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Abstract
Ceph, an object-based distributed storage system, has a communication subsystem called Async messenger. In the Async

messenger, a worker thread in the thread pool is assigned to each connection in a round-robin fashion and is allowed to

process all the incoming or outgoing messages from the connection. Although this thread per connection strategy is easy to

implement, it has an inherent problem such that when a connection is overloaded, it results in load imbalance problem

among worker threads. In order to mitigate this problem, multiple worker threads can be assigned to a single connection to

handle the traffic from the connection. However, this mapping structure induces another overhead related to lock con-

tention since multiple threads contend to access the shared resources in the connection. In this paper, we propose lock

contention aware messenger (Async-LCAM) , a messenger that assigns multiple worker threads per connection and is aware

of lock contention generated from the threads. By keeping track of the lock contention of each connection every interval,

the Async-LCAM dynamically adds or deletes assigned threads to/from the connection in order to balance the workloads

among worker threads. The experimental results show that the Async-LCAM improves the throughput and latency of Ceph

storage by up to 184 and 65%, respectively, compared to the original Async messenger.

Keywords Distributed storage system � Ceph � Thread placement � Load balancing � Lock contention � Epoll

1 Introduction

With the rapid proliferation of social network services and

the increasing number of Internet of Things (IOT) devices,

the amount of global digital information is increasing

explosively every year. The market research agency IDC

has predicted that the available data will increase up to 180

ZB by 2025 [1]. As the volume of data continues to grow

exponentially, there has been a growing interest in the

efficient management and storage of data. To accommo-

date such growing needs, distributed storage systems such

as Ceph [2], Gluster [3], and Lustre [4] have emerged.

The distributed storage system spans over a large

number of storage nodes. Such storage system creates

volumes for each node and uses volumes as object storage

server. Each object storage server performs high data net-

working through its communication layer. Gluster has a

storage brick (storage server), and each storage brick per-

forms data networking through the transport layer [3].

Lustre has an object storage server (OSS) and its I/O

operations are sent over a network using a protocol called

LNet [4]. Ceph has an object storage daemon (OSD) and a

communication layer called messenger [2]. The distributed

storage systems mentioned above highly count on the

communication framework in order to guarantee the per-

formance, scalability, and fault-tolerance.

Ceph uses Async messenger as a default communication

framework to facilitate I/O traffic in and out of the cluster.

The Async messenger is responsible for communication

between clients and OSDs and within OSDs.

The Async messenger has a thread-pool structure that

consists of a predefined number of worker threads [5].

When a request to create a connection is received from a
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client or OSD node, the Async messenger assigns one

worker thread from the worker pool to the connection in a

round-robin fashion. In other words, one worker thread is

responsible for handling data traffic from one file

descriptor (fd) associated with the connection. If the

number of connections is greater than the size of the

worker pool, one worker thread takes charge of more than

one connection fd. Although this thread per connection

strategy is easy to implement, it causes load imbalance

problems among worker threads when each connection has

a different workload that changes dynamically. That is,

some threads can be idle, while other threads handle a large

amount of data traffic. This uneven load distribution can

cause performance degradation when there is high I/O

traffic.

In this paper, we first perform an in-depth analysis of

Ceph Async messenger and identify the limitations on the

thread per connection structure that causes load imbalance

among worker threads. Then, we propose lock contention

aware messenger (Async-LCAM) that assigns multiple

worker threads per single connection and is aware of lock

contention in order to efficiently balance the workloads

among worker threads.

We have implemented the Async-LCAM by extending

the original Async messenger with Ceph community ver-

sion 10.2.3. We used FIO benchmark [6] to evaluate the

performance on a real testbed. The experimental results

indicate that the Async-LCAM improves the throughput and

latency of Ceph by up to 184 and 65% respectively,

compared to the original Async messenger. To further show

the impact of proposed optimization, we have also modi-

fied the source code of original Ceph such that the I/O data

path is splitted into messenger, placement group (PG)

processing, journaling and writing to filestore. Then, we

analyze the performance bottlenecks by running the Async-

LCAM and the original Async messenger over the modified

data path. This paper has the following specific contribu-

tions :

– Multiple worker threads per connection The thread to

fd mapping structure is changed so that all worker

threads simultaneously monitor the data traffic from all

the connections. This mapping structure enables fine-

grain control of the data traffic and to maximize the

redundant activities between connections, which

reduces the load imbalance problems among worker

threads.

