aware Dynamic Load Balancing in
Ethereum Sharding Environments

Sanghyeok Kim, Jeho Song, Sangyeon Woo, Youngjae Kim and Sungyong Park
Department of Computer Science and Engineering

Sogang University, Seoul Korea
{sangh228, oidwin, tkddus121, youkim, parksy}@sogang.ac.kr

Abstract—Advances in blockchain technology have made a

significant impact on a wide range of research areas due to the
features such as transparency, decentralization and traceability.
With the explosive growth of blockchain transactions, there has
been a growing interest in improving the scalability of blockchain
network. Sharding is one of the methods to solve this scalability
problem by partitioning the network into several shards so that
each shard can process the transactions in parallel. Ethereum
places each transaction statically on a shard based on its account
address without considering the complexity of the transaction or
the load generated by the transaction. This causes the transaction
load on each shard to be uneven, which makes the transaction
throughput of the network decrease. In this paper, we propose a
dynamic load balancing mechanism among Ethereum shards
called D-GAS. The D-GAS dynamically balances the transaction
load of each shard by relocating the accounts based on the gas
consumption to maximize the transaction throughput. Ethereum
gas is a unit that represents the amount of computational effort
needed to execute operations in a transaction. Benchmarking
results show that the D-GAS outperforms existing techniques by
up to 12% in transaction throughput and decreases the makespan
of transaction latency by about 74% under various conditions.

Keywords— blockchain; ethereum; sharding; scalability; load
balancing;

I. INTRODUCTION
Blockchain is a peer-to-peer (P2P) based distributed ledger

technology that ensures integrity and reliability without an
authorized third party's involvement. Although the blockchain
was originally developed as part of Bitcoin [1], it has recently
been drawing much attention as an innovative technology that
can support a variety of fields such as health-care [2], internet of
things (IOT) [3] or medical data management [4]. However,
despite the worldwide interest in the blockchain, applying this
technology to various areas is sometimes limited due to the
scalability problem [5]. When the number of transactions
increases, the transaction per second (TPS) of the blockchain
decreases severely because the time for sharing a block or
reaching a consensus is delayed. For example, when one of the
most well-known Ethereum-based games called CryptoKitties
[6] was released, the amount of pending transactions was
sharply increased [7] and finally broke down the Ethereum
network. While simply increasing the block size or shortening
the interval to create a block can improve the transaction
throughput, it may also weaken the network security as the
newly created blocks cannot possibly be delivered to all the
nodes in the blockchain network [8].

To solve this scalability problem effectively, several
approaches have been proposed. Those include the mechanisms
using off-chain payment [9], using byzantine fault tolerance
(BFT) consensus instead of existing proof-of-work (PoW)
algorithm [10], using a permissioned (or private) blockchain that
requires only authorized clients to participate in the consensus
process [11], and using sharding [12][13].

Sharding is a method to increase the transaction throughput of
the network by partitioning blockchain into several pieces called
shards and allowing each shard to process the transactions in
parallel. This mitigates the amount of data transferred among the
nodes as the size of data within the shard is smaller than that in
the entire blockchain. Consequently, sharding can increase the
transaction throughput. Whereas sharding seems to be a viable
solution for scaling blockchain, it also creates other challenging
issues that needs to be solved such as how to allocate each
transaction to a specific shard, how to reach consensus between
shards, how to access or synchronize the states in a shard with
other shards, etc.

Among those important challenging issues, this paper
attempts to address the problem of transaction allocation to a
shard in Ethereum sharding environments. Ethereum [14] is a
distributed, permissionless (or public) blockchain platform that
can run smart contracts. Due to its decentralized, secure, and
flexible nature, Ethereum has been widely used as a platform for
initial coin offering (ICO). Moreover, the smart contracts allow
Ethereum to be used in various applications other than digital
currency such as insurance, IOT, authentication of certificate or
identity, etc. In Ethereum sharding, the client’s accounts are
statically partitioned based on the account address [15] and
distributed to each shard. This scheme is referred as static
address-based placement method (S-ACC) throughout this
paper. The S-ACC causes transaction load imbalance between
shards as it does not consider the complexity of transactions and
the load generated from the transactions. When such imbalance
occurs in Ethereum sharding environments, the number of
pending transactions may increase, which in turn lowers
transaction throughput and increases the makespan of
transaction latency.

