
Fabric Attached Memory Emulation (FAME)의성능평가및분석
Safdar Jamil1,강현구1,안진우1,김영재1,마진석2,오명훈2,김학영2

1Sogang University, 1ETRI, South Korea
{safdar, hyeongu, jinu37, youkim}@sogang.ac.kr, {majinsuk, mhoonoh, h0kim}@etri.re.kr

Fabric Attached Memory Emulation (FAME) Evaluation Study
Safdar Jamil1, Hyeongu Kang1, Jinwoo Ahn1, Youngjae Kim1, Jinseok Ma2, Myeong-Hoon Oh2, Hakyoung Kim2

1Sogang University, 2ETRI, South Korea

요 약
With the introduction of non-volatile memories (NVMs), the concept of memory-driven computing (MDC) is gaining

more attention. In MDC, thousands of cores will be accessing the global memory pool directly. Several ongoing projects on
MDC are Hewlett Packard Enterprise (HPE) The Machine, Intel Rack-Scale Architecture, and UC Berkeley FireBox. HPE
has introduced an open source emulator, FAME which is a collection of modules and virtual machines (VMs) that emulate
HPE The Machine. Although, FAME provides sufficiently accurate emulation for application development for MDC, but still
it has some modules such as librarian that can cause a major scalability and performance bottleneck for The Machine. In this
study, we evaluate FAME, particularly librarian module which manages the allocation and deallocation of memory pool for
system on chips (SoCs) and each SoC has to communicate with librarian to access memory pool. So, we run MDTest and Fio
benchmark to test metadata and overall performance of FAME and found that as the number of SoCs increase the performance
of librarian degrades gradually due to metadata contention.

1 Introduction

With emerging Non-Volatile Memory (NVM) technology, hy-
brid memory systems (HMS) are being proposed which is com-
prised of DRAM and NVM [1, 2]. NVM possesses characteristic
such as persistency, byte addressability and fast read/write access.
These characteristics make it a suitable candidate to be placed on
processor memory bus so that processor can directly access that
NVM. HMS proposed systems also address the memory-driven
computing (MDC) paradigms. In MDC, a large collection of mem-
ory forms a memory pool and system on chips (SoCs), such CPUs,
GPUs, and FPGAs, can directly access that memory pool without
being dependent on processor memory controller [3]. Various fu-
ture systems [4–6] have been proposed which will be comprised of
thousands of cores and large DRAM and NVM.

Hewlett Packard Enterprise (HPE) The Machine [6] is one of the
future system, which is based on paradigms of MDC. It is enabling
SoCs to access that memory pool directly. HPE has also provided
an open source emulation environment, FAME [7], to emulate The
Machine. FAME deploys QEMU-KVM based virtual machines as
SoCs and generates a memory pool on the host using Inter Virtual
Machine Shared Memory (IVSHMEM) [8]. FAME also provide a
collection of modules such as Librarian [9], Libpmem [10] which
is based on Persistent Memory Development Kit [11] and Libfam-
atomic [12]. In The Machine, NVM memory pool is managed in
terms of books and shelves as in a library. Book is the smallest
granularity that can be assigned to each SoC and these books are
organized on shelves. Librarian module of the FAME manages the
allocation and deallocation of books for each SoC and each SoC
has to communicate with it to read from or write to memory pool.

In this paper, we present an evaluation study of FAME as it is

the only platform yet for development of MDC-based application.
Thus, evaluation of this platform will help application developers
design and develop applications by considering the performance
and scalability. We show that FAME has various overheads such
as VM switching and metadata management overhead. Meanwhile
in the prototype of the Machine, real-time SoCs are deployed in-
stead of VMs, hence there is no any VM overhead in rea-time sys-
tem. But metadata management server (librarian) is deployed on
top of SoCs and as it manages metadata of books so there is an
overhead of handling metadata which can directly impact the per-
formance of The Machine. Our finding in this study shows that
the average metadata overhead of librarian is 79.47% for 8 nodes
and the overall performance degradation of FAME is 80.65% for 8
nodes.

2 Background
2.1 Memory-Driven Computing

With the time, the focus of system infrastructure is moving from
Compute- or Processor-Driven architecture to Memory-Driven ar-
chitecture. In processor-driven architecture, every memory access
is required to flow through the processor memory controller, which
makes both processor and memory dependent of each other [3]. On
the other hand, memory-driven architecture refers to an architec-
ture where compute components can directly access memory with-
out going through the processor memory controller.