– Lock contention-aware thread placement Assigning

multiple worker threads per connection inherently

induces lock contention overhead and diminishes the

benefits of our new structure.The lock contention-

aware thread placement algorithm proposed in this

paper dynamically manages the mapping structure by

keeping track of the lock contention of each connection

every interval and dynamically adding or deleting

threads to/from the connection.

– Adjustment of the number of events a worker thread

fetches We also adjust the maxevents parameter in

epoll_wait system call so that the number of fetched

events in each worker thread is well balanced.

The rest of this paper is organized as follows. Chapter 2

outlines related work. In Chap. 3, we analyze the problems

in current Ceph Async messenger and present the motiva-

tion of this paper. In Chap. 4, we discuss the structure of

Async-LCAM and its detailed design. Chapter 5 provides

performance evaluation with analysis. Chapter 6 concludes

the paper.

2 Related work

The main contribution of Async-LCAM is the change of

thread-to-fd mapping structure so that every thread moni-

tors the traffic from all the connections and is aware of the

lock contention in order to balance the workloads among

worker threads. The rest of this section is devoted to a

review of well-known approaches and systems designed for

optimizing the communication subsystem in terms of load

balancing and contention awareness.

There have been several studies focused on distributing

load evenly among storage nodes in the clusters and cloud

environments. Ceph [2] utilizes a reweight strategy to

balance the load across OSDs. This strategy periodically

and automatically balances data distribution by reweight-

ing OSDs with high or low utilization. DLR [7] is a system

that improves the performance of cloud storage services in

the presence of hardware heterogeneity, and performance

interference through a dynamic load redistribution tech-

nique. Sinbad [8] is a system that identifies network

imbalance through periodic measurements and exploits the

flexibility in endpoint placement to navigate around con-

gested links. This improves end-to-end completion times of

data-intesive jobs. SEAL [9] uses runtime information and

data-driven models to approximate system load and adapts

transfer schedules and concurrency so as to maximize

performance while avoiding saturation. STEAL [9] uses

user-supplied transfer types to further optimize schedules.

STEAL treats batch and interactive transfers differently,

allocating bandwidth unused by interactive transfers to

batch transfers while being largely non-intrusive to inter-

active transfers. LADS [10] is a new bulk data movement

framework for terabit networks among geographically

distributed data centers. LADS implements layout-aware

and congestion-aware scheduling strategies to minimize
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the effects of transient congestion within a subset of stor-

age servers.

Shuffling [11] is a framework which migrates the

threads of a multithreaded program across sockets to

reduce the overhead caused by transferring locks between

sockets. Shuffling reduces the time threads spend on

acquiring locks and speeds up the execution of shared data

accesses in the critical section. CA-scheduler [12] is a

contention-aware scheduler that maps threads sharing the

same lock-protected resources to the same processor. It

presents a critical section-first scheduling strategy, which

considers lock usage as a scheduling criterion to further

reduce the thread waiting time due to lock contention.

The load imbalance problem in Ceph has also been

addressed in studies by Han et al. [13] and Song et al. [14]

through the genetic algorithm (GA) and the heuristic

algorithm. Both studies maintain the original mapping

structure (one thread per connection) of the Async mes-

senger and periodically replace the worker thread assigned

to one connection with another thread, while monitoring

the data traffic handled by each worker thread. Although

these two approaches also target at balancing the work-

loads among worker threads, the balancing is done on a

per-connection basis. On the contrary, our approach pro-

vides a finer-grained control of the incoming traffic by

assigning multiple threads per connection and using the

lock contention-aware technique. Our study is based on the

motivation to reduce the performance degradation via

improving the short-comings of the mapping structure in

the Async messenger and eliminating the load imbalance as

well as possible contention across worker threads.

3 Background and motivation

In this chapter, we present the details of epoll mechanism

and the overall architecture of the Async messenger in

Ceph. We also discuss and analyze the problems in the

Async messenger. For this, we conduct preliminary

experiments with three Ceph clients, each of which gen-

erates random read/write traffic using the FIO benchmark

[6]. The Ceph cluster equipped with four object storage

servers (OSS) is used for the experiments, where each OSS

has two OSDs.