This paper proposes a dynamic load balancing mechanism in
the Ethereum, D-GAS, which balances the transaction load of
each shard based on the gas consumption. The D-GAS is
dynamic in the sense that the accounts between shards can be
relocated to improve the transaction throughput and minimize
the makespan of transaction latency by periodically checking the
gas consumption in each shard. To summarize, this paper makes
the following specific contributions:

188

2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

978-1-7281-2406-3/19/$31.00 ©2019 IEEE
DOI 10.1109/FAS-W.2019.00052

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

 The method proposed in this paper uses the gas consumption
as an indicator for the complexity of transaction load that
changes over time. The gas in the Ethereum is a unit of fee
that is paid for the computation resources consumed to
execute operations in a transaction. Therefore, the amount
of gas consumption in a transaction represents the
transaction load more accurately than the number of
transactions since each transaction may have different
complexity.

 The D-GAS consists of two sub-components: transaction
load prediction algorithm and account relocation algorithm.
Instead of using transient load in the Ethereum, the amount
of gas consumption requesting to the account group is
predicted. Based on the prediction, the account relocation
algorithm dynamically relocates the account groups of each
shard by using a heuristic algorithm. This balances the
transaction load of each shard and minimizes the makespan
of the transaction latency.

 To evaluate the performance of the proposed technique, we
have conducted various experiments with the OMNeT++
5.4.1 simulator [16]. Because of the difficulty of using real
workloads, we generated a variety of synthetic workloads
that mimic the real workload as much as possible by
analyzing the real trace log from the Etherscan [17]. The
performance results showed that the transaction throughput
is improved by up to 12%, while the makespan of the
transaction latency is decreased by up to 74%.

The rest of the paper is organized as follows. Section 2
presents an overview of Ethereum sharding and the motivation
behind the proposed mechanism. Section 3 defines the problem.
Section 4 discusses the design issues of the D-GAS and Section
5 evaluates the performance of the proposed method. Chapter 6
finally concludes the paper with future challenges.

II. BACKGROUND AND MOTIVATION
This section briefly introduces the Ethereum and its sharding

mechanism, and discusses the motivation for the proposed load-
balancing algorithm.

A. Ethereum
Ethereum is a permissionless blockchain platform for

creating and executing Dapps through the smart contract [14].
Smart contract is an application executed on all participating
blockchain nodes, which ensures integrity and reliability of its
execution results.

Ethereum provides users with the Turing-complete
programming language and Ethereum virtual machine (EVM) to
enable them to create various smart contracts. Ethereum users
create a smart contract using the Turing-complete programming
language. The smart contracts created by users are compiled into
the bytecode to be deployed in the blockchain network. As a
deployed smart contact is considered as an account, the contract
can be executed in the similar way that users send a transaction
to the account. The EVM is a 256-bit virtual machine (VM) that
can execute the deployed smart contract. All nodes can execute
the deployed smart contract by using the EVM. Therefore, based
on the information in the smart contracts that are deployed

through blockchain, all nodes can execute all smart contracts
and validate the results executed by other nodes.

Ethereum uses a unit called gas that represents the amount of
computational effort needed to execute operations in a
transaction. For example, if we need to run transactions that
require more execution cycles, more gas consumption is
expected. As shown in Table 1, the amount of gas required to
execute a transaction is calculated based on the gas consumption
defined for the operation code executed in the transaction. Thus,
the gas consumption of a transaction indicates the complexity of
the transaction.

