
하이브리드메모리시스템에서의오브젝트배치를통한성능-에너지조율
김태욱◦, Safdar Jamil,김영재
서강대학교컴퓨터공학과

{taeugi323, safdar, youkim}@sogang.ac.kr

Performance-Energy Mediating Object Placement on Hybrid Main Memory System
Taeuk Kim, Safdar Jamil, Youngjae Kim

Department of Computer Science and Engineering, Sogang University, Seoul, South Korea

요 약
In large-scale HPC data centers, main memory holds a significant share in power and energy consumption within data

centers. Recent developments in main memory such as Hybrid Main Memory System (HMMS) comprising of DRAM and
NVM have shown the potential to reduce energy consumption. However, performance degrades in such HMMS due to higher
access latency of NVM. In this paper, we propose a novel methodology to optimize the latency in HMMS while satisfying
the energy envelope by allocating memory objects on DRAM and NVM respectively. Our methodology considers the object
access pattern and the nature of the NVM module to decide the object placement. We model the proposed object placement
approach using Integer-Linear Programming (ILP). We show that our methodology reduces 254% of execution time compared
to MOCA, the recent study about performance-power efficient object placement, with satisfying strict energy constraint.

1 Introduction
High-performance computing (HPC) applications exploit large

amount of resources of data centers, which contributes to severe
power and energy consumption. It is known that about 30% of
this consumption appears in memory level (DRAM). In reduc-
ing power/energy consumption, non-volatile memory (NVM) tech-
nologies, such as Spin-Transfer Torque RAM (STT-RAM) and
Phase Change Memory (PCM), can be adopted [1]. These NVMs
are byte-addressable, have fast read/write accesses, and consume
less power/energy than DRAM. Still, access latencies of NVMs
are too high to replace DRAM, so various architectures are pro-
posed as Hybrid Main Memory System (HMMS), which consists
of DRAM and NVM. In HMMS, placement of memory object be-
comes a challenging task as it should maintain performance with
reducing the energy consumption. Several works [2, 1] have been
done to achieve optimal performance with reducing memory level
power/energy consumption by placing memory object in HMMS.
But, none of the existing studies have considered the characteris-
tics of NVM devices and object access patterns.

In this paper, we propose a methodology to optimize the perfor-
mance while meeting the energy requirements. Our target applica-
tions are HPC applications as they consume more energy. Our ap-
proach is based on (i) profiling heap objects access patterns of ap-
plications which are based on a two-pass memory profiler [3], (ii)
estimating expected energy consumption of allocating object on
DRAM and NVM respectively, and finally, (iii) a placement plan-
ner based on Integer Linear Programming (ILP) which decides the
placement of objects on basis of information extracted from pre-
vious steps. With several memory system configurations, our idea
shows not only 254% speedup on average, but also satisfying strict
energy constraint.

2 Background
2.1 STT-RAM

STT-RAM is an emerging NVM technology as it has lowest ac-
cess latencies than other NVMs. It is a resistance-based memory

device that changes its magnetic direction of resistance layer with
forcing high voltage when it stores data to the memory cell. So,
the energies of STT-RAM read and write are not equivalent to
DRAM. Writing data to STT-RAM is more expensive than DRAM
whereas reading data from STT-RAM consumes similar energy as
of DRAM. We adopt STT-RAM as NVM candidate because other
NVM devices energy consumption is not yet determined properly.
STT-RAM per-bit energy consumption is proposed by Kultursay et
al. [4] and we adopted that energy model.

A prior research on STT-RAM provides a solution of expensive
write problem by exploiting write mechanism [4]. Unlike DRAM,
STT-RAM row buffer and sense amplifiers are independent of each
other as shown in Fig 1. So updating row buffer cannot change the
corresponding memory array row directly. Memory array update
occurs when write operation incurs row buffer conflict. Once row
buffer conflict occurs, row buffer is written back to corresponding
row of array and then target address row is fetched to row buffer,
like the write-back cache. Kultursay et al. [4] designs STT-RAM
driver to write row buffer to memory array partially; it finds dirty
blocks in row buffer and updates only those blocks which signifi-
cantly reduces the writes on memory array.
2.2 Memory Access Patterns of HPC Applications

HPC applications run in the granularity of days and access
memory frequently for computation. The major occupied mem-
ory space of HPC applications is heap space that is dynamically
allocated to variables. Majorly accessed variables of HPC applica-
tions change their size with varying workload.

A recent work analyzes the patterns of memory accesses in ob-
ject level across various spectrum of applications [3]. It states
that most of HPC application variables have regular scaling pat-
tern where 126 out of 127 variables scale or have fixed size with
growing workload size. Also, it profiles total accessed volumes,
lifetimes, localities in page level and cache line level of variables.