3.1 Epoll mechanism

Event-driven approaches such as select, poll, and epoll

[15, 16] have been widely used in high-performance net-

works to multiplex a large number of concurrent connec-

tions. Among them, epoll is a mechanism used in Linux

system for a scalable I/O event notification mechanism,

which is known to be more scalable than select or poll

when monitoring a large number of connection fds.

In epoll mechanism, three system calls are provided to

set up and control an epoll set. The epoll_create() system

call instructs the kernel to create an event data structure

used to track events. The epoll_ctl() system call registers or

deletes file descriptors that it is interested in. Finally, the

epoll_wait() system call is used to receive the incoming

events from the file descriptors. Once any events are

detected, it returns the number of file descriptors ready for

the requested I/O. As with BSD-like socket, the epoll

mechanism does packet I/Os through the kernel TCP layer.

The TCP socket is abstracted by virtual file system (VFS)

and exposed to user-level as a socket file descriptor.

Therefore, fd or connection fd mentioned in this paper

refers to socket file descriptor.

3.2 Ceph Async messenger communication
subsystem

Figure 1a depicts the overall communication flow of the

Async messenger in Ceph storage system. All major com-

ponents such as Ceph clients, OSDs, and Monitors use the

Async messenger as a default socket-based communication

carrier in Ceph.

As shown in Fig. 1a, a worker thread pool consists of a

predefined number of threads that are created initially. The

size of a worker thread pool is a tunable parameter and can

be set as required. At first, a connection is required to

communicate among components. When a request for

creating a new connection is received, a worker thread

from the worker thread pool is assigned to the connection

in a round-robin order. Because the pool size is predeter-

mined, if the number of connections is greater than the pool

size, it is possible that single worker thread can be assigned

to multiple connections. Still, in terms of connections, only

one worker thread is assigned per connection. The worker

thread assigned to a connection waits for any events from

the connection using epoll_wait() system call in Linux.

Finally, when the worker thread receives an event, it carries

out a series of actions such as decoding the received data,

checking signature and sequence number, and then inserts

the processed event into an OSD queue called Operation

WQ. After this, each worker thread repeats the whole

process again.

If the received event is a write request, the worker thread

initiates a replication request to secondary OSDs. At the

same time, it also performs journaling and disk write on

OSD. Then, if the worker thread receives an acknowledg-

ment message indicating that replication operation is

completed on the secondary OSDs, it sends an acknowl-

edgment message back to the client. Whereas, in the case
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of a read request, it accesses the disk and transmits the

required data directly to the client.

On the other hand, the complete processing flow of a

worker thread is depicted in Fig. 1b. The worker 1 first

creates an internal kernel data structure called epoll

instance through epoll_create() system call. When a con-

nection is established, the worker 1 registers the fd of the

corresponding connection in its own interest list of the

epoll instance via epoll_ctl() system call. For example, as

shown in Fig. 1b, the worker 1 contains fd4, fd1, and fd2 in

the interest list. The fd4 is at the top of the interest list

because its request to create a connection comes first. If the

event causes the fd to become ready, the kernel places the

fd on the ready list of the epoll instance. Figure 1b shows

that both fd4 and fd2 are ready to receive events. There-

fore, the worker thread fetches the I/O events from those

fds through epoll_wait() system call. The fetched events

will be processed sequentially. In this example, the worker

1 reads data from fd4, decodes the received data, and

confirms the data validity by checking signature and

sequence number. Then, it dispatches the data to the OSD

queue and repeats those activities for fd2 again. Current

Async messenger uses a mutex lock to prevent the activities

starting from read operation till dispatch operation from

overlapping, which is in fact unnecessary because only one

worker thread can process the traffic from one fd. How-

ever, the lock for each fd is necessary when the proposed

Async-LCAM is employed in the communication subsystem

of Ceph.

3.3 Load imbalance of worker threads in Async
messenger

The Async messenger assigns a worker thread to one

connection fd based on the round-robin approach. Because

the round-robin approach assigns worker threads statically

without reflecting the workload of each connection, some

worker threads are possibly assigned to connection fds

handling low-traffic messages such as OSD_PING,

OSD_PG_INFO, and OSD_PG_NOTIFY, while other

worker threads are assigned to high-traffic messages con-

taining actual data such as OSD_OP and OSD_REPOP. In

the worst case, some worker threads are idle and other

threads handle connections with heavy traffic. This map-

ping structure and round-robin assignment of the Async

messenger cause the bottleneck in a distributed environ-

ment, in particular as the number of connections is getting

bigger.