TABLE 1. Gas consumption by operation [18]

Name Value Description
Gbase 2 gas gas for {ADDRESS, ORIGIN, CALLER …}
Gverylow 3 gas gas for {ADD, SUB, NOT …}
Glow 5 gas gas for {MUL, DIV, SDIV …}
Gmid 8 gas gas for {ADDMOD, MULMOD, JUMP …}
Ghigh 10 gas gas for {JUMPI}
Gextcode 700 gas gas for {EXTCODESIZE}
Gbalance 400 gas gas for {BALANCE}

Due to the inherent scalability limitation on the

permissionless blockchain networks, Ethereum proposed a
mechanism called sharding that partitions the Ethereum
network into several shards so that each shard executes the
transactions in parallel as shown in Figure 1. Each shard
contains a collation chain (collation is a block in a shard), which
is a data structure to process and store transactions in each shard.
One of the challenging issues in Ethereum sharding is how to
allocate transactions to each shard. Ethereum assigns each
account to a shard statically according to its address prefix (we
call this as S-ACC). This leads to a load imbalance problem as
the complexity of each transaction and the load condition in
each shard are not properly considered.

Fig. 1. Overview of Ethereum sharding

B. Motivation
We conducted a preliminary experiment with the OMNeT++

5.4.1 simulator to identify the load imbalance problem between
shards based on the S-ACC. We measured the average collation
utilization of each shard during the 50 collation cycle, assuming
an environment where there are 20 shards. The collation
utilization of a shard denotes the actual gas consumption versus

189

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

the maximum gas consumption that can be included in the
collation (i.e., gas consumption / gas limit).

The transaction load used in this experiment was generated
using poisson distribution and the gas limit of a collation was set
to 8,000,000 gas. Figure 2 shows the average collation
utilization of each shard. As shown in Figure 2, only 25% of all
20 shards show the maximum utilization, while other 25%
shards were under 60% utilization. This indicates that placing
accounts on each shard regardless of the complexity of
transaction load may cause imbalance in the transaction load.
When such imbalance occurs in Ethereum sharding environment,
pending transactions may increase, which in turn lowers the
transaction throughput and extends the makespan of transaction
latency.

Fig. 2. Collation utilization of 20 shards

III. PROBLEM DEFINITION
 The basic system model assumed in the D-GAS conforms to
the Ethereum sharding architecture presented in Figure 1,
where the number of shards is fixed. As the Ethereum sharding
uses the proof-of-stake (PoS) consensus algorithm, every shard
has the same collation cycle. Therefore, we can apply the D-
GAS to all shards simultaneously. We also assume that the size
of collation is limited according to the amount of gas
consumption and no malicious attack occurs on the sharding
network. All accounts belong to one account group that each
account group includes the same number of accounts.

Let us assume that ܣ௜ refer to the i-th account group and ௜ܵ
refer to the i-th shard, respectively. Also assume that ௔ܰ௚ refers
to number of account group and the number of shards
composing the sharding network is defined as ௦ܰ௛ . Unlike
traditional systems, which create and manage user accounts in
the central server, the D-GAS manages the accounts by dividing
their addresses into ௔ܰ௚ groups. The problem in this study is to
assign ௔ܰ௚ account groups to ௦ܰ௛ shards as evenly as possible
so that the transaction throughput is maximized as shown in
Figure 3. This is a variation of number partitioning problem [19]
that minimizes the difference of the sum of elements in the
partitioned subsets. Therefore, the goal of this study is to
minimize the sum of the differences between the gas
consumption of each shard as shown in Equation (1). ෍ ௟௜௠௜௧ݏܽܩ) − ෍ ௝௨௦௘ௗ௙௢௥ ௔௟௟ ஺ೕ∈ௌ೔ݏܽܩ)ேೞ೓୧ୀଵ (1)

, where ݏܽܩ௟௜௠௜௧ is the maximum amount of gas that can be
included in a collation, and ݏܽܩ௝௨௦௘ௗ is gas consumption of j-th
account group. Since this problem is considered as NP-complete

[20], we propose a heuristic algorithm to solve this problem in
the following section.

Fig. 3. Problem definition

IV. DESIGN OF D-GAS
This section provides an overview of the D-GAS and

presents the two algorithms such as the transaction load
prediction algorithm and the account relocation algorithm in
detail.

