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Optimizing End-to-End Big Data Transfers over
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Abstract—While future terabit networks hold the promise of significantly improving big-data motion among geographically distributed

data centers, significant challenges must be overcome even on today’s 100 gigabit networks to realize end-to-end performance. Multiple

bottlenecks exist along the end-to-end path from source to sink, for instance, the data storage infrastructure at both the source and sink

and its interplay with the wide-area network are increasingly the bottleneck to achieving high performance. In this paper, we identify

the issues that lead to congestion on the path of an end-to-end data transfer in the terabit network environment, and we present a

new bulk data movement framework for terabit networks, called LADS. LADS exploits the underlying storage layout at each endpoint

to maximize throughput without negatively impacting the performance of shared storage resources for other users. LADS also uses

the Common Communication Interface (CCI) in lieu of the sockets interface to benefit from hardware-level zero-copy, and operating

system bypass capabilities when available. It can further improve data transfer performance under congestion on the end systems

using buffering at the source using flash storage. With our evaluations, we show that LADS can avoid congested storage elements

within the shared storage resource, improving input/output bandwidth, and data transfer rates across the high speed networks. We

also investigate the performance degradation problems of LADS due to I/O contention on the parallel file system (PFS), when multiple

LADS tools share the PFS. We design and evaluate a meta-scheduler to coordinate multiple I/O streams while sharing the PFS, to

minimize the I/O contention on the PFS. With our evaluations, we observe that LADS with meta-scheduling can further improve the

performance by up to 14% relative to LADS without meta-scheduling.

Index Terms—File and Storage systems, Parallel File Sysetms, Networks, I/O Scheduling

✦

1 INTRODUCTION

While “Big Data” is now in vogue, many U.S. Depart-
ment of Energy (DOE) science facilities have produced
a vast amount of experimental and simulation data for
many years. Several DOE leadership-computing facili-
ties, such as the Oak Ridge Leadership Computing Facil-
ity (OLCF), the Argonne Leadership Computing Facility
(ALCF), and the National Energy Research Scientific
Computing (NERSC) generate hundreds of petabytes per
year of simulation data and are projected to generate in
excess of 1 exabyte per year by 2018 [1]. The Big Data and
Scientific Discovery report from the DOE, Office of Sci-
ence, Office of Advanced Scientific Computing Research
(ASCR) [2], predicts one of scientific data challenges is
the worsening input/output (I/O) bottleneck and the
high data movement cost.

To accommodate growing volumes of data, organiza-
tions will continue to deploy larger, well provisioned
storage infrastructures. These data sets, however, do
not exist in isolation. For example, scientists and their
collaborators who use the DOE’s computational facilities
typically have access to additional resources at multiple
facilities and/or universities. They use these resources
to analyze data generated from experimental facilities
or simulation on supercomputers and to validate their
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results, both of which requires moving the data between
geographically dispersed organizations. Some examples
of large collaborations include: OLCF petascale simu-
lation needs nuclear interaction datasets processed at
NERSC; the ALCF runs a climate simulation and val-
idates the simulation results with climate observation
data sets from Oak Ridge National Laboratory (ORNL).

In order to support the increased growth of data and
the desire to move it between organizations, network
operators are increasing the capabilities of the network.
DOE’s Energy Sciences Network (ESnet) [3], for exam-
ple, has upgraded its network to 100 Gb/s between
many DOE facilities, and future deployments will most
likely support 400 Gb/s followed by 1 Tb/s throughput.
However, these network improvements only contribute
to improving the network data transfer rate, not end-
to-end data transfer rate from source storage system
to sink storage system. The data transfer nodes (DTN)
connected to these storage systems and the wide-area
network are the focal point for the impedance match
between the faster networks and the relatively slower
storage systems. In order to improve the scalability,
parallel file systems (PFS) use separate servers to service
metadata and I/O operations in parallel. To improve
I/O throughput, the PFS uses ever higher counts of I/O
servers connected more disks. DOE sites have widely
adopted various PFS to support both high performance
I/O and large data sets. Typically, these large scale stor-
age systems use tens to hundreds of I/O servers, each
with tens to hundreds of disks, to improve scalability of
performance and capacity.
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Even as networks reach terabit speeds and PFS grow
to exabytes, the storage-to-network mismatch will likely
continue to be a major challenge. More importantly, such
storage systems are shared resources servicing multiple
clients including large computational systems. As con-
tention for these large resources grows, there can be seri-
ous Quality-of-Service (QoS) differences between the ob-
served I/O performance by users [4], [5]. Moreover, disk
services can degrade while disks in the redundant array
of independent disks (RAID) are rebuilding due to failed
disks [6]. Also, I/O load imbalance is a serious problem
in parallel storage systems [7]. The results showed that
a few controllers are highly overloaded while most are
not. These observations strongly motivate us to develop
a mechanism to avoid temporarily congested servers
during data transfers.

