
DymGPU: Dynamic Memory Management for
Sharing GPUs in Virtualized Clouds

Younghun Park, Minwoo Gu, Sungju Yoo, Youngjae Kim, Sungyong Park
Department of Computer Science and Engineering

Sogang University
Seoul, Republic of Korea

{parkyh93, mwgu, wysh123, youkim, parksy}@sogang.ac.kr

Abstract—gVirt is a full GPU virtualization technique for
Intel’s integrated GPUs that alleviates the problems of other
GPU virtualization techniques such as API remoting and direct
pass-through. The original gVirt is known to have an inherent
scalability limitation on the number of simultaneous virtual
machines (VM). gScale solved this problem by allowing each VM
to share a global graphics memory space and copy the entries
in a private graphics translation table (GTT) to a physical GTT
along with a GPU context switch. However, it still suffers from
a large overhead of copying entries between private GTT and
physical GTT, which becomes worse when the global graphics
memory space allocated for each VM is overlapped.

In this paper, we identify that the copy overhead caused by
GPU context switch is the major bottleneck in performance
improvement and propose a dynamic memory management
scheme, called DymGPU, that provides two memory allocation
algorithms such as size-based and utilization-based algorithms.
While the size-based algorithm allocates memory space based
on the memory size required by each VM, the utilization-based
algorithm considers GPU utilization of each VM to allocate the
memory space. DymGPU is also dynamic in the sense that the
global graphics memory space used by each VM is rearranged at
runtime by periodically checking idle VMs and GPU utilization of
each runnable VM. We have implemented our proposed approach
in gVirt and confirmed that the proposed scheme reduces GPU
context switch time by up to 53% and improved the overall
performance of various GPU applications by up to 39%.

Index Terms—Cloud Computing, GPU Virtualization, GPU
Scheduling

I. INTRODUCTION

With the advances in computing and hardware technologies,

various types of GPUs [1] [2] have recently been used for

performance acceleration in compute-intensive applications.

This has led to a situation where cloud service providers

(CSP) start offering GPU instances over virtualized clouds.

In order to provide high performance GPU services over

virtualized clouds, many GPU virtualization techniques have

been proposed. API remoting [3] [4] [5] is a technique that

intercepts high-level client’s API calls and forwards them to

the host for processing. Although this approach is simple to

implement, it depends on the version of the API library or

GPU driver, which lacks flexibility and can’t provide full GPU

features. Direct pass-through [6] dedicates a GPU to a single

This research was supported by Next-Generation Information Computing
Development Program through National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT (2017M3C4A7080245)

virtual machine (VM) and allows it to use the GPU directly

without hypervisor intervention. This technique provides high

performance at the cost of prohibiting the sharing of GPU

among VMs. To alleviate the problems of aforementioned

approaches, full GPU virtualization solutions at the hypervisor

level such as gVirt [7] and GPUvm [8] are introduced.

Among them, gVirt is an open source, full GPU virtualiza-

tion solution for Intel’s integrated GPUs that are integrated

into the CPU and utilize system memory instead of dedicated

graphics memory. In gVirt, the performance-critical resources

can be directly accessed by a VM, while the hypervisor inter-

venes for privileged operations. The original gVirt could only

support up to three VMs owing to insufficient GPU memory.

gScale [9] solved this problem by partitioning global graphics

memory space into fixed size slots and allocating them to

each VM so that multiple VMs can share the global graphics

memory space. The accesses to global graphics memory space

are then translated to those to system memory by using a

physical graphics translation table (GTT). Since each VM

needs to see the whole view of global graphics memory

space, it also maintains a private GTT so that the entries in a

private GTT are copied to a physical GTT whenever a VM is

scheduled to run. From an in-depth analysis of GPU context

switch, which will be discussed in Section II, we found that

GPU context switch incurs non-trivial overhead and the cost

of copying GTT entries is extremly high. This leads to VM

throughput degradation.