A. Overview
This paper proposes a gas consumption-aware dynamic load

balancing (D-GAS) mechanism for balancing the transaction
load between shards in Ethereum sharding environment. The
proposed method consists of the transaction load prediction
algorithm and the account relocation algorithm. The D-GAS is
executed in a regular interval according to the number of
generated collation. Assume that the time interval between two
consecutive collations is CT and the number of collations
generated in one shard at every load balancing cycle is ௖ܰ௢௟ .
Then, PT, the execution cycle of the D-GAS, is defined as
Equation (2). For example, if ௖ܰ௢௟ is 5, the D-GAS is executed
when 5 collations are generated in one shard. ்ܲ = ௖ܰ௢௟ × (2) ்ܥ

Fig. 4. Overall flow of D-GAS

Figure 4 presents the overall flow of the D-GAS. The D-GAS

initially places ௔ܰ௚/ ௦ܰ௛ account groups in each shard so that the
same number of accounts can be located in each shard. When
the number of generated collations reaches to ௖ܰ௢௟ , the D-GAS

190

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

runs the transaction load prediction algorithm for each account
group based on the gas consumption. With the predicted values,
the D-GAS invokes the account relocation algorithm to
determine whether the accounts should be relocated or not.

B. Transaction Load Prediction Algorithm
The transaction load prediction algorithm predicts the

transaction load that will occur in the future, based on the gas
consumption of the previous transactions. This algorithm has the
following features. First, it predicts the transaction load with the
gas consumption instead of the number of transactions. This is
because the transactions in the Ethereum are much more
complex and the number of transactions cannot properly reflect
the complexity of the transactions. Second, it predicts the future
transaction load using the gas consumption that has been
processed in one cycle before the last cycle. This allows the
Ethereum to have enough time to prepare and validate the
collations that were newly relocated in each shard.

Let us assume that ݏܽܩ௜,௝௨௦௘ௗ is the gas consumption of the i-th
acoount group in the j-th collation and ௝ܹ is the weight value for
the j-th collation. Then, ݏܽܩ௜௣௥௘ௗ, the predicted gas consumption
of the i-th account group defined in Equation (3) is the sum of
product of ݏܽܩ௜,௝௨௦௘ௗand ௝ܹ , where j is increased from 1 to ௖ܰ௢௟ .
Moreover, the ௝ܹ in Equation (4) is defined such that the
weighting for each older gas consumption values decreases
exponentially (i.e., put more weight on the nearest past). Figure
5 shows the detailed steps of ݏܽܩ௜௣௥௘ௗ calculation in each
account group when the ௖ܰ௢௟ is 5.

௜௣௥௘ௗݏܽܩ = ෍ ௜,௝௨௦௘ௗݏܽܩ) × ௝ܹ)ே೎೚೗௝ୀଵ (3)

௝ܹ = ݆∑ (݇)ே೎೚೗௞ୀଵ = 2 × ݆௖ܰ௢௟(௖ܰ௢௟ + 1) (4)

Fig. 5. Transaction load prediction overview

C. Account Relocation Algorithm
The account relocation algorithm uses the predicted

transaction load obtained from the transaction load prediction
algorithm described above. Figure 6 shows an overview of
account group relocation based on the predicted transaction load.
The account relocation algorithm creates a priority queue based
on the information from the ௔ܰ௚ account groups, and puts the

account group with the bigger transaction load to come first.
Then, it selects an account group from the queue and relocates it
to a shard with the minimum gas consumption. That is, the
destination shard is the one with the smallest ∑ ௝௣௥௘ௗ஺ೕ∈ௌ೔ݏܽܩ
value, where the set of account groups in the i-th shard is defined
as Si. Finally, the previous steps are repeated until every account
group is relocated. In order to minimize the time complexity of
ordering the account groups in the descending order, we used a
max heap data structure for the priority queue. On the other hand,
we used a min heap data structure for finding the shard with the
smallest ∑ ௝௣௥௘ௗ஺ೕ∈ௌ೔ݏܽܩ value to minimize the time complexity.