2.3 Related Work
To optimize the performance and minimize energy consumption

in HMMS, various works have been done. Unimem [2] discusses



그림 1: Architecture of STT-RAM

how heap objects should be classified following by their access
patterns and then allocates them to appropriate memory device to
optimize the performance. But it only considers performance, not
energy consumption of HMMS. Also, it does not concentrate on
the nature of NVM device. MOCA [1] discusses performance and
energy consumption. It classifies memory objects to bandwidth-,
latency-, and power-sensitive and allocates the objects to best-fit
memory module in ternary HMMS. MOCA considers object level
access patterns, but it does not take into account workloads of ap-
plication and thorough access patterns. Also, it does not consider
the characteristics of NVM.

3 Design and Implementation
Motivated by the needs of data center and prior studies on

HMMS, we propose a heap object placement policy, ePlan that
accomplishes the optimal performance with meeting the required
energy limit. We adopt STT-RAM to consider the characteristics
of NVM device. The overall system overview of ePlan is shown
in Fig 2. It consists of two parts; Profiling steps and runtime.
Through profiling steps, it extracts access patterns of target ap-
plication to get memory object characteristics. In runtime, it es-
timates the energy consumption with profiled information and de-
cides the allocation of objects.

3.1 Access Pattern Profiling
This module extracts object access patterns using two-pass

memory profiler [3] which consists of online and offline profiling
of the application. When application runs for the first time, pro-
filer instrument on instruction level and record object characteris-
tics such as lifetime, read/write sequentiality, access volume, and
spatial/temporal localities. But profiling application is expensive
and it comes with its own overhead of instrumentation. Thus, we
suggest using database to store profiling results of the application.
In the database, scaling factors of various workload will be stored
and that scaling factors will be used to calculate the expected en-
ergy consumption.

3.2 Energy Consumption Prediction Modeling
After extracting object access metadata for application, this

module calculates the expected energy consumption of object. We
adopt a per bit energy model for DRAM and NVM on the basis
of prior work [4]. Below equations shows the energy consumption
of i-th object in DRAM (DEi) and STT-RAM (SEi) and Table 1
describes notations of equations.

DEi = dEAP ·AVi + dERW ·AVi + dEREF · SVi · Li

Access Pattern 

Profiling 

Object-level 

Characteristics, 

Scaling factors 

Execution Start 

of Target App. 

Object-level 

Characteristics DB 

Execution 

End 

Offline Data 

Refinement 

Scale Workload 

Real Workload 

Placement 

Decision 

Object Allocation 

In Target Runtime 

Initial Workload 

Profiling Steps 

Runtime 

Energy 

Expectation 

그림 2: System Flow of ePlan Framework

SEi = sEAP ·AVi + sERBA ·AVi + sEWB ·NDC · VCL

3.3 ePlan: Performance-Energy Mediating Placement
This section explains our object allocation approach, ePlan, to

mediate the performance and energy which decides optimal place-
ment of objects in HMMS while meeting energy requirement. We
propose an Integer-Linear Programming (ILP) algorithm which
considers three constraints for placement.

표 1: Notations used in Modeling
Notations Description
dEAP DRAM activate/precharge energy
AVi ith object access volume
dERW DRAM read/write energy
dEREF DRAM refresh energy
SVi ith object allocated volume
Li ith object lifetime
sEAP STT-RAM activate/precharge energy
sERBA STT-RAM row buffer access energy
sEWB STT-RAM writeback energy
Ndc Number of dirty cachelines
VCL Cache line Size (64 byte)
CD DRAM capacity
CS STT-RAM capacity

I Decision Constraint: We set the variable Xi of ILP as an ad-
equate memory module to allocate i-th object. In our binary
HMMS, all Xi must be one or zero, which represent DRAM
and STT-RAM respectively.

0 ≤ Xi ≤ 1 for i = 1, 2, ..., N

II Capacity Constraint: Object placement is also affected by the
capacities of memory devices. Objects allocated in HMMS,
should not exceed the capacities of memory modules.

N∑
i

Xi · Si ≤ CD

N∑
i

(1−Xi) · Si ≤ CS

Above equations guarantee that the total objects placed on
each memory module does not exceed the capacity constraint.



DRAM_onl
y

HMMS_4
HMMS_2

NVM_onl
y

0

100

200

300

400

500

E
x
e
cu

ti
o
n
 T

im
e
(s

e
c)

DRAM_16

Hybr(4,16)_R

Hybr(4,16)_M

Hybr(4,16)_eP(C)

Hybr(2,16)_R

Hybr(2,16)_M

Hybr(2,16)_eP(C)

NVM_16

DRAM_only
HMMS_4

HMMS_2
NVM_only

0

1000

2000

3000

4000

N
o

rm
a

liz
e

d
 E
n
e
rg
y

C = 85%

DRAM_16

Hybr(4,16)_R

Hybr(4,16)_M

Hybr(4,16)_eP(C)

Hybr(2,16)_R

Hybr(2,16)_M

Hybr(2,16)_eP(C)

NVM_16

(a) Execution Time (b) Expected Energy

그림 3: Performance and energy consumption on various config-
urations. In X-axis, DRAM only and NVM only are single de-
vice memories. HMMS w indicates binary HMMS whose DRAM
size is w GB. In detail, Hybr(x,y) p means the placement p={R, M,
eS(C)} on HMMS which consists of x GB DRAM and y GB NVM.