HPE The Machine is an example of MDC. The Machine is a
rack-based collection of nodes and each node comprises of SoCs,
local DRAM, and large collection of NVMs. Figure 1 shows the
overview of The Machine architecture. NVMs collectively form
a memory pool and every SoC in The Machine can access that
memory pool. The Machine exploits advanced optical intercon-

2018년 한국소프트웨어종합학술대회 논문집

1349



SoC

SoC

256 GB DRAM

256 GB DRAM

2 – 4 TB Fabric Attached Memory

2 – 4 TB Fabric Attached Memory

Bridge

Bridge

Fabric Switch

Fabric Switch

그림 1: Overview of The Machine Architecture

nect, which is termed as memory fabric [13]. Since it uses fabric,
the latency of accessing memory pool is low i.e., near-uniform.

2.2 Fabric Attached Memory Emulation (FAME)
FAME emulates The Machine architecture. As The Machine

contains nodes, FAME emulates those nodes in terms of QEMU-
KVM based virtual machines (VMs). FAME exploits Inter-Virtual
Machine Shared Memory (IVSHMEM) [8] feature of QEMU-
KVM to generate memory pool on the host. Each VM is con-
figured through QEMU-Command line to access that memory
pool. FAME also consists of a customized Linux Kernel, Linux-
L4FAME, which is installed in the host. The major customiza-
tion in Linux-L4FAME is the drivers to communicate with mem-
ory fabric. Librarian, a tailored file system and metadata manage-
ment server is also a part of the FAME environment. FAME also
provides some low-level APIs such as libpmem and libfam-atomic
for writing MDC-based application.

2.2.1 Librarian
Librarian consists of three modules, a fused-based file system, a

database, and an asynchronous metadata management server. Li-
brarian is named on the minimum granularity of memory portion,
called book, that can be allocated to SoCs in The Machine. It only
deals with metadata regarding allocation and deallocation of books
to SoC. It implements a view of the memory pool and provides
an interface for managing books in memory pool. In FAME, the
SQLite database and metadata management server (librarian) runs
on host while the file system daemon (LFS) runs on the VMs. Fig-
ure 2 shows the overall working flow of librarian. When an appli-
cation on VM wants to access memory pool, it has to first get the
metadata from librarian server’s managed SQLite database using
LFS and then it accesses the memory pool. The librarian server
and LFS both are developed using python.

I Librarian File System: Librarian file system (LFS) is a fuse-
based file system and provides all the functionalities that a file

VFS
Kernel 

Module

App

Userspace 

Fuse Module

LFS Librarian

SQL DB

Global NVM

User Space

Kernel Space

Node (VM) Host

I

V

S

H

M

E

M

그림 2: FAME Working Flow

system provides. In The Machine, LFS runs on the SoC and
communicates with librarian to get metadata for writing and
reading on memory pool. But on FAME, LFS runs on VMs.
In Figure 2, LFS is the daemon that runs on VM and commu-
nicates with Librarian server. The communication between li-
brarian server and LFS is based on JSON formatted messages.

II Librarian Server and SQLite Database: In the prototype of
the Machine, each rack deploys a separate librarian server
that runs over the SoCs. The server is named as Top of
Rack Management Server (TORMS). SQLite database is also
deployed in that TORMS. On FAME, librarian server and
SQLite database run on host and provide an interface of the
memory pool. The metadata of books allocated to SoCs is
stored in SQLite database and managed by librarian server.
When an application on the SoC needs to write or read data
to/from memory pool, LFS daemon will communicate with
the Librarian server and get the metadata regarding the al-
located books for that SoC and then SoC will be able to
read/write data from/to memory pool.

3 Evaluation
3.1 System Setup

We configured FAME on our in-house system which has Intel
Xeon Processor E5-2640 v4 10 Cores and 64 GB DDR4 main
memory. Due to limited resources, we only perform evaluation till
8 nodes. For testing scalability of FAME and metadata manage-
ment of librarian, we used two benchmarks, Fio [14] and MDTest
[15]. For scalability test, we used two workloads of Fio, one is
when each job operates 4KB per IOs and other is 1MB per IO.
For metadata evaluation, we choose MDTest as it is an HPC-based
metadata benchmark and provides various insights related to meta-
data performance. We used three configurations of MDTest, (i) 10
files per directory, (ii) 100 files per directory, and (iii) 500 files per
directory.