In order to see how much imbalance each worker thread

generates, we have measured the total size of messages

handled and the average CPU usage of 64 worker threads.

For this, random write operations with 4K block size were

generated for 180 s. As shown in Fig. 2a, the number of

messages handled by each worker thread is highly imbal-

anced as expected. For example, a few worker threads

handle messages of more than 3000 MB for 180 s, while

others handle messages of less than 1000 MB. Figure 2b

also depicts the CPU usage with respect to the messages

handled. The average CPU usages of some worker threads

are over 30%, whereas those of others are far less than

20%.

3.4 Lock contention

A simple approach to solving the load imbalance problem

discussed in Sect. 3.3 is to alter the mapping structure of

worker thread to connection fd so that multiple worker

threads are allowed to be assigned to a single connection

fd. In such case, all worker threads can process messages in

a more timely and load-balanced manner because they are

always ready to receive the traffic from the connection.

Currently, in the original Async messenger, there exists

no lock contention problem because only a single worker

thread is assigned to one fd. In the case of the proposed

(a) (b)

Fig. 1 Communication process using Async messenger in Ceph
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mapping structure, the chance of lock contention is highly

likely when multiple worker threads try to handle the

events for one fd concurrently. Because each worker thread

has the same epoll interest list and the events are processed

based on the order of this list, a certain notable lock con-

tention occurs in specific fds. For example, Fig. 3 shows a

case where the lock contention at a specific fd occurs in the

proposed mapping structure. It is assumed that each worker

thread has the epoll interest list consisting of fd1, fd2, and

fd3 and the I/O traffic is generated continuously from fd1

to fd3. In this case, each worker thread is supposed to

retrieve I/O events from those fds consecutively. As shown

in Fig. 3, the worker 1 first locks fd1 and handles the event.

Hence, worker 2 and worker 3 need to wait until the han-

dling of the fd1 event by worker 1 is finished. In this

example, lock contention occurs only for fd1, and not for

fd2 and fd3.

In order to analyze this further, we have conducted

another experiment and measured the times taken to obtain

the locks in 30 connections. For the experiment, random

write traffic was generated with 4K block size and the

results were obtained for an interval of 60 s. Let us assume

that TiðfdÞ is the lock time of the ith worker thread des-

ignated to a specific fd during the interval, where the lock

time is the difference between the time when the worker

thread arrives at the lock and the time when it obtains the

lock. Thus, the total lock time of a specific fd is
PN

i¼1

TiðfdÞ, where N is the number of worker threads currently

assigned to the fd. As shown in Fig. 4, the total lock times

of most fd connections are less than 5 s, while some fd

connections take more than 30 s. This is because some

worker threads take more time to acquire locks for the

specific fds in which other worker threads have already

acquired and are currently processing the events. This

happened in fd1 case shown in Fig. 3. Therefore, the pro-

posed mapping structure should be carefully designed so

that multiple worker threads are dynamically assigned to a

specific connection fd by considering the lock contention

imposed on this connection fd.

3.5 Maxevents parameter

When a worker thread invokes the epoll_wait() system call,

it passes a parameter called maxevents. This parameter

indicates the maximum number of fds that can be retrieved

simultaneously from the epoll ready list. The default value

for maxevents in Ceph is 5000. In the original Async

messenger, this default value does not cause any significant

problems because each fd can be handled only by one

worker thread and the number of events that can be fetched

simultaneously from single fd is not so large. However, in

the proposed mapping structure where each worker thread

handles events for multiple fds, the possibility of having

different number of events among worker threads

increases.

Figure 5 shows the variation in the size of fd list

obtained by one worker thread when random write traffic is
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generated with 4K block size for 1000 msec and the

maxevents parameter is set to 5000. From the experiment, it

is observed that some worker threads fetch three fds on

average when calling epoll_wait(), whereas others get up to

28 fds. This means that one worker thread can fetch the

events of almost all connection fds, which may create load

imbalance problems among worker threads. Therefore, the

proposed mapping structure needs to be designed in such a

way that all worker threads can fetch equal-sized fd list by

adjusting the maxevents parameter.