V. PERFORMANCE EVALUATION
 In this section, we evaluate the performance of D-GAS and
present the comparison with existing approaches.

A. Experiment Setup
In order to evaluate the performance of the D-GAS, we used

OMNeT++ 5.4.1 simulator [16]. For the simulation, we
assumed that an Ethereum sharding environment consists of 20
shards and there exist 100 account groups. The gas limit of each
collation is set to 8,000,000 gas as is the case in current
Ethereum.

TABLE 2. Transaction load workload

Gas consumption
Type Value (gas) Ratio

G-Small 20742 30%
G-Medium 51857 40%

G-High 105153 30%

Table 2 shows the types of workload generated for the
simulation. As shown in Table 2, we generated three types of
workload based on the amount of gas consumption in a
transaction: G-Small, G-Medium, and G-High. For this, we
analyzed about 1400 most recent transactions from Etherscan
[17] that have actually occurred and classified them as G-Small,
G-Medium, and G-High. For example, G-Small includes the
transactions with the gas consumption of bottom 30%, while G-
Medium and G-High include the transactions with the gas
consumption of medium 40% and high 30%, respectively. The
gas value represents the average gas consumption of each
category.

In order to analyze the performance of the D-GAS, we have
also implemented two different allocation schemes: S-ACC and

Fig. 6. Account group relocation by predicted transaction load

191

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

D-TX. The S-ACC is a static address-based placement method
currently used in the Ethereum and the D-TX is an allocation
scheme based on the number of transactions. For the
comparison, we measured transaction throughput, makespan of
the transaction latency and load balancing efficiency

B. Ethereum Performance
In order to analyze the Ethereum performance, we carried out

an experiment by varying load balancing execution cycle PT
(5CT, 10CT, 15CT). As discussed in Section 4 (Equation 2), PT
is a value obtained by multiplying ௖ܰ௢௟ and CT, where ௖ܰ௢௟ is
the number of collations generated in one shard at every load-
balancing execution cycle and CT is a time interval between two
consecutive collations.

Figure 7 (a) and (b) show the transaction throughputs and
makespans of three allocation mechanisms normalized with the
S-ACC by varying load-balancing execution cycle PT. As
shown in Figure 7 (a), the D-GAS outperforms other allocation
schemes by about 9% on average and up to 12% to the
maximum in all load-balancing execution cycles. Furthermore,
the D-GAS also shows smaller makespans compared to the S-
ACC and the D-TX as shown in Figure 7 (b). Compared to the
makespan of the S-ACC, the D-GAS lowers the makespan by
about 55% on average and by about 74% at the short load-
balancing execution cycle. This indicates that the gas-based
load balancing mechanism proposed in this paper is efficient in
improving the transaction throughput and reducing the
makespan of the transaction latency.

Fig. 7. Normalized performance

C. Load Balancing Efficiency
Figure 8 depicts the standard deviations of transaction

throughputs in three allocation mechanisms normalized with

the S-ACC. Similarly, as shown in Figure 8, the D-GAS
balances the transaction load more evenly than the S-ACC and
the D-TX. For example, the standard deviation of the D-GAS
is lower than that of the S-ACC by about 55% on average and
75% to the maximum. Moreover, as we shorten the load
balancing execution cycle, the performance gap widens. This is
because the short execution cycle can easily react to the changes
in transaction load.

Fig. 8. Normalized load balancing efficiency

VI. CONCLUSION
This paper proposed a gas consumption-aware dynamic load

balancing mechanism called D-GAS for balancing the
transaction load of each shard by periodically relocating the
accounts between shards. In order to evaluate the performance
of the D-GAS, we have implemented two existing allocation
algorithms such as the S-ACC and the D-TX, and compared the
performance under various conditions. The performance results
confirmed that the D-GAS was efficient in load balancing and
outperformed other mechanisms in terms of transaction
throughput and makespan.

Further investigations on the overhead analysis of the D-
GAS mechanism and the evaluation under real workloads will
be needed in the future study.

