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Abstract—With the increasing adoption of edge computing,
the capacity requirements of the edge servers are also growing.
Especially the data volume generated from a large number of
edge clients and/or edge devices demand more capacity to be
able to store them for processing. The growing gap between the
data volume and current storage capacity is motivating the need
towards building aggregated storage spaces. Aggregated storage
can be an effective way to extend edge servers’ overall storage
capacity by combining storage resources of other nodes under
the agreement to share. Several Federation file systems exist to
meet this aggregate storage needs but are not without limitations.
Dependency to the specific software stack makes it unfit for
general-purpose use and they often neglect important features
critical for the performance.

In this paper, we address the important challenges of building
the Federation on top of edge servers with the heterogeneous file
system and resource configurations. We prototyped EDGESTORE,
a Federation File System for Edge Servers. EDGESTORE equips
the users with an aggregate storage namespace and federates
resources of edge servers, to enable high resource-sharing in
Federation. We propose, Job and Resource-Aware Request Place-
ment algorithm (JRAP) to take advantage of edge server resource
heterogeneity. To evaluate the usefulness of EDGESTORE, we
consider two federation scenarios i) with same resource configu-
rations and ii) with different resource configurations. We evaluate
the efficacy of various big data applications from data storage
to analysis using EDGESTORE on a real testbed.

I. INTRODUCTION

Data volume from edge devices such as sensors or mobile

devices is increasing at an explosive rate, easily surpassing

the scale of zettabytes [7]. A single weather company can

generate more than 20 terabytes of data per day alone in

order to store temperature readings, wind speeds, barometric

pressures and satellite images from across the globe [8]. This

untamed growth of data volume poses serious challenges

to Big Data applications, requiring massive scale analytical

systems [9]. Current approach to handling such challenges is

to use combination of core cloud services for data storing,

data visualization, text-based search and map-reduce services

from cloud providers. Although powerful and effective, such

core cloud services are known to be not amenable to the edge

computing paradigm where migration of large volume of raw

data to the cloud core is considered prohibitive. The Internet

connectivity may be unstable, network bandwidth small and

the usage cost too high.

On the contrary, small or medium-sized data centers near the

edge, which we refer to as Edge Servers, comprising multiple

machines connected via high-speed network are to guarantee

high data availability and accessibility to the users. Such edge

servers are typically limited in resource, lacking large scale

storage space and computational capacity. We argue that these

edge servers can act as a building block for a federation

by combining multiple edge data centers distributed over the

network in order to enhance the edge computing capability.

However, the current notion of federation tends to assume

homogeneous architectures, i.e., all edges across the network

are required to have a uniform specifications such as identical

file systems, storage bandwidth, compute power and network

connectivity. Existing studies in this space include Xtreem file

system (XtreemFS) [3], Grid Data Farm (GFarm) [10], and

HDFS [5]. However, these file systems allow the aggregation

of only the identical file system. For example, GFarm file

system can aggregate another edge servers that are formatted

with the same GFarm file system [10]. Such narrow require-

ments result in underutilizing the CPU, memory and storage

resources.

Another challenge in building the federation of heteroge-

neous edge servers is designing optimal job placement algo-

rithm that ensures fair load-distribution across participating

edge servers. We generalize this problem as a Request Place-

ment Problem in Federation environments. A recent study,

IFogStor [11], addresses similar problem at the network layer

for the data placement of IoT devices. However, the problem

becomes more challenging in the federation because there

exist different type of Big Data applications, and the resource

heterogeneity of the edge servers. Big Data applications can be

broadly categorized as storage-intensive or compute-intensive.

Storage-intensive applications require large storage bandwidth

(e.g., storing weather datasets) whereas, compute-intensive

requires high CPU power (e.g., running analysis on the stored

weather datasets). Suboptimal placement of requests to the

edge servers may not only incur bad performance, but also

huge data movement costs wasting scarce network bandwidth.