4 Design and implementation

To address the load imbalance and lock contention prob-

lems, we propose an idea to change the thread to fd map-

ping structure of current Async messenger so that every

worker thread monitors the traffic from all connections and

is aware of the lock contention to efficiently balance the

workloads among worker threads. In this chapter, we first

explain the design and implementation issues of the pro-

posed communication subsystem, Async-LCAM. Second,

we present a lock contention aware thread placement

algorithm to minimize the contention across multiple

worker threads. Third, we analyze the impact of maxevents

parameter in the Async-LCAM.

4.1 Mapping structure of Async-LCAM

In contrast to the original Async messenger, which assigns

one worker thread per connection fd, the Async-LCAM

assigns multiple worker threads to each connection fd.

Figure 6a, b show the mapping structures of the Async

messenger and the Async-LCAM, respectively. The map-

ping structure of the Async-LCAM has two benefits com-

pared to that of the Async messenger. First, it automatically

solves the load imbalance problem caused by the Async

messenger because multiple worker threads compete to

handle messages for all fds. This allows the Async-LCAM

to efficiently handle messages in a more timely and load-

balanced manner. Second, the mapping structure maxi-

mizes the redundant activities between connections.

The benefit of the Async-LCAM is further depicted in

Figure 7a, b. Let us assume that the worker thread 1 is

assigned to both fd1 and fd2 in the Async messenger. In this

case, if a new event from fd2 occurs while the worker

thread 1 is handling a message from fd1, the worker thread

1 has to handle the message from fd1 first before calling

epoll_wait() to obtain and handle the message from fd2.

This is because one worker thread is assigned only to the

corresponding fd and it has to process the received events

consecutively if multiple events occur at the same time. On

the other hand, in the Async-LCAM shown in Fig. 7b, while

the worker thread 1 is processing the message from fd1, the

worker thread 2 is given an opportunity to handle the event

from fd2. Thus, the performance can be improved as

compared to the original Async messenger.
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However, it should be noted that if multiple threads are

assigned to a single connection fd, there is a possibility of

lock contention. That is, the Async messenger does not

need a lock for each fd because the message for one fd is

handled only by one worker thread. Whereas, the Async-

LCAM requires a lock for each fd because multiple worker

threads try to handle different messages from the same fd.

It is worthy to note that the fd connection is a message-

critical structure handling the sequence from read operation

to dispatch operation, the shared data structure can be

corrupted if different messages of the same fd are handled

simultaneously. Therefore, in order to mitigate the over-

head caused by the lock contention, the Async-LCAM

dynamically assigns multiple threads to the connection fd

by considering lock contention.

4.2 Thread placement in Async-LCAM

As described earlier, the proposed mapping structure has

the lock contention problem. To resolve this issue, we

propose a lock contention-aware thread placement algo-

rithm in this section. The proposed algorithm dynamically

reduces the number of worker threads assigned to fds with

large lock contention and adds additional worker threads to

fds with less lock contention. This approach effectively

controls worker threads while managing the mapping

structure of the Async-LCAM that designates multiple

worker threads to one fd. As a result, the lock time as well

as total I/O time is decreased.

The proposed lock contention-aware thread placement

algorithm is composed of three steps as shown in Algo-

rithm 1. This algorithm is regularly executed by a special

thread in the Async-LCAM in which the interval is set to 3

s.When the algorithm is ready to run, it first determines the

total lock times of all fds during the interval (step 1). Then,

if the total lock time exceeds a certain threshold, the

algorithm performs a thread deletion process (step 2).

Otherwise, the thread selection and addition processes are

performed (step 3). The threshold value is determined

empirically in our cluster environment and is currently set

to 10% of the monitoring interval. In what folows, we

explain the three steps in detail.