ACKNOWLEDGMENT
This research was supported by the MSIT (Ministry of

Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2019-
2017-0-01628) supervised by the IITP (Institute for Information
& communications Technology Promotion).

REFERENCES
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, Available

online: https://bitcoin.org/bitcoin.pdf (accessed on 15th Dec 2017).
[2] Mettler. Matthias, “Blockchain technology in healthcare: The revolution

starts here”, Proc. IEEE 18th int. Conf. E-Health Netw. Appl. Services
(Healthcom), 2016, pp. 1-3.

[3] Dorri. Ali, et al, “Blockchain for IoT security and privacy: The case study
of a smart home”, In: Pervasive Computing and Communications
Workshops (PerCom Workshops), 2017 IEEE International Conference
on. IEEE, 2017. p. 618-623.

[4] Azaria. Asaph, et al, "Medrec: Using blockchain for medical data access
and permission management", Open and Big Data (OBD), International
Conference on. IEEE, 2016.

[5] Eyal. Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol", NSDI,
2016.

192

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

[6] Zheng. Zibin, et al. “Blockchain challenges and opportunities: A survey”,
International Journal of Web and Grid Services, 2018, 14.4: 352-375.

[7] Pending Ethereum transactions after Cryptokitties’ realse. Available
online: https://www.theatlas.com/charts/rkt8jKMZz (accessed on 2nd Jan
2019).

[8] Wei. Cai, Zehua. Wang, Jason. B. Ernst, Zhen. Hong, Chen. Feng, Victor.
C, M. Leung, “Decentralized Applications: The Blockchain-Empowered
Software System”, IEEE Access, vol.6, Sept 2018.

[9] Poon. Joseph, Dryja. Thaddeus, “The bitcoin lightning network: Scalable
off-chain instant payments”, Available online:
https://lightning.network/lightning-network-paper.pdf (accessed on 17th
Jan 2018).

[10] VUKOLIĆ. Marko, “The quest for scalable blockchain fabric: Proof-of-
work vs. BFT replication”, In: International Workshop on Open Problems
in Network Security. Springer, Cham, 2015. p. 112-125.

[11] Cachin. Christian, “Architecture of the hyperledger blockchain fabric”, In:
Workshop on Distributed Cryptocurrencies and Consensus Ledgers. 2016.

[12] Eleftherios. Kokoris-Kogias, Philipp. Jovanovic, Linus. Gasser, Nicolas.
Gailly, Ewa. Syta, Bryan. Ford, “OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding”, In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE,2018. p. 583-598.

[13] Zamani. Mahdi, Movahedi. Mahnush, Raykova. Mariana, “RapidChain:
scaling blockchain via full sharding”, In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ACM,
2018. p. 931-948.

[14] THE ETHEREUM COMMUNITY. Ethereum white paper. Available
online: https://github.com/ethereum/wiki/wiki/White-Paper (accessed on
13rd Feb 2019).

[15] Vitalik. Buterin, Ethereum Sharding FAQ. Available online:
https://github.com/Ethereum/wiki/wiki/Sharding-FAQs (accessed on
15th Oct 2018).

[16] A. Varga, et al, “The omnet++ discrete event simulation system”, In
Procedding of the European simulation multiconference, 2001, vol. 9, pp.
65.

[17] Etherscan Team, Etherscan: The Ethereum block explorer. Available
online: https://etherscan.io/ (accessed on 24th May 2018).

[18] Wood. G, Ethereum: A secure decentralised generalised transaction
ledger. Available: https://ethereum.github.io/yellowpaper/paper.pdf
 (accessed on 20th May 2018).

[19] S. Mertens, "The Easiest Hard Problem: Number Partitioning" in
Computational Complexity and Statistical Physics, Oxford Univ. Press,
vol. 125, 2006.

[20] Richard E. Korf, “Multi-way number partitioning”, In Proceedings of the
21st international jont conference on Artificial intelligence, 2009, pp.
538–543.

193

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 09:28:35 UTC from IEEE Xplore. Restrictions apply.