There have been few research efforts to address the per-

formance problems resulting from the costs of GPU context

switch. GPUswap [10] and GPrioSwap [11] proposed swap-

ping policies to solve memory shortage problems on NVIDIA

GPU. They transfer part of an application with low priority in

internal graphics memory to system memory. Since the Intel’s

integrated GPU uses system memory as graphics memory, it

is difficult to apply their schemes directly to gVirt. Also they

mainly focus on maintaining fairness between clients rather

than reducing the GPU context switch overhead that occurs

during memory swap. gScale recently proposed a proactive

approach [12] that copies a private GTT to a physical GTT

before context switch. However, this approach requires the

change in scheduler in order to optimize performance, which

is not portable and cannot be used in general.

In this paper, we first show that GPU context switch

51

2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems

978-1-5386-5175-9/18/$31.00 ©2018 IEEE
DOI 10.1109/FAS-W.2018.00025

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

creates a bottleneck in performance improvement. Based on

this inference, we propose a dynamic memory management

scheme called DymGPU. DymGPU provides two memory

allocation algorithms such as size-based and utilization-based

algorithms that can be selected by users. The size-based

algorithm allocates global graphics memory space to each VM

based on the memory size required by each VM such that

the memory space shared among VMs is minimized. This is

because when part of global graphics memory space is shared

by two or more VMs, the copying of the entries in private GTT

to physical GTT during GPU context switch is an unavoidable

step, regardless of the number of VMs involved. On the other

hand, in a utilization-based algorithm, if VMs with higher

GPU utilization share global graphics memory space with

other VMs, it is more likely that the copies can be made several

times. DymGPU reduces the number of copies made as far as

possible by ensuring that VMs with higher GPU utilization do

not share memory with other VMs. DymGPU is also dynamic

in the sense that the global graphics memory space used by

each VM is rearranged at runtime by periodically checking

idle VMs and GPU utilization of each runnable VM.

To demonstrate the performance improvement by the use

of DymGPU, we have implemented our approach in the

2016Q4 version of gVirt on a Xen hypervisor [13]. Further-

more, we also incorporated gScale’s GPU memory sharing

technique into gVirt in order to scale up to 15 Linux VMs.

The benchmarking results show that DymGPU reduces GPU

context switch time by up to 53% and improves the overall

performance of various graphics applications by up to 39%.

The rest of this paper is organized as follows. Section II

briefly introduces gVirt and discusses the motivations related

to our proposed approach. Section III explains the overall

architecture of DymGPU and its implementation issues in

detail. Section IV evaluates DymGPU against gVirt. Section

V concludes this paper with possible future works.

II. BACKGROUND AND MOTIVATION

A. Background of gVirt

gVirt (also called Intel GVT-g) is a high-performance, full

GPU virtualization technique for Intel’s integrated GPUs [7].

This technique provides mediated pass-through capability that

runs the native graphics driver in the guest. Therefore, the

performance-critical resources can be directly accessed by

a VM, while the hypervisor intervenes only for privileged

operations. Currently, two implementations based on both Xen

hypervisor (called XenGT) and KVM hypervisor (KVMGT)

are available. The initial gVirt implementation was restricted

to run only up to 3 vGPU (virtual GPU) instances. gScale
overcame this limitation by allowing global graphics memory

space to be shared among multiple vGPU instances and scaled

up to 15 vGPU instances in Linux and 12 vGPU instances in

Windows. In this paper, we use gVirt as a GVT-g implemen-

tation for Xen (XenGT) in which gScale modifications are

added.

In gVirt, a mediator in Dom0 schedules vGPUs in a round-

robin manner. Each vGPU is allotted a 16-ms time quantum

��� ����

	
���

	�������

������
�����

�������

	��

������
������

�	��� �	���
�������
	��� �������
	���

�

���� ����

Fig. 1: Global Graphics Memory Space and Mapping in gVirt

that takes into account high GPU context switch cost and

speed. After the assigned time is elapsed, the vGPU state is

saved and the state of the next vGPU is restored.