Step 1 Monitor Threads Each connection fd maintains a

list of worker threads that are currently assigned

Algorithm 1 : Lock Contention-Aware Thread Place-
ment in Async-LCAM
1: fd : the connection’s fd
2: T : the total lock time of fd
3: N : the size of thread list currently placed on fd
4:
5: procedure Thread Placement
6: Monitor Threads – calculate total lock time of
7: N threads.
8: T ← N

i=1 Ti(fd)
9: if T > threshold then

10: Delete Thread – remove the fd from the epoll
11: interest list in the most recently placed thread.
12: else
13: Select Thread – select a thread that processes
14: the least bytes.
15: Add Thread – add the fd to the epoll interest
16: list of the selected thread.
17: end if
18: end procedure

to this connection. The total lock time is calculated by

adding up the lock times of all worker threads in the list.

The lock time of each worker thread is the accumulation of

individual lock time during the interval, where each indi-

vidual lock time is the difference between the time when

the worker thread arrives at the fd lock and the time when it

acquires the fd lock. If the total lock time is greater than the

predefined threshold, the delete thread step (step 2) is

executed. Whereas, if it is smaller, the select and add

thread step (step 3) is performed.

Step 2 Delete Thread This step is performed if the lock

time of the corresponding fd is higher than the threshold

value chosen earlier. Among the worker threads assigned to

the connection, the most recently assigned worker thread is

selected as a victim. Therefore, the connection fd with

higher lock time than the threshold is removed from the

epoll interest list of the victim worker thread so that it can

no longer manage the messages from this fd. For example,

Fig. 8a shows the process of removing the thread from the

fd1 connection. In this figure, the recently assigned worker

3 is deleted from the thread list managed by fd1 and fd1 is

deregistered from the epoll interest list of worker 3. After

this step, the worker 3 is no longer responsible for handling

the messages from fd1.

Step 3 Select and Add Thread This process is carried out

if the lock time of the corresponding fd is found to be

smaller than the threshold. In this step, an additional

worker thread is assigned to the connection to maximize

(a)

(b)

Fig. 7 Benefits of Async-LCAM compared to Async messenger
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the benefit from the proposed mapping structure. For this,

we select a worker thread with the smallest amount of

processed data as a candidate. Then the selected worker

thread is assigned to this connection fd, which means that

the connection fd is added to the epoll interest list of the

selected thread so that it can handle the messages from this

fd. Figure 8b shows the process of assigning an additional

thread to the fd1 connection. Among the worker threads

that have not been assigned to fd1, a thread with the

smallest processed bytes is selected. In this example, it is

assumed that the worker 3 is selected. Then, the worker 3 is

added to the thread list managed by fd1, and fd1 is regis-

tered to the epoll interest list of worker 3. After this, the

worker 3 can handle the messages from fd1.

4.3 Maxevents parameter

In Sect. 3.5, we highlighted that all worker threads in the

Async-LCAM need to fetch equal-sized fd list so that the

number of events is almost evenly distributed among

worker threads. It should be noted that the maximum

number of fds that one worker thread can retrieve after

calling epoll_wait() is the total number of connections

currently mapped to the worker pool in case the maxevents

value is larger than the number of fds. Therefore, if the

maxevents value is set to the number of current connections

mapped to the worker pool divided by the pool size, the

worker threads can equally handle incoming events.

Figure 9 shows an example of event handling processes

in the worker threads when the events from fd1 to fd6 are

generated constantly and each worker thread fetches events

with different maxevents values such as 5000 and 2. It is

also assumed that the thread pool size is 3. Figure 9a

illustrates the process where the maxevents value is set to

5000, where one worker thread monopolizes the events

from all fds. Whereas in Figure 9b where the maxevents

value is set to the number of connections divided by the

worker pool size, each worker thread can equally handle

events from all fds. Although there is no difference in

incoming workload among threads (each worker handles 6

events), the size of the fd list can be controlled by adjusting

the maxevents value in the epoll_wait() system call. This

allows the possibility of overlapping event processing

activities among worker threads to be maximized, which

leads to performance improvement.

5 Evaluation

In this chapter, we compare the performance of the

Async-LCAM with two different Async messengers such as

original Async messenger and Async-TAM. The Async-

TAM refers to the Async messenger with load balancing

capability based on the traffic-aware algorithm proposed in

[14]. We also show the performance impacts of load bal-

ancing and lock contention-aware thread placement algo-

rithm proposed in the Async-LCAM. For the evaluation, we

compare input output operations per second (IOPS) and

latency by using three different random workloads such as

random read, random write, and random mix (i.e., mixed

workload with 80% random read and 20% random write).