For example, a user or an application requires to store and run

analysis on data. The edge server selected for data storage has

very low computational power and can increase the analysis

application latency to high extent. In such cases, additional

data movement cost is incurred.
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Federation File System Placement POSIX Federation Type Migration Metadata
GBFS [1] Random Posix P/DFS No Awareness Central

GFarmFS [2] Random Posix GFarm No Awareness Central

XtreemFS [3] Random Posix XtreemFS No Awareness Central

iRODS [4] Rule-based Posix iRODS No Awareness Central

Hadoop [5] Random Non-Posix HDFS Migration-Aware Central

FedFS [6] Random Posix FS Referrals No Awareness Central

EDGESTORE JRAP Posix All Posix Migration-Aware Central

TABLE I: List of different features of Federation File Systems. EDGESTORE implements central metadata however, batch-based metadata
scheme is adapted to reduce metadata contention.

To address these challenges of building the Federation of

heterogeneous edge servers, we propose an architecture of sin-

gle aggregate namespace with the capability to integrate edge

servers formatted with different POSIX-compliant file systems.

The aggregate namespace unifies the storage resources of

networked edge servers so that Big Data applications can

directly execute within a single file namespace. To cater for the

effective resource management in the Federation, we designed

Job and Resource-aware Request Placement algorithm (JRAP).

The algorithm takes into account the job type, and available

resource configurations such as storage, compute and network

bandwidth at each edge server. The objective is to compute

Job Execution Time (JET) of edge servers and to route the

requests to edge servers with minimum expected job execution

time. Since algorithm requires information of all the edge

servers, we need to manage various metadata of the Federation.

Metadata we handle are: the total number of edge servers,

resource configuration, which files are stored where and job

statistics at each edge server. We have designed a lightweight

batch-based metadata manager to reduce metadata contention

in I/O intensive applications.

In this work we make the following contributions:

• We investigate and highlight key challenges required in

building the Federation atop of edge servers. To the best

of our knowledge, these challenges are not considered

collectively in previous studies.

• We prototype EDGESTORE, a single namespace file

system capable of aggregating the resources of edge

servers. Single namespace allows a unified view of all

the resources and to centrally manage resources using

batch-based metadata manager.

• To ensure load-distribution and effective utilization of

edge server resources, we design the Job and Resource-

aware Request Placement algorithm (JRAP ). JRAP

computes the optimal data center providing minimal job

execution time (JET) based on the job types. We provide

a comprehensive modeling of request placement problem.

JRAP algorithm is general enough that it can be applied

to any existing Federation file systems.

• To evaluate EDGESTORE, we build two federations, i) ho-

mogeneous resource configurations and ii) heterogeneous

resource configurations at the edge servers. We execute

various big data applications to show the performance of

EDGESTORE on the real testbed.

II. RELATED WORK

Cloud providers offer diverse set of commercial cloud

storage services to meet the needs of cloud users. Some of

the well-known services include Skydrive, Dropbox, iCloud

and Google drive. Most of them operate as single stand-alone

offerings with differing goals and requirements. On the other

hand, researchers have looked at building the federation of

cloud storages distributed over multiple geo-distributed data

centers equipped with high-speed networks. However, these

federated file systems are designed with specific requirements,

application types and/or software architectures. Table I lists

key features of several Federation file systems.

The parallel and distributed file systems such as Ceph [12],

Gluster [13] and Lustre [14] are designed for a single-

site installations, i.e. only for a single cluster. Grid Data

Farm (GFarm) [10], Xtreem File System (XtreemFS) [3] and

HDFS [5] are specifically designed for petascale storage and

computing. SPANStore [15] introduces a geo-replicated stor-

age service that focuses on the cost-effectivenss and delivering

the key-value store service. GBFS [1] offers aggregate storage

over wide-area network via grouping file systems. However,

none of them are intended to provide the aggregated and

unified view of file systems dispersed across data centers.

Another study includes FedFS [6] and iRods [4], an object-

oriented rule-based storage system which provides virtual

data abstraction along with the workflow automation. These

systems are limited to remote memory communications, and

cannot aggregate all resources of the remote data center.

Major Federation file systems in Table I employ random re-

quest placement except for iRods [4]. However, random place-

ment is always not an efficient solution. It incurs performance

overhead and data migration cost. Additionally, implementing

a flexible placement is quite complex, as it requires complete

knowledge and design insight of file system under considera-

tion. IFogStor [11] implements a resource-aware placement

methodology for IoT data placement. Agarwal et al. [16]

proposed an automated data placement mechanism, Volley,

for geo-distributed cloud services. Yuan et al [17] proposed

a data placement-based approach for scientific workflows.