The 4 GB global graphics memory space of Intel’s inte-

grated GPU is divided into low global graphics memory that

both the CPU and GPU can access, and high global graphics

memory that only the GPU can access. The original gVirt
partitions low global graphics memory for each vGPU such

that it is not shared with other VMs. This restricts the number

of vGPUs running at the same time. gScale modifies the layout

of low global graphics memory and creates a slot such that

multiple vGPU can share the slot and swap the related contents

whenever each vGPU is ready to run. High global graphics

memory is divided into 64 MB slots, and multiple continuous

slots are assigned to each vGPU. When a new VM is created,

gVirt computes a score for every case where the vGPU of the

VM can be allocated. gVirt assigns a score per slot for each

case. If the slot is not occupied by any vGPU, nothing is added

to the score. Otherwise, weight, which is deliberately set to a

very large value, is added to the score to minimize sharing of

the slot with other VMs. After summarizing the scores of each

slot, continuous slots with the lowest scores are allocated to

the vGPU. If there are multiple minimum scores, the leftmost

slots are chosen. For example, if there are 5 slots and slots

1, 2, 3, and 4 are occupied by one VM, then the vGPU of a

newly created VM that requires 2 slots is allocated to slots 4

and 5.

Fig. 1 depicts the global graphics memory and its mapping

to system memory in gVirt. The logical address in global

graphics memory is converted to a physical address in system

memory using a physical GTT. In order to load a large number

of vGPUs in a small global graphics memory space, gScale
allows vGPUs to share global graphics memory. Each vGPU

has a private GTT of low global graphics memory and high

global graphics memory. To activate the vGPU to switch in,

private GTT entries of the vGPU that do not exist in the

physical GTT are copied. Whenever a vGPU modifies the

physical GTT, its private GTT is also synchronized. However,

after vGPU is switched out, the physical GTT which is mapped

to low global graphics memory has entries of another vGPU,

so the CPU can’t access the VM through aperture. To solve

52

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

valley superposition

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

512MB 1024MB 1536MB 2048MB

Fig. 2: Performance of 3D Workloads

0

2*10
5

4*10
5

6*10
5

8*10
5

1 2 3 4 5 6 9 12 15

C
y
c
le

s
(M

)

Number of VMs

low
high

others

0

6.0*10
5

1.2*10
6

1.8*10
6

2.4*10
6

1 2 3 4 5 6 9 12 15

C
y
c
le

s
(M

)

Number of VMs

low
high

others

(a) High GM is 384 MB (b) High GM is 1024 MB

Fig. 3: Consumed CPU cycles of each context switch steps

when high global graphics memory (GM) size is 384 MB and

1024 MB

this problem, gScale implements ladder mapping that map

directly guest physical address to host physical address and

fence memory space pool that allows fence register to operate

correctly.

B. GPU Context Switch Overhead Analysis

Global graphics memory mostly handles the frame buffer

and command buffer, which store pixel information regarding

display and commands produced by the CPU. In case of Linux

VM, 64 MB and 384 MB are considered to be enough and

generally recommended for low global graphics memory and

high global graphics memory, respectively [14]. Nowadays,

Intel’s integrated graphics processors have 4 GB of graphics

memory. So when a VM is set to 384 MB high global graphics

memory and there are 15 VMs, only 2304 MB, which is 36

slots, are shared. However, we found that the small size in high

global graphics memory can affect the performance of GPU

workloads and can sometimes lead to a crash especially when

the VM runs GPU workloads with many rendering operations

or involves a high-resolution display environment such as

quad-high-definition (QHD) and ultra-high-definition (UHD).

To confirm this, we measured the average frames per second

(FPS) of two benchmarks, Unigine Valley [15] and Unigine

Superposition [16], by varying high global graphics memory

size from 512 MB to 2048 MB. Fig. 2 shows the normalized

performance with respect to the performance with 2048 MB

size. As shown in Fig. 2, when the high global graphics

memory size is larger than 1024 MB, similar performance

is observed, but when high global graphics memory size

is 512 MB, the performance degrades severely because of

the insufficient high global graphics memory. It should be

noted that larger size in high global graphics memory can

increase not only the performance of GPU workloads but

also the possibility of overlapping address spaces among

vGPU instances. It is therefore necessary to devise an efficient

solution to minimize the overhead incurred in a GPU context

switch.