Table 1 summarizes the description of each messenger

version and its mapping structure.

5.1 Experimental setup

For the experiments, we configured Ceph cluster with four

object storage servers (OSS) and each OSS has two SSDs

acting as object storage daemons (OSD). We used three

(a)

(b)

Fig. 8 Two Processes in the thread placement algorithm

(a)

(b)

Fig. 9 Processing events in Async-LCAM according to maxevents

value
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physical Ceph client nodes. The detailed specification of a

server running OSD and Ceph client is summarized in

Table 2. The replication factor and the size of worker

thread pool were set to 2 and 8, respectively. In the thread

placement algorithm, we set the monitoring interval to 3 s

and the threshold value to 10% of this interval. We used

FIO [6] benchmark with librbd/krbd support to vary block

size and to generate different I/O traffic patterns.

5.2 Performance evaluation

Figures 10 and 11 show the throughputs and latencies of

three messengers listed in Table 1. We varied the block

size from 4KB to 1MB and used three workload patterns

such as random read, random write, and a mix of random

read and random write (80% read and 20% write). We set

the iodepth parameter to 128 and numjobs to 8 in FIO

benchmark in order to generate high I/O traffic in the

cluster.

As shown in Figs. 10a and 11a, the Async-LCAM out-

performs the Async-Orig in random write workload when

the block size is large. The Async-LCAM improves the

throughput by 4 and 10% for block sizes of 256 KB and 1

MB as compared to the Async-Orig. The same trend is

observed for latency with an improvement of 13 and 9%

with block sizes of 256 KB and 1 MB, respectively.

However, the Async-TAM shows no improvement in

throughput and latency as reported in [14]. In random read

workload, the Async-LCAM also outperforms the Async-

Orig for relatively large block sizes as shown in Figs. 10b

and 11b. For example, the Async-LCAM improves the

throughput by a factor of 184, 50 and 55% for block sizes

of 64 KB, 256 KB and 1 MB when compared against the

Async-Orig. Furthermore, the Async-LCAM also reduces

the latency up to 65, 34 and 36% for 64 KB, 256 KB and 1

MB block sizes with respect to the Async-Orig. These

throughput and latency gains are due to the revised map-

ping structure and contention-aware thread placement in

the Async-LCAM. Figures 10c and 11c compare the

throughput and latency in random mix workload. Com-

pared to the Async-Orig, the Async-LCAM improves the

Table 1 Types of messengers

for comparison
Version Description Mapping structure

Async-Orig Ceph-10.2.3 community Async messenger One thread per fd

Async-TAM A traffic aware algorithm in Async messenger [14] One thread per fd

Async-LCAM The proposed messenger in this paper Multiple threads per fd

Table 2 Experimental setup
Client node (x3)

Processor Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40GH (4 cores)

Memory 32GB

OS CentOS 7.3.1611 (Kernel version 3.10.0-514)

OSS node (x4)

Processor Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (10 cores)

Memory 32 GB

Network 10 Gbps

OS CentOS 7.3.1611 (Kernel version 3.10.0-514)

Disk Samsung SSD 850 PRO 256 GB * 2/OSD node
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throughput by 5 and 29%, and the latency by a factor of 8

and 10% for block sizes of 256 KB and 1 MB.

Overall, the Async-LCAM shows notable performance

improvement for large-sized blocks. This performance

improvement is mainly attributed to the proposed mapping

structure of assigning multiple worker threads to single

connection file descriptor by considering lock contention

overhead. The performance improvement for random write

operation in the Async-LCAM is less than that of the read

operation. This is because the Ceph client only requires the

messenger layer to read the data from storage server.

Whereas, in the case of write operation, the messenger

receives the data from the client and then continues to the

next layers such as PG processing, journaling and disk

writing. These backend operations are proved to diminish

most of the benefits of proposed idea as will be discussed in

Sect. 5.4. It is also noteworthy that the performance

improvement for small-sized blocks is almost negligible.

This can be explained by the fact that the lock times for

processing small-sized blocks are relatively smaller com-

pared to those of large-sized blocks and thus the benefit of

using lock contention-aware thread placement is mini-

mized. Futhermore, the backend operations for write

requests reduce the overall performance improvement. It is

also observed that there is no vital performance improve-

ment in the Async-TAM, which indicates that the Async-

LCAM is more effective in distributing the workloads

evenly across worker threads than Async-TAM.