2018년 한국소프트웨어종합학술대회 논문집

1350



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1node 2nodes 4nodes 6nodes 8nodes

IO
P

S

10 files

100 files

500 files

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1node 2nodes 4nodes 6nodes 8nodes

IO
P

S

10 files

100 files

500 files

(a) File Creation (b) File Deletion

그림 3: Libraraian Metadata Overhead

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1node 2nodes 4nodes 6nodes 8nodes

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/S

)

Read

Write

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

1node 2nodes 4nodes 6nodes 8nodes

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/S

)

Read

Write

(a) 4KB IO (b) 1MB IO

그림 4: Scalability of FAME

3.2 Metadata Overhead of Librarian
As librarian only deals with metadata, thus in this experiment we

run MDTest which is an HPC-based metadata testing benchmark.
In these tests, we only evaluated file creation (figure3(a)) and dele-
tion (figure 3(b)) operations as these two operations are more criti-
cal in metadata management. Figure 3 shows the result of MDTest
and we can observe that as the number of nodes is increasing the
IO operations per second (IOPS) is decreasing linearly and this is
caused due to overhead of SQLite and JSON based communication
between VMs and librarian server. In provided MDC architecture,
the management of memory allocation to each SoC will become
major bottleneck as we have shown that the performance of man-
agement of metadata is degrading as the number of SoCs increases.

3.3 Scalability Evaluation of FAME
To evaluate how is the overall performance of FAME, we in-

creased the number of nodes and run Fio benchmark on all the
nodes simultaneously and measure the aggregated bandwidth of
Read and Write operations. Our Fio configuration is explained in
Table 1. Figure 4 shows that as we are increasing the number of
nodes, read and write performance of FAME is linearly decreas-
ing. As the number of VMs increase in FAME, the management
of those VMs becomes crucial for librarian as it has to manage
metadata for all the VMs which cause a severe performance degra-
dation in overall. So, the performance of FAME decreases gradu-
ally as VMs increased.

4 Conclusion
The Machine is one of the ongoing projects that address MDC

paradigms. FAME is the emulation environment of The Machine.
The metadata management overhead cause performance degrada-
tion as number of SoC increases. In MDC, thousands of SoCs are

표 1: Fio description

Number of Jobs 16
Runtime 60 seconds
Types of IO mmap, posixio, and sync
Job 1 - Job 5 mmap engine
Job 6 - 10 POSIXIO engine
Job 11 - Job 15 sync engine
Job 16 mmap engine with multithreading

going to access a large memory pool. But if the current system
with all these overheads will be deployed to manage thousands of
SoCs, then we will not be able to achieve high performance.

Acknowledgment
This work was supported by Institute for Information & commu-

nications Technology Promotion (IITP) grant funded by the Korea
government (MSIT) (No.2018-0-00503, Researches on next gen-
eration memory-centric computing system architecture).

참고문헌

[1] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory tech-
nology,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ISCA ’09, pp. 24–33, ACM, 2009.

[2] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hy-
brid memory systems,” in Proceedings of the International Confer-
ence on Supercomputing, ICS ’11, pp. 85–95, ACM, 2011.

[3] G.-Z. Consortium, “Gen-zcore specification 1.0,” tech. rep.
[4] K. Asanović, “Firebox: A hardware buidling block for 2020

warehuose-scale computers (keynote),” in FAST, 2014.
[5] Intel, “White paper: Intel rack scale design,” tech. rep.
[6] HPE, “The Machine.” https://www.labs.hpe.com/

the-machine.
[7] HPE, “Fabric Attached Memory Emulation.” https://github.

com/FabricAttachedMemory/Emulation.
[8] QEMU, “Inter-Virtual Machine Shared Memory.” https:

//doc.dpdk.org/guides-16.04/prog_guide/
ivshmem_lib.html.

[9] HPE, “The Librarian File System Suite.” https://github.
com/FabricAttachedMemory/tm-librarian.

[10] “Library for persistent memory programming.” https:
//github.com/FabricAttachedMemory/nvml.

[11] “Persistent Memory Development Kit.” http://pmem.io/
pmdk/.

[12] HPE, “Library of fabric attached memory atomic.”
https://github.com/FabricAttachedMemory/
libfam-atomic.

[13] T. P. Morgan, “HPE’s Superdome gets and
SGI NUMALINK Makeover.” https://
www.nextplatform.com/2017/11/06/
hpes-superdome-gets-sgi-numalink-makeover/.

[14] J. Axboe, “Flexible I/O Tester.” https://github.com/
axboe/fio.

[15] MDTEST, “MDTest: HPC benchmark for metadata performance.”
https://sourceforge.net/projects/mdtest/.

2018년 한국소프트웨어종합학술대회 논문집

1351


	Fabric Attached Memory Emulation (FAME) Evaluation Study