To analyze which operation takes the longest time during

a GPU context switch and the effect of high global graphics

memory size in VMs, we measured consumed CPU cycles

taken for each of the following 3 activities in a GPU context

switch by varying the number of VMs from 1 to 15: 1) private

GTT copies in low global graphics memory 2) private GTT

copies in high global graphics memory 3) other activities. We

conducted two experiments for which high global graphics

memory size of each VM is set to 384 MB and 1024 MB.

The testbed is described in greater detail in Section IV-A.

Fig. 3 shows average consumed CPU cycles for the 3

activities mentioned above. As shown in Fig. 3(a), the rate

at which private GTT copies are made in low global graphics

memory is approximately 84% when the number of VMs is

less than or equal to 9. In this case, private GTT copy in high

global graphics memory is made only the first time, because

the VMs do not share high global graphics memory. However,

when the number of VMs is greater than 9, they begin to share

high global graphics memory and the rates at which private

GTT copies are made in low and high global graphics memory

are 17% and 79% respectively. The rate for high global

graphics memory is higher when GPU memory contention is

greater as shown in Fig. 3(b). When the number of VMs is

greater than 5, the number of consumed cycles in high global

graphics memory is more than 90% of the number of total

cycles. Therefore, the private GTT copy overhead forms a very

large portion of GPU context switch overhead. Thus, the GTT

copy that occurs in low and high global graphics memory

should be reduced to improve the performance of VMs.

III. DESIGN AND IMPLEMENTATION

In this section, we present the overall architecture of

DymGPU and explore how to minimize the private GTT copy

overhead in Intel’s integrated GPU environment.

Currently, same as gVirt and gScale, DymGPU supports

only Intel’s integrated GPUs. However, our concept is ap-

plicable to other architectures which use system memory as

graphics memory.

A. Overall Architecture

Fig. 4 presents the overall architecture of DymGPU.

DymGPU consists of two modules: monitor and memory
allocator. Monitor collects necessary information for each

vGPU such as memory size required by vGPU, vGPU status

(idle or active), GPU usage, and maintains a status table so that

memory allocator uses for dynamic reallocation. For example,

monitor periodically checks every vGPU and discovers idle

vGPUs that have not been used for a certain period of time

(threshold). The threshold value is configurable and currently

set to 20 seconds. If an idle GPU occupies a slot in the global

graphics memory alone, the memory space is wasted, which

may affect the GPU throughput of the VMs running at a

physical machine. In addition, monitor periodically collects

GPU utilization of each vGPU every second. Instead of using

53

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

�� ���!

�"���"
�#�$!�	%

�&�#'
�$�	�

!'%�	�"
���

�'%(�&

�&�#'

��&�

����(�#

�
�
�	!��)"�#

*�
�� *�
��

�'&�
�

�+�(�#

�&�#'
�""�	�(�#

*�
��
*�
��
,

#)++�+�
��"�
,

%(�()%
��
�
,

�
��
%"�(%
���
���
,

Utilization

#���

 #�(� #�(�

%	!��)"� $#�*�(�
���% $#�*�(�
���%

,

	�$'

�""�	�(�
�+�

#��""�	�(�

��-����%��

�(�"�-�(��+���%��

Fig. 4: Architecture of DymGPU

the GPU usage at a certain point in time, we average the

GPU utilization values for 20 seconds to determine the GPU

utilization of each vGPU. The 20 second value is also a

configuration parameter and can be set with different values.