We investigate the issues related to designing a data
transfer protocol using Common Communication In-
terface (CCI) [8], [9], that can fully exploit zero-copy,
operating system (OS) bypass hardware when available
and fall back to sockets when it is not. In particular,
we focus on optimizing an end-to-end data transfer,
and investigate the interaction between applications,
network protocols, and storage systems at both source
and sink hosts. We address various design issues for
implementing data transfer protocols such as buffer and
queue management, synchronization between worker
threads, parallelization of remote memory access (RMA)
transfers, and I/O optimizations on storage systems.
With these design considerations, we develop a Layout-
Aware Data Scheduler (LADS).

In this paper, we present LADS, a bulk data movement
framework for use between PFS which uses the CCI
interface for communication. Our primary contribution
is that LADS uses the physical view of files, instead of
a logical view. Traditional file transfer tools employ a
logical view of files, regardless of how the underlying
objects are distributed within the PFS. LADS, on the
other hand, understands the physical layout of files in
which (i) files are composed of data objects, (ii) the
set of storage targets that hold the objects, and (iii)
the topology of the storage servers and targets.1 LADS
aligns all reads and writes to the underlying object size
within the PFS. Moreover, LADS allows out-of-order
object transfers.

Our focus on the objects, rather than on the files,
allows us to implement layout-aware I/O scheduling
algorithms. With this, we can minimize the stalled I/O
times due to congested storage targets by avoiding
the congested servers and focusing on idle servers. All
other existing data transfer tools [10], [11], [12], [13],
[14] implicitly synchronize per file and focus exclusively
on the servers that store that one file whether they
are busy or not. We also propose a congestion-aware
I/O scheduling algorithm, which can increase the data

1. We use Lustre terminology for object storage servers (OSS) and
targets (OST). An OST manages a single device. A single Lustre OSS
manages one or more OSTs.

processing rate per thread, leading to a higher data
transfer rate. We also implement and evaluate the ideas
of hierarchical data transfer using non-volatile memory
(NVM) devices. Especially, in an environment where I/O
loads on storage dynamically vary, there can be a slow
storage target due to congestion.

We conduct a comprehensive evaluation for our pro-
posed ideas using a file size distribution based on a snap-
shot of one of the file systems of Spider (the previous file
system) at ORNL. We compare the performance of our
framework with a widely used data transfer program,
bbcp [10]. Specifically, in our evaluation with the real
file distribution based workload, we observe that our
framework yields a 4-5 times higher data transfer rate
than bbcp when using eight threads on a node. Also, we
find that with a small amount of SSD, LADS can improve
further the data transfer rate by 37% over a baseline
without SSD buffering and far more cost-effectively than
provisioning additional DRAM.

Moreover, we further identify the problems of I/O
contention on the PFS. Many HPC facilities provide
multiple DTNs mounted on the shared PFS. When
multiple DTNs are actively using the shared PFS, each
data transfer service tool can suffer from the degraded
bandwidth due to I/O contention on the shared storage.
Thus, we design a meta-scheduler that can coordinate
multiple data transfer services’ accesses to the PFS, and
we comprehensively evaluate the performance improve-
ment by using the meta-scheduler when multiple LADS
processes are active concurrently.