Apart from these, there are very few studies conducted on

scavenging existing available resources such as desktop and

server machines. FreeLoader [18] and Pado [19] introduce the
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Fig. 1: EDGESTORE Architecture. Edge servers show heterogeneity
in file system and resource configurations.

notion of scavenging existing resources to suffice additional

capacity and analytical demands. Major limitations of using

NFS mount at the edge servers are the load-distribution and

job-awareness. A single namespace or aggregated view of

multiple NFS mount points at the single edge is not possible.

There are several key differences in our study as compared

to existing Federation file systems. The objective of EDGE-

STORE is to enable Federation on top of heterogeneous nodes

such as desktops or server machines acting as network edges

in the data center topology. The file system heterogeneity is

never considered in prior studies and none of the existing file

systems allow aggregation of disparate type of file system.

Moreover, all of the existing studies target Cloud and not

the Federation environments where resources fluctuate highly.

Also, none of the existing studies consider the application, job,

and resource-awareness all together in the request placement

model. We envision EDGESTORE to provide aggregate storage

namespace atop of edge servers connected via network.

III. EDGESTORE: SYSTEM OVERVIEW

In this section, we present overall architecture of EDGE-

STORE followed by description of key components.

A. EDGESTORE Architecture

Figure 1 shows the architectural overview of EDGESTORE,

aggregating edge servers connected via the network and

equipped with different file systems.

The Aggregate Storage Namespace (ASN) in EDGESTORE

provides location-transparency and is responsible for equip-

ping EDGESTORE with POSIX standards and file system

operations. The file systems of edge servers are mounted

on a user machine via linux NFS [20]. The ASN layer

of each client builds a virtual abstraction which keeps the

users unaware of the actual data location and underlying

Fig. 2: Workflow illustration of user interaction and optimal edge
server selection in EDGESTORE.

storage architecture. As such, unification of multiple edge

servers requires some additional metadata management such

as identities of participating edge servers, resource details and

file-to-edge server mappings, i.e., what file is stored at which

edge server. To accommodate such metadata, we designed

metadata manager (MDM) which records all the file-to-edge

server mappings and Federation metadata such as total edge

servers in the Federation, resource statistics, on-going jobs and

operations in the ASN layer. To collect the resource availability

at each edge server, we deploy the Resource Monitor Manager

(RMM). RMM can periodically collect information of resource

availability at each edge server.

Then, based on the resource availability condition, Job

and Resource aware Request Placement (JRAP) algorithm

determines the optimal target edge server. We also deploy the

Direct Channel Migrator (DCM), a migration protocol which

allows data migration from one edge server to another edge

server bypassing the Federation namespace for efficiency.

B. Job Execution Workflow

Job and Resource-aware Request Placement (JRAP) is the

core part of EDGESTORE. When a request arrives at the

namespace layer, ASN invokes the JRAP to find a best-fit

edge server with minimum job execution time for the request.

JRAP algorithm computes the optimal edge server based on

multiple parameters, received as input from other components.

Figure 2 depicts a general workflow of user interaction and

edge server selection in EDGESTORE. The user provides a

complete job description, such as job type, total data size,

application characteristics, and number of edge servers to

complete the job. This information is used to estimate the

application runtime. Application time can be predicted through

regression with past experimental results stored in MDM such

as application type, analysis time, data size, and compute

power as experimental history of EDGESTORE. RMM provides

the snapshot of available resources at edge servers, i.e., net-

work bandwidth, available storage capacity, storage bandwidth

and compute power of each edge server. JRAP takes into

account these inputs and determines the optimal edge server.

Then, EDGESTORE routes the request to that particular edge

server.

In this study, we focus on building the Federation with

commodity edge servers equipped with dissimilar file systems.
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After the data is generated, the user inquires MDM at the

application level, finds the location of the files, and connects

to the edge server to launch the analysis application. This

remote execution can be done through a job scheduler imple-

mentation, or it can be done manually by the user. The current

work includes no integration of remote execution layer with

EDGESTORE. This study assumes that this remote execution

is done either way.

IV. EDGESTORE: JOB AND RESOURCE AWARE PLACEMENT

In this section, we present our job classification, system

model, and algorithm for optimal request placement in Feder-

ation comprising of heterogeneous edge servers.

A. Problem Formulation: Objective and Constraints

While Big Data is now in vogue, many organizations are

using the private cloud-based Federations for their applica-

tions. Each application has different job type based on their

functionalities, thus it changes the patterns of data processing.