Memory allocator allocates or reallocates global graph-

ics memory space for each vGPU. In addition to adjusting

memory space when a VM is created or destroyed, memory
allocator dynamically allocates the memory space based on

the information obtained from the monitor. Memory allocator
provides two memory allocation algorithms such as size-

based and utilization-based algorithms. In an environment

where most VMs execute GPU applications with similar GPU

utilization, the sized-based algorithm is preferred. In this case,

DymGPU allocates memory space for each vGPU to minimize

the number of shared slots based on the memory size required

by each VM, which results in maximizing the number of slots

that are used by only one vGPU. Whereas, if each vGPU

has different GPU utilization patterns, the utilization-based

algorithm is preferred. If vGPUs with high GPU utilization

share the same slots, more private GTT copies are likely to

happen for the shared slots. Therefore, DymGPU prevents

vGPUs with high GPU utilization from sharing slots with other

vGPUs as much as possible. In the rest of this section, we

describe the detailed design of memory allocator.

B. Memory Allocator

Size-based Allocation Algorithm : In order to minimize

the number of private GTT copies, we suggest a greedy

algorithm, which minimizes the number of shared slots in

high global graphics memory. Let the set of vGPUs be

V = {V0, V1, ..., VN−1}, where N is the number of vGPUs.

Each Vi has two parameters: Si which is the number of

required slots, and Pi which is the start slot index of Vi.

Suppose that we place V on high global graphics memory with

M slots. Fig. 5 depicts the vGPU mapping scheme. Memory
allocator sorts V in non-increasing order of required slots

and places vGPUs in order of slot size beginning from the

����
���	
�
��
���
�
������
��

�

�� ������ �
�
�

��

����

�
�
�

����

�
�����

�
�����

Fig. 5: Size-based Allocation Algorithm

����
���	
�
��
���
�
������
��

�

�� ������ �
�
�

��

�����

����

�
�����

�
�����

Fig. 6: Utilization-based Allocation Algorithm

leftmost free slots until the vGPU does not share slots with

another. In Fig. 5, V0, ..., VK−1 belong to that case. And then

VK is placed at the rightmost end of the high global graphics

memory. Finally, the remaining vGPUs are allocated starting

from the leftmost VK , so that VK+1, ..., VN−1 are allocated on

top of the overlapping L slots formed by VK−1 and VK . For

example, if M is 5 and there are four vGPUs, V0, V1, V2, V3

require 4, 4, 3, and 2 slots respectively. V0, requiring the largest

slot, is placed from slot 0 to slot 3. And V1 is placed at the

rightmost slot, because V1 cannot be placed in the remaining

one slot. And then remaining vGPUs, V2, V3 are placed on top

of three shared slots made by V0 and V1. Therefore, P0, P1,

P2, and P3 are 0, 1, 1, and 1, respectively. In this case, L is

3 and the private GTT copy occurs only on slot 2, 3, and 4 in

a GPU context switch.

This algorithm is activated when a new vGPU instance is

created or an existing vGPU instance is terminated. If the

number of required slots for new vGPU is less than or equal

to L, the vGPU is mapped to PK which is on top of shared

slots. Otherwise, memory allocator compares the number of

shared slots when the vGPU is mapped to PK with the number

of shared slots when all vGPUs are reallocated. Then memory
allocator chooses the case where the number of shared slots

is smaller. Likewise, when an existing vGPU is terminated,

memory allocator reallocates the memory space used by other

vGPUs if the terminated vGPU has slots that have not been

shared with other vGPUs. Memory allocator also checks idle

vGPUs every second, and processes them as if the vGPU were

terminated.

Utilization-based Allocation Algorithm : As mentioned

before, if vGPUs with low GPU utilization occupy slots alone,

the memory space used by those vGPUs is wasted, resulting

in performance degradation. The performance degradation

54

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

lig
htsmark

openarena
nexuiz

urbanterro
r

fire
fox-ast

fire
fox-scr

gnome
midori

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e 3VM 6VM 9VM 12VM 15VM

 0

 0.5

 1

 1.5

lig
htsmark

openarena
nexuiz

urbanterro
r

fire
fox-ast

fire
fox-scr

gnome
midori

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e 3VM 6VM 9VM 12VM 15VM

(a) Size-based Allocation Algorithm (b) Utilization-based Allocation Algorithm

Fig. 7: Performance Comparison with Similar GPU Utilization (3D and 2D Workloads)

increases as the difference in GPU utilization between VMs in-

creases. Therefore, we suggest an additional greedy algorithm

that considers the GPU utilization of vGPUs as shown in Fig.