Xi are the decision constraint and Si are the size of i-th object.

III Energy Constraint: Objects placed in HMMS should not ex-
ceed the required energy consumption. The formalization for
energy constraint is given below where DEi and SEi are en-
ergy consumptions of i-th object in DRAM and NVM respec-
tively, derived in section 3.2.

N∑
i

{Xi ·DEi + (1−Xi) · SEi} ≤
N∑
i

DEi ·R

With these constraints, our ILP algorithm pursues to minimize
the latency in accessing objects.

N∑
i

{LDRAM ·Xi ·AVi + LSTTRAM · (1−Xi) ·AVi}

4 Evaluation
We evaluate the efficiency of ePlan with various placement

methods in terms of execution time and energy consumption. We
emulate the binary HMMS using Quartz [5] in 32GB memory sys-
tem and our target application is the BFS in PBBS benchmark [6]
with 6.7GB workload. Due to the lack of energy-measuring equip-
ment, we use estimated energy in evaluation. To consider the prac-
tical energy consumption, we set the major object as heap variable
whose size is larger than 4KB.

In Fig 3, the DRAM 16 and NVM 16 indicate that all major
objects are allocated to 16GB of DRAM and NVM respectively,
which is the upper and lower bounds of time and energy. To con-
sider the capacity constraint, we use two configurations on HMMS;
one is (DRAM, NVM) = (4, 16) GB and other is (DRAM, NVM)
= (1, 16) GB. Our evaluating placements are Random (R), MOCA
(M) and ePlan(C) (eP(C)). R allocates object randomly by only
considering capacity constraint. M is based on our counterpart
MOCA [1], which allocates object with considering capacity, per-
formance and energy. eP(C) is our proposed approach where C is
the percentage of energy constraint for DRAM 16. For these ex-
periments, we select C as 85 empirically.

Fig 3.(a) shows that for execution time eP(C) performs 293%,
268% faster than R, M in HMMS 4 and 367%, 341% faster in

HMMS 2, which is nearly similar to DRAM only. As DRAM por-
tion decreases in HMMS, more objects are allocated to NVM and
performance degrade in R and M. But, ePlan smartly selects less
effective objects in latency to place in NVM and avoid the perfor-
mance degradation. Besides, in Fig 3.(b), only ePlan fulfills given
energy constraint C in all cases. R does not consider energy con-
sumption in placement. M takes energy into account in allocation,
but still it does not satisfy the energy requirement.

5 Conclusion & Future Work

In this paper, we present ILP based object placement algorithm
on HMMS which optimizes performance while meeting the re-
quired energy consumption. Through systematic experiments, it is
shown that our algorithm satisfies energy requirements while op-
timizing performance than other placement candidates. The cur-
rent placement is static and with workload changes, we have to re-
compute the placement decision. Dynamic placement of objects in
HMMS is our future work.

Acknowledgment
This research was supported by Next-Generation Information

Computing Development Program through National Research
Foundation of Korea (NRF) funded by the Ministry of Science,
ICT (2017M3C4A7080243).

참고문헌

[1] A. Narayan, T. Zhang, S. Aga, S. Narayanasamy, and A. K. Coskun,
“MOCA: memory object classification and allocation in heteroge-
neous memory systems,” in IPDPS, pp. 326–335, IEEE Computer So-
ciety, 2018.

[2] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data managemen-
ton non-volatile memory-based heterogeneous main memory,” in Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’17, pp. 58:1–58:14,
ACM, 2017.

[3] X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue,
and D. Sanchez, “Understanding object-level memory access patterns
across the spectrum,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’17, pp. 25:1–25:12, ACM, 2017.

[4] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating stt-ram as an energy-efficient main memory alternative,”
in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), vol. 00, pp. 256–267, 04 2013.

[5] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,”
in Proceedings of the 16th Annual Middleware Conference, Middle-
ware ’15, pp. 37–49, ACM, 2015.

[6] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,
H. V. Simhadri, and K. Tangwongsan, “Brief announcement: The
problem based benchmark suite,” in Proceedings of the Twenty-fourth
Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’12, pp. 68–70, ACM, 2012.

View publication stats

https://www.researchgate.net/publication/364569758

	Introduction
	Background
	STT-RAM
	Memory Access Patterns of HPC Applications
	Related Work

	Design and Implementation
	Access Pattern Profiling
	Energy Consumption Prediction Modeling
	ePlan: Performance-Energy Mediating Placement

	Evaluation
	Conclusion & Future Work 