Some applications require immediate analysis on generated

data while others are more focused on investigating legacy

data. Therefore, we divide the job requests into three categories

as shown in Table II.

Job Category Description
End-to-End (EE) Requires both data storage and immediate analysis.

Placement Only (PO) Requires only data storage and no analysis.

Analysis Only (AO) Requires only data analysis and no storage.

TABLE II: The job categorizations for Big Data applications.

For the convenience of the readers, major notations used

in this paper are listed in Table III. We consider a network

connected set of edge servers ES = {ES1, ES2, ..., ESn}
and a set of data generators (e.g., weather sensing satellites, or

clients) DG = {DG1, DG2, ..., DGn} that are continuously

generating large volumes of data. The data generator connects

to the edge server via dedicated high bandwidth network with

S VPN switches at the user side and S’ VPN switches each

co-located with edge server.

JRAP exploits the benefits of parallel processing and splits

the data across multiple edge servers ensuring the optimal

time. Splitting the data across all the servers in the Federation

may give a minimum job execution time however it increases

the data migration and metadata overheads. Therefore, we

introduced a parameter β, which is a positive real number

(β ∈ R
+) and it controls the number of edge servers used for

particular request. Our algorithm finds the set of β number of

optimal edge servers. By default, we consider β as a single

edge server unless specified by the user. The workload is

proportionally distributed among edge servers based on the

resources availability of edge server. Specifically, the edge

server with powerful resources gets the maximum proportion.

Note that β is defined by the data generator based on their

requirement. For example, β = 1 means user wants all the

data to be stored in a single edge server.

Transfer Time: Consider the data generator DGi wants

to send the xij amount of data to edge server ESj . Let αk

Constants Description
G(N,E,W ) The graph model of a Federation infrastructure.
W(e) Weight of a link connecting two points.
ES The set of edge servers.
DG The set of data generators or users.
αk Size of slice k.

Variables Description
nij Time taken to transfer one slice of data from DGi to ESj .
sj Time taken to store one slice of data by edge server cj .
rj Time taken to analyze one slice of data by edge server rj .
JET Job execution time.

TABLE III: Summary of notations used in model formulation.

be the size of slice and p be the number of slices needed to

be transferred from data generator DGi to edge server ESj .

Therefore, the total amount of data xij = p.αk. The time taken

to transfer one slice of data from DGi to ESj is denoted as

nij . Therefore, the total data transfer time is given as:

ttr =
∑

DGi∈DG,ESj∈ES p.nij

Storage Time: It is an important factor to be considered in

choosing the edge server for request placement. Let’s consider

sj be the time taken to store one slice of data by edge server

ESj . The overall storage time incurred is:

tst =
∑

ESj∈ES p.sj
Analysis Time: The edge server with a high computation

power is more likely to be chosen for data analysis. Let rj
be the time taken to analyze one slice of data and p be the

number of slices needed to be analyzed. The overall analysis

time is represented as:

tan =
∑

ESj∈ES p.rj

B. Job and Resource-aware Request Placement

In this section, we present our placement model with respect

to three job categories as shown in Table II.

End-to-End Job (EE): This job type requires both data

placement and immediate analysis. Therefore, we try to opti-

mize the data storage and analysis considering the combination

of data routing, data storage and analysis constraints. We use

the Job Execution Time (JET) of a data processing request

as a metric of selecting a set of optimal edge servers. A

straight forward way to reduce JET is by deploying the high-

speed network between the data generator and edge servers.

However, simple network improvements only increase the data

transfer speed, and not end-to-end data placement and analysis

time. Therefore, the storage bandwidth and computational

power of edge server also plays a vital role in achieving

the minimum JET. In addition, JRAP also needs to consider

the current workload and the availability of resources at the

edge servers. Technically, the edge server with less available

resources yields high JET as compared to the edge server with

maximum available resources such as storage bandwidth and

computational power.

Assume the data generator DGi ∈ DG has initiated a EE

request at a certain period. The total JET to be minimized

has three components: transfer time ttr, storage time tst and

analysis time tan. Recall that ttr is the data transfer time from

data generator to edge server, tst is the data storage time taken

by edge server and tan is data analysis time. Putting these
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times together, we can get the cumulative job execution time

of DCj .