6. In this algorithm, DymGPU sorts V in non-increasing order

of GPU utilization and places them in order of large GPU

usage starting from leftmost free slots until the vGPU doesn’t

share the slots with other vGPUs. V0, V1, ..., VK−1 are in that

case. Remaining vGPUs, VK , VK+1, ..., VN−1, are allocated to

rightmost slots in high global graphics memory.

Memory allocator reallocates the memory space every 20

seconds based on the GPU utilization. When each vGPU is

reallocated, the slots occupied by the vGPU are invalidated and

the private GTT entries mapped to the slots are copied to the

changed position. In the worst case, all slots in the high global

graphics memory are invalidated and many private GTT entry

copies can be made. For this reason, memory allocator uses a

relatively large interval to mitigate the invalidation overhead.

Since utilization-based allocation algorithm doesn’t consider

the number of slots allocated to vGPUs, it is possible that a

large number of slots can be shared. However, this algorithm

can reduce context switch overhead further than size-based

allocation algorithm, as the frequency of GPU context switch

generally depends on the GPU utilization of each vGPU.

IV. EVALUATION

This section compares the performance of two algorithms

proposed in DymGPU with that of gVirt and shows how much

overhead DymGPU can reduce in a GPU context switch. In

order to conduct the experiments with up to 15 Linux VMs, we

have extended gVirt so that it contains the scalability feature

provided by gScale.

For the extensive comparison with different workload pat-

terns, we use Phoronix Test Suite [17] and Cairo-perf-trace

[18], where various 3D and 2D workloads are included.

Among them, we use lightsmark, openarena, nexuiz, urbanter-
ror for 3D workloads and firefox-asteroids (firefox-ast), firefox-
scrolling (firefox-scr), gnome-system-monitor (gnome), midori
for 2D workloads. The performance is measured by average

frames per second (FPS) and execution time.

A. Experimental Setup

Table I summarizes the configurations of physical machine

(PM) and virtual machines (VM) running on PM used for the

TABLE I: Experimental Setup

Physical Machine

Processor
Intel Core i7-6700 3.40GHz

(4 cores / 8 threads) / Intel HD Graphics 530
Memory 32 GB

Disk Samsung SSD 850 PRO 256GB * 3
Host Virtual Machine (Dom0)

vCPU / Memory 8 / 4 GB
Hypervisor Xen version 4.6.0

OS Ubuntu 16.04.1 (kernel version 4.3.0)
Low / High GM 64 MB / 384 MB

Guest Virtual Machine (DomU)
vCPU / Memory 2 / 2GB

OS Ubuntu 16.04 (Kernel version 4.3.0)
Low GM 64 MB

experiments. The size of global graphics memory in PM is set

to 4 GB, where the low and high global graphics memory are

set to 256 MB and 3840 MB, respectively. While Dom0 uses

the global graphics memory alone, DomU shares the low and

high global graphics memory excluding the area reserved by

Dom0. For the experiments, we vary the size of high global

graphics memory size in each VM from 384 MB to 1024 MB.

B. Performance

Performance Comparison with Similar GPU Utilization:
In order to evaluate the performance of DymGPU where the

GPU utilization of VMs is similar, we run the same workload

in each VM and check the performance as the number of VMs

is increased by 3. Furthermore, the size of high global graphics

memory in the VMs participating in the experiment is varied

among 384 MB, 704 MB, and 1024 MB with the same ratio

(i.e., 1:1:1). It is worth mentioning that the performance of

VMs with different high global graphics memory sizes varies

as discussed in subsection II-B. The performance of DymGPU

is normalized to that of gVirt.
Fig. 7(a)(b) show the normalized performance of two al-

gorithms when all VMs execute the same workloads. When

the number of VMs is 3, the performance of DymGPU for

two algorithms is similar to that of gVirt because the total

required size for high global graphics memory is still less

than the available size. However, as we increase the number

of VMs, DymGPU outperforms gVirt for all workloads. It

should be noted that DymGPU reduces the number of shared

slots in the size-based algorithm and it also considers GPU

55

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6VMs 9VMs 12VMs 15VMs

N
o
rm

a
liz

e
d
 o

v
e
rh

e
a
d size-based

utilization-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6VMs 9VMs 12VMs 15VMs