5.3 Benefit analysis in Async-LCAM

In order to examine the efficacy of load balancing among

worker threads in the Async-LCAM, we have again mea-

sured the total size of messages handled per thread and its

corresponding average CPU usage with the same configu-

rations as reported in Fig. 2. As shown in Fig. 12a, b, all

worker threads in the async-LCAM process the similar

number of messages within the range of 1500 and 2100

MB and the average CPU usage of each worker thread is

approximately between 18 and 22%. This indicates that the

workload distribution among threads is fairly balanced as

compared to that of the Async-Orig shown in Fig. 2.

Another benefit of using Async-LCAM is its lock

awareness. To show how well the proposed thread place-

ment algorithm manages the lock contention occurred in

the Async-LCAM mapping structure, we have conducted a

similar experiment using the same configurations as we

reported in Fig. 4. As shown in Fig. 13, the maximum lock

time out of 30 connections by using the proposed lock

contention-aware thread placement algorithm is only 5 s.

This is a significant improvement compared to the result of

Async-Orig (maximum 35 s) shown in Fig. 4. This

improvement is mainly attributed to the lock contention-

aware thread placement algorithm proposed in this paper.
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5.4 Bottleneck analysis in PG processing

Unlike the read operation, the write operation in Ceph

includes communications among multiple components, i.e.,

messenger layer and internal PG processing in OSD,

journaling, and writing to filestore. Therefore, even if the

performance of write operation is improved at the mes-

senger layer, the entire storage performance may not be

guaranteed due to the inclusion of several components.

To identify possible bottlenecks and where the perfor-

mance degradation takes place, we modified the data path

in Ceph. Figure 14 shows the two modified data paths:

Msgr Test and Msgr?PG Test. The Msgr Test includes

only the data path that returns its control as soon as each

worker thread dispatches events to the OSD. The

Msgr?PG Test includes the data path that continues its

control until the PG processing in OSD layer is finished

and skips journaling and wrting to filestore.

Figure 15 compares the IOPS value of async-LCAM

with that of the Async-Orig in three different settings: Msgr

Test, Msgr?Pg Test, and Full Test. The Full Test is a test

that passes through all Ceph steps without any modifica-

tions. For the comparison, the random write workload with

4 KB block size is generated. As shown in Fig. 15, the

Async-LCAM improves the throughput by 27% with respect

to the Async-Orig in Msgr Test. However, no further

throughput improvement is observed in Msgr?Pg Test and

Full Test. This result indicates that the performance is

degraded highly when the incoming messages pass through

the PG processing step. Since the performance improve-

ment in the messenger is canceled out from the PG pro-

cessing overhead in OSD, the Full Test shows no further

improvements. This explains the results discussed in Sect.

5.2 that show no performance improvements especially in

small sized blocks.

6 Conclusion

Ceph uses a socket-based communication system called

Async messenger to expedite client and internal cluster

traffic, i.e., heartbeat, peering, and replication. The Async

messenger assigns a worker thread into a single connection

file descriptor. This one-to-one mapping structure creates

asymmetric load distribution across worker threads. Such

asymmetric and uneven load distribution results in per-

formance degradation when there is high I/O traffic in the

cluster. To address this uneven load distribution problem,

we propose an idea to assign multiple threads to the per-

connection file descriptor. However, such strategy of

assigning multiple threads to a single connection file

descriptor can cause lock contention resulting in increased

latency for some I/O transactions.

In this paper, we present lock contention aware mes-

senger (Async-LCAM), a Ceph messenger that evenly bal-

ances the load among worker threads. The Async-LCAM

maximizes redundant activity between connections. It also

dynamically determines the mapping structure between

threads and connection fds, in a contention-aware manner

via lock contention-aware thread placement algorithm. We

have implemented the Async-LCAM in Ceph and compared

its performance with those of baseline Ceph Async mes-

senger and Async-TAM that implements a traffic-aware

algorithm proposed in [14]. The evaluation resuts showed

that the Async-LCAM improves the throughput and latency
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of Ceph storage by up to 184 and 65%, respectively,

compared to the original Async messenger.
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