JETESj = max(ttr, tst) + tan (1)

Here, max(ttr, tst) represents the data placement time.

Since we use slice as a unit in data storage and processing,

edge server begins write operation as soon as it receives the

first slice. Therefore, to avoid time overlapping we use the

maximum of transfer time and storage time.

Our objective function is to determine a set of optimal edge

server that minimizes the overall job execution time. There-

fore, the job request is sent to β edge servers simultaneously

and the maximum JET consumed by any edge server is taken

as overall JET. We can represent it as:

JET = max(JETES1 , JETES2 , ..., JETESβ
) (2)

Placement Only (PO): In most big data applications, the

data is produced continuously from different geographical

locations and analysis is not pre-defined. We next design

a model that automates the data placement only (PO) job

requests by exploiting the same parallel processing.

The data placement time tpl at ESj can be formulated

as: tplj = max(ttr, tst). Since the data request is sent to

each server edge simultaneously. Therefore, the maximum data

placement time consumed by any edge server considered as

aggregated Tpl. We can represent it as:

Tpl = max(tpl1 , tpl2 , ..., tplβ ) (3)

Analysis Only (AO): For data analysis only jobs, we adopt

an on-site analysis approach, whose basic idea is to perform

analysis on the edge server unless migrating data to any

other edge server improves analysis time. Therefore, the data

migration occurs only in two cases: (1) Edge server ESj does

not have any computation power, and (2) The data from ESj

is migrated to ESk if tanj
> (tmijk + tank

). Here tanj
is

analysis time on ESj , tmijk is migration time from ESj to

ESk and tank
is analysis time on ESk. The migration time can

be seen as Tpl, the only difference is ttr depends on network

bandwidth between edge servers instead of data generator to

edge servers.

The total analysis time Tan of ESj can be formulated as:

Tanj
= tmi + tan

In case of on-site analysis tmi = 0. Similar to aggregated

Tpl, we can compute aggregated analysis time Taggan
of job

request performed by n number of edge server:

Taggan
= max(Tan1

, Tan2
, ..., Tann

) (4)

C. Job and Resource-aware Request Placement Algorithm

In this section, we present Job and Resource-aware Request

Placement algorithm (Algorithm 1), that can manage each job

based on their type. To simplify the presentation, we con-

sider EE job category in the following algorithm description.

Our algorithm, determines the β number of optimal edge

servers for each EE request given complete knowledge of

data generation in both spatial and temporal domains. The

Algorithm 1: Optimal Job and Request Placement Algorithm.

Input: DG, list of data generator; ES, list of edge servers; xij ,
requested data size; β, number of edge servers used for data
placement; JT, Job type

Output: ESoptset, /*Optimal edge server set*/
1 ESsort ← sort.ES(JETESj

, JT ) /*sort ES list by Job Execution
Time*/

2 EScandopt ← ESsorti=1toβ /*optimal set contains first β edge
servers from sorted list*/

3 allocate.size(EScandopt)
4 notifyresourceusage(EScandopt)
5 EScandopt.JET = ComputeJET (EScandopt,JT )
6 findopt = false
7 while findopt �= true do
8 for each ESj in EScandopt do
9 if ES.availabcap > allocate.size then

10 JETopt ← JET
11 ESoptset ← EScandopt
12 findopt = true
13 end
14 JET = ComputeJET (EScandoptsize )
15 ESvictim ← EScandopt.pop() /*pop ES which does not

have required available capacity*/
16 EScandopt ← ESsort.push() /*push next ES in

EScandopt from sorted list*/
17 JETnew = ComputeJET (EScandopt)
18 if JETnew < JET then
19 JETopt ← JETnew
20 ESoptset ← EScandopt
21 findopt = true
22 end
23 end
24 end
25 return ESoptset

decision making of algorithm depends on the current resource

availability at each edge server. At first, algorithm sorts the

edge server based on the JETESj
of each server and generates

the candidate optimal set EScandopt by taking first β severs

from the sorted list. We then distribute the data among network

connected edge servers based on the available resources and

computes the optimal JETopt. However, this EScandopt and

JETopt may not remain valid if any of the edge server

in EScandopt has less available storage capacity than the

allocated data size. In such case, the algorithm assigns the

remaining data to other edge server in candidate list and re-

calculate the Tpl. Then, EScandopt is updated by discarding

the edge server with less available capacity and inserting next

edge server from the sorted list. We compute the JETnew

of updated EScandopt. Algorithm checks if JETnew < JET
then, we update our JETopt and ESoptset set. Eventually,