N
o
rm

a
liz

e
d
 o

v
e
rh

e
a
d size-based

utilization-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

set1 set2 set3 set4 set5

N
o
rm

a
liz

e
d
 o

v
e
rh

e
a
d size-based

utilization-based

(a) 3D Benchmark (b) 2D Benchmark (c) Predefined Benchmark Sets

Fig. 9: Normalized Number of Private GTT Copies

utilization when allocating a memory space. This improves

the performance by reducing the number of private GTT

copies. In addition, the performance of size-based algorithm

is better than that of utilization-based algorithm by about 3-

16% when all VMs actively use GPU. Also, in case of gnome
and midori, DymGPU shows little improvement than other

workloads because the workloads submit few GPU commands

and thus generate infrequent GPU context switches.

TABLE II: Benchmark Sets

Set Number Lightsmark Firefox-asteroids Urbanterror
set 1 11 2 2
set 2 2 2 11
set 3 3 6 6
set 4 6 3 6
set 5 6 6 3

Performance Comparison with Various GPU Utilization:
To compare the performance with various GPU workloads, we

define 5 sets of benchmarks by mixing workloads with differ-

ent GPU utilization as shown in Table II. That is, lightsmark
is classified as a workload with low GPU utilization, while the

firefox-asteroids and urbanterror are workloads with medium

and high GPU utilization, respectively. For the experiment, we

run 15 VMs and the number in the table represents the number

of instances for each workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

set1 set2 set3 set4 set5

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

size-based utilization-based

Fig. 8: Performance Comparison with Various GPU Utilization

Fig. 8 shows the comparison with various workload sets.

We observe that the performance of DymGPU is better than

gVirt for all 5 sets. Specially, the utilization-based algorithm

outperforms the size-based algorithm except for set 2 and

set 5. This is because set 2 is mainly composed of an

urbanterror, which requires high CPU and GPU computation,

so GPU context switch overhead is hidden by that the CPU

computation is already bottleneck. And set 5 requires a CPU

computation more than a GPU computation resulting in less

GPU context switches.

C. GPU Context Switch Overhead

In this experiment, we analyze the private GTT copy

overhead for high global graphics memory that occurs during

GPU context switch using the same workload types and

benchmark sets explained in subsection IV-B. The experiments

are conducted by using nexuiz (3D workload) and midori (2D

workload) as we increase the number of VMs.

Fig. 9(a)(b) show the number of private GTT copies when

VMs execute the same workloads. As shown in Fig. 9(a), both

size-based and utilization-based algorithms reduces the context

switch overhead against gVirt by up to 35% and 30% for 3D

workload. When the number of VMs is small, the size-based

algorithm reduces the private GTT copies further compared

with the utilization-based algorithm. However, as we increase

the number of VMs, the difference of overhead optimization

shrinks because of the overhead that arises as the degree of

memory sharing increases and the overhead of competition

between the two processors. For 2D workload, we observe

similar results as shown in Fig. 9(b).

Fig. 9(c) shows the number of private GTT copies when

VMs execute various workloads with different GPU utiliza-

tion. We observe that the utilization-based algorithm shows

fewer slot copies than size-based algorithm for all sets. Spe-

cially, the number of slot copies in utilization-based algorithm

is reduced by about 40% compared to size-based algorithm

for set 4. This is because set 4 consists of GPU workloads

with various GPU utilization.