algorithm terminates by returning ESoptset with minimum

JET. To achieve minimum JET considering parallel storage

and analysis, we slightly modified the Algorithm 1 to find

the set of optimal edge servers. For PO, first EScandopt is

computed by sorting the edge servers based on tpl and then

we use the formula presented in equation (3) to compute the

minimum data placement time. Similarly, for AO, to choose

the edge server for migration, we simply sort the edge servers

based on Tan and then, use the equation (4) to compute the

Taggan .

V. EDGESTORE: DESIGN AND IMPLEMENTATION

In this section, we describe our rationale behind the ASN

design and implementation, Job and resource-aware request

placement (JRAP) and batch-based metadata manager (MDM).
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A. ASN: Aggregate Storage Namespace

We prototyped ASN in FUSE's high-level API v2.9.4 [21].

We implemented all the basic file system operations in ASN

such as init, access, create, getattr, mkdir, read, readdir, write
When EDGESTORE is mounted, asn init is the first function

to execute. The metadata manager address is supplied as an

argument at mount time. asn init performs initial setup con-

figuration checks, and validate the metadata manager (MDM)

service is up and running. Then, it initiates a request to

MDM by providing a list of participating edge servers in

Federation with their configurations pre-defined in EDGE-

STORE. Upon receiving a response from MDM, asn init fills

the private data structures to keep the list of edge servers

contributing resources in EDGESTORE Federation. On the

contrary, asn destroy unmounts EDGESTORE. The metadata-

oriented methods like ufs create and asn open, all require

MDM assistance in order to get the data location in Federation,

i.e., which edge server contains the data. When data-oriented

methods such as asn write are invoked, only a 4KB of

data is sent to the userspace daemon for writing but when

big writes optimization parameter is passed as an argument

to EDGESTORE, then bigger chunks of data are sent to the

userspace daemon. This chunk size value is configured in

FUSE configurations. We used max writes of size 128KB in

order to observe better and consistent performance throughout

our implementation and evaluation.

B. MDM: Metadata Manager

Metadata manager (MDM) in our design is of vital im-

portance. Firstly, it interacts with all the EDGESTORE compo-

nents. Secondly, all requests require assistance from the MDM

to complete the operations. Thirdly, the federation metadata

statistics such as the total number of edge servers, with

default resource configurations are managed by the MDM.

Such significance motivated us to design a lightweight and

efficient batch-based metadata approach, where the number of

metadata I/Os can be reduced and which in turns improves the

EDGESTORE performance.

We implemented MDM using gRPC, a high performance,

open-source, multi-platform, language neutral RPC frame-

work for developing distributed applications and services [22].

MDM is defined as a gRPC service. gRPC uses google

protocol buffers (Protobuf) for underlying message interchange

format [22]. Protobuf is google's open source mechanism for

serializing structured data [23]. We defined standard mes-

saging format in Protobuf for communication among all the

components. The file system metadata e.g., stat, size, date

are maintained by the edge server file system. Our batch-

based scheme holds the metadata in EDGESTORE memory

and do not communicate with the MDM unless triggered.

Once triggered, we generate a single multi-valued insert query

and send the message to MDM. In this way, we reduce the

multiple I/Os to MDM. We use two types of triggers to flush

the cached metadata to MDM. First trigger is, user controlled

batch size and second is time-based trigger. If batch size is

not defined, certain number of requests stay in cache unless

timer expires and flushes the metadata using same single SQL

insert query. This batch-scheme is designed to cache insert

and update metadata requests only. However, there is a fault-

tolerance issue related with this batch-based scheme but we

believe that, it can be omitted by using persistent memory

storage such as Flash or PRAM. We used SQLite [24] to store

metadata.

C. JRAP: Job and Resource-aware Request Placement

JRAP is responsible for controlling and load-balancing the

request placement in the Federation built on top of resource

heterogeneous edge servers. JRAP depends on a few param-

eters to calculate the optimal edge server at request arrival.

The parameters include job type, available capacity, storage

bandwidth, computation power, and network bandwidth. The

available resource values are provided by the RMM running

on each edge data center. Once all resource values are input to

JRAP, JRAP filters the edge server list based on job type and

available capacity. Then JRAP computes the JET on filtered

edge server list. JRAP output is optimal data center with

minimum job execution time. The output is sent to MDM to

store the file and its location. The JRAP is implemented as

part of ASN, where all data related-operations create, write
and read consult JRAP to provide optimal edge server, which

can complete job in minimum time. Currently, JRAP uses the

snapshot decision model based on the information available at

the start of the job. JRAP modeling and algorithm details are

listed in Section IV.

D. DCM: Direct Channel Migrator

Direct channel migrator (DCM) is accountable for data

movement across the edge servers in the Federation. The

major reason to implement a direct channel communication

is to optimize the task completion time. If we fetch the

data first through Federation namespace and then, copy the

data to destination edge server. It requires copying round-trip

that can be omitted via direct channel migration approach.

We implemented the DCM by extending an end-to-end data

transfer software [25]. The DCM is integrated with JRAP.

Whenever, JRAP requires data migration, it triggers DCM

service on the source with a complete transfer request format.

A simple request includes data location (edge server hosting

data), data size, destination edge server (edge server to which

data will be transferred).

VI. EVALUATION

A. Evaluation Setup

1) Testbeds: We evaluated EDGESTORE on two different

testbeds shown in Table IV. The Testbed I is homogenous

and comprises of 4 edge servers connected via Infiniband

(56Gbps), whereas Testbed II is heterogeneous. We use 4

desktop machines with varying resource configurations at

each edge server as shown in Table IV (Testbed II). The

edge servers are mounted on the data generator using Linux
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Testbed Nodes Disk
(MB/s)

CPU (GHz)
Network
(Mb/s)

Testbed I 4 ESs 81 2.60 x16 Cores IB(56 Gb/s)

Testbed II

ES 1 116 2.40 x8 Cores 942
ES 2 86 3.20 x8 Cores 239
ES 3 182 2.2 x8 Cores 91
ES 4 116 1.7 x4 Cores 942

TABLE IV: Description of testbed setup used for evaluation.
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Fig. 3: Performance analysis of EDGESTORE on Testbed I.

NFS [20]. We build Ext4 Federation via EDGESTORE proto-

type. There are two reasons to use the Ext4 file system Feder-

ation. First, we have a limited small-scale testbed and second,

it is widely used and has a well-documented design which

facilitates performance analysis. Before every experiment, we

drop system cache and remount the EDGESTORE. EDGE-

STORE is implemented in C++ comprising of 3000 lines of

codes. To fairly evaluate our prototype, we used four realistic

Big Data applications namely Group-by Aggregation (GAG),

Aggregation (AG), Grep (GR) and Word-Count (WC). The

analysis time of above mentioned applications with different

data sizes were pre-collected and stored in MDM.

B. EDGESTORE Performance Analysis

To analyze performance overhead, we compare EDGE-

STORE with Linux NFS. This experiment is conducted on 2

nodes of Testbed I. We mount EDGESTORE on top of NFS

client. We use two types of workloads i) Big Files (16 files

x 1GB) and ii) Small Files (1600 files x 10MB) to observe

FUSE layer and metadata overhead. Figure 3(a) and (b) shows

the throughput for big and small files workload. We increase

the number of clients in each experiment. The peak perfor-

mance observed by NFS is 800MB/s whereas, EDGESTORE

is 450MB/s with 4 clients. However, when we use 16 clients,

NFS shows huge performance degradation (70%) as compared

to NFS with 4 clients. We believe this as network congestion

by Linux NFS. Whereas, EDGESTORE shows degraded per-

formance mainly due to FUSE implementation overhead. It

is because FUSE uses buffer space and OS page-cache. To

verify our results, we also conducted same experiments with

IOR [26] and observed the same performance patterns. The

error bars in Figure 3(a) and (b) depicts the ratio of standard

deviation to the mean for multiple runs of the experiment.

C. Evaluating the Efficacy of JRAP in EDGESTORE

Figure 4(a) presents the comparison of JRAP with different

placement approaches used in file systems. This experiment

is conducted on Testbed I. To analyze the job distribution

in EDGESTORE, we created three job sets, one set per each

job category EE, PO and AO as defined in Section IV. The

first job set comprises of four EE jobs, the second includes

four PO jobs and third, contains four AO jobs. We use

10GB of job workload. Each job set is evaluated via Round-

Robin (RR), Random (Rand) and JRAP placement approach

in EDGESTORE. Figure 4(a) shows the total completion time

of all jobs.