V. CONCLUSION AND FUTURE WORK

We have observed that the GPU context switch overhead in

gVirt is the major bottleneck in improving the performance of

GPU VM due to the large number of private GTT copies. This

paper explored this issue and proposed an dynamic memory

management scheme called DymGPU that provides two mem-

ory allocation algorithms: size-based algorithm and utilization-

based algorithm. Size-based algorithm is based on the required

GPU memory size of the vGPUs, and preferred when the

vGPU utilization is similar. Utilization-based algorithm is

based on the vGPU utilization, and preferred when deviation

of the vGPU utilization is large. The benchmarking results

showed that the proposed algorithms reduced the number of

GTT copies by about 53% and also improved the performance

of various 2D/3D workloads by up to 39% against gVirt.
The global graphics memory space in DymGPU is static in

the sense that when a memory space is given to each vGPU,

it should be kept until the workload running on the vGPU is

56

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

finished. As a future work, we are currently investigating a

mechnism to dynamically adjust the memory size assigned to

each vGPU at runtime.

REFERENCES

[1] The compute architecture of Intel pro-
cessor graphics Gen9. [Online]. Available:
https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

[2] Pascal GPU architecture | NVIDIA. [Online]. Available:
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/

[3] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ortı́,
“rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters,” in High Performance Computing and Simulation
(HPCS), 2010 International Conference on. IEEE, 2010, pp. 224–231.

[4] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU
transparent virtualization component for high performance computing
clouds,” in European Conference on Parallel Processing. Springer,
2010, pp. 379–391.

[5] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen,
J. Hong, and W.-c. Feng, “VOCL: An optimized environment for
transparent virtualization of graphics processing units,” in Innovative
Parallel Computing (InPar), 2012. IEEE, 2012, pp. 1–12.

[6] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert, “Intel
virtualization technology for directed I/O.” Intel technology journal,
vol. 10, no. 3, 2006.

[7] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated pass-through.” in USENIX Annual Technical
Conference, 2014, pp. 121–132.

[8] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why not
virtualizing GPUs at the hypervisor?” in USENIX Annual Technical
Conference, 2014, pp. 109–120.

[9] M. Xue, K. Tian, Y. Dong, J. Ma, J. Wang, Z. Qi, B. He, and H. Guan,
“gScale: Scaling up GPU virtualization with dynamic sharing of graphics
memory space.” in USENIX Annual Technical Conference, 2016, pp.
579–590.

[10] J. Kehne, J. Metter, and F. Bellosa, “GPUswap: Enabling oversubscrip-
tion of GPU memory through transparent swapping,” in ACM SIGPLAN
Notices, vol. 50, no. 7. ACM, 2015, pp. 65–77.

[11] J. Kehne, M. Hillenbrand, J. Metter, M. Gottschlag, M. Merkel, and
F. Bellosa, “GPrioSwap: towards a swapping policy for GPUs,” in
Proceedings of the 10th ACM International Systems and Storage Con-
ference. ACM, 2017, p. 10.

[12] M. Xue, J. Ma, W. Li, K. Tian, Y. Dong, J. Wu, Z. Qi, B. He, and
H. Guan, “Scalable GPU virtualization with dynamic sharing of graphics
memory space,” IEEE Transactions on Parallel & Distributed Systems,
no. 1, pp. 1–1, 2018.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 164–177.

[14] Intel GVT-g setup guide. [Online]. Avail-
able: https://github.com/intel/Igvtg-kernel/blob/2016q4-4.3.0/iGVT-
g Setup Guide.txt

[15] Valley benchmark | UNIGINE benchmarks. [Online]. Available:
https://benchmark.unigine.com/valley

[16] Superposition benchmark | UNIGINE benchmarks. [Online]. Available:
https://benchmark.unigine.com/superposition

[17] Phoronix Test Suite - linux testing & benchmarking platform,
automated testing, open-source benchmarking. [Online]. Available:
http://phoronix-test-suite.com/

[18] cairographics.org. [Online]. Available: https://www.cairographics.org/

57

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:38:46 UTC from IEEE Xplore. Restrictions apply.