We observed that JRAP outperformed the RR and Rand. The

RR assigns the first job of each job set to ES1, ES2 and ES3

without considering job type and resources at the edge server.

In such case, the ES2 in Federation is under-utilized whereas,

ES1 is over-utilized hence, the response time is considered

as the maximum time taken by the edge server. Similarly,

Rand distributes the job sets randomly across the edge servers.

The results showed that maximum time taken by Rand is

less than RR but, higher than JRAP. The JRAP approach

shows the balanced utilization of resources by assigning jobs

to appropriate edge servers as per job type and resource

availability. The evaluation showed the significance of request

placement as a vital feature in heterogeneous Federation file

systems.

Figure 4(b) presents the JET of all four workloads of size

1GB with and without the integration of JRAP in EDGE-

STORE. The reason to use smaller datasets is to clearly show

the overhead and effectiveness of EDGESTORE. To show the

efficient decision making and resource management of JRAP,

we consider all four jobs are simultaneously generated by a

data generator. The NoJRAP refers to EDGESTORE without

JRAP. NoJRAP schedules request placement in a Round-Robin

fashion i.e., WC, AG, GR and GAG are assigned to ES1,

ES2, ES3 and ES4, respectively. Then, it aggregates all data

to ES2 (because ES2 has the highest computational power as

shown in Table IV) for data analysis which incurs additional

migration overhead. The labels at the top of each bar represent

the edge server participating in the job.

Figure 4(b), demonstrates that JRAP always made an opti-

mal decision by efficiently utilizing the available resources

at each edge server ensuring minimum JET. We observed

that placement time and analysis time for WC-NoJRAP is

smaller than WC-JRAP. However, due to migration overhead

commulative JET of WC-NoJRAP is higher than WC-JRAP.

Similar trend is observed for other applications where NoJRAP

can outperform JRAP in individual placement or analysis

time. However, JRAP shows superiority in terms of end-

to-end analysis aware job execution time. We observe from

experimental results that storage, computation and network

bandwidth all together play important role in efficient end-to-

end request placement The decision making of JRAP exploits

this observation to deliver the optimal decision with minimum

JET.

Figure 4(c) shows the analysis of (AO) job evaluation with

direct channel migration in Federation with a certain workflow.

This experiment is conducted on Testbed II. We defined a

workflow in this experiment, the edge servers ES1 and ES2

can only run analytical jobs in Federation because of high
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Fig. 4: Efficacy of JRAP in EDGESTORE with β=1. (a) JRAP comparison with other job placement approaches evaluated in Testbed-I, (b)
refers to evaluation of EE jobs on Testbed-II and (c) AO jobs in Federation evaluated on Testbed-II with and without DCM.

computation power. We first stored 1 GB of data on each edge

server including ES1 and ES2. We conducted this experiment

to show the effectiveness of data migration in Federation. In

Figure 4(c) WC and AG are executed without any migration

because data is already stored on ES1 and ES2, whereas, data

stored on ES3 and ES4 has to be migrated to either analytical

edge server. The JRAP manager determines the destination

data centers to migrate data to ES1 and ES2 based on job type

and resources. The NoDCM in this experiement refers to no

direct channel migration and requires data to be transferred via

Federation. The data first needs to be collected at EDGESTORE

Federation and then, transfer to required edge server where,

analysis will be performed. The experimental results depict

that, even in small scale Federation, data migration can impact

the performance.

VII. CONCLUSION

In this work, we have designed and developed EDGESTORE

capable of providing unified view of heterogeneous file sys-

tems and resources in edge servers. In order to achieve the

single aggregate storage namespace, EDGESTORE employes

various techniques such as Job and Resource-aware placement

algorithm (JRAP), efficient metadata management and Fuse-

based file operation support. We have evaluated EDGESTORE

on homogeneous and heterogeneous real testbed and simula-

tion environments using different various Big Data applica-

tions. Our evaluation supports the feasibility of EDGESTORE

Federation on top of commodity edge servers. JRAP algorithm

also outperforms the other placement approaches.
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