2 BACKGROUND

When moving between two PFS at separate sites, the
data traverses one or more networks. Over the widearea
network (WAN), the data travels via high-bandwidth
networks such as DOEs ESnet and Internet2. If a PFS is
not directly connected to the WAN, the data additionally
transits through one or more local networks.

2.1 Problem Definition: I/O Optimization

I/O Contention and Mitigation: A storage server experi-
ences transient congestion when competing I/O requests
exceed the capabilities of that server. During these pe-
riods, the time to service each new request increases.
This is a common occurrence within a PFS when either
a large application enters its I/O phase (e.g. writing
a checkpoint, reading shared libraries on startup) or
multiple applications are accessing files co-located on a
subset of OSTs. Disk rebuild processes of a RAID array
can also delay I/O services. OS caching and application-
level buffering can sometimes mask the congestion for
many applications, but data movement tools do not
benefit from these techniques. If the congestion occurs
on the source side of the transfer, the source’s network
buffers will drain and eventually stall. On the other
hand, congestion at the sink will cause the buffers of both
the sink and then the source to fill, eventually stalling the
I/O threads at the source. We refer to threads stalled on
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Fig. 1. OLCF center-wide PFS and clients

I/O accesses to congested OSTs as stalled I/Os. We try to
lower the storage occupancy rate of stalled I/Os in order
to minimize the impact of storage congestion on the
overall I/O performance using three techniques: Layout-
aware I/O Scheduling, OST congestion-aware I/O scheduling,
and object caching on SSDs.

Two-level bottlenecks: Figure 1 illustrates the poten-
tial places for I/O bottlenecks when accessing OSTs via
object storage servers (OSSes) in Lustre file systems. For
OSSm, if the arrival rate (λOSSm) is greater than its
service rate (µOSSm), the server will start to overflow,
becoming the bottleneck and its incoming service will
be delayed. This can happen if the number of OSTs
connected to an OSS is greater than what the network
connection to the OSS can handle. To avoid this case,
OLCF provisions the number of OSTs per OSS such that

µOSSm >
∑k

j=1 µOSSn+j . Even if λOSSm is smaller than
µOSSm, OSTs can become the bottleneck. For example,
if λOSTj is greater than µOSTj , OSTj becomes the bot-
tleneck. Therefore, LADS has to avoid both server and
target bottlenecks in a way that it does not assign I/O
threads to the overloaded server or target.

Lustre Configuration Impacts I/O Contention: In
Lustre, a file’s data is stored in a set of objects. The un-
derlying transfers are 1 MB aligned on 1 MB boundaries.
If the stripe count is four, then the first object holds
offsets 0, 4 MB, 8 MB, etc. Each object is stored on a
separate OST. The mapping of the OSTs to the OSSes can
impact how a file’s objects are stored. Figure 2 shows
how the OST-to-OSS mapping can physically impact a
file’s objects placement. The default mapping is to assign
OSTs sequentially to OSSes. For a file with a stripe count
of three and four OSTs per OSS, the objects will be
stored on three OSTs connected to one OSS. OLCF, on the
other hand, uses a mapping such that OSTs are assigned
round-robin over all the OSSes. In this example, a file
with a stripe count of three is assigned to three OSTs
and each OST is connected to a separate OSS.

Depending on the choices of storage and networking
hardware, the OSS or the OSTs may be the bottleneck. To
improve the I/O throughput by minimizing contention,
the higher layers need this information.

Logical versus Physical File View: Traditional file
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Fig. 2. File striping in Lustre.

transfer tools [10], [11] rely on the logical view of files
(called File-based approach), which ignores the underlying
file system architecture. An I/O thread can be assigned
to a complete file, and it should work on the file until the
entire file is read or written. If more than one thread is
used, these threads might compete for the same OSS or
OST, respectively causing server or disk contention. Such
contention can result in the slow-down of applications.

To demonstrate how the File-based approach, which
is unaware of the underlying file system layout, con-
tributes to the problem of I/O contention in the PFS, we
use a simple example in Figure 3, in which we assume
each OST can service an object at a time within a fixed
service time. In the figure, Filea is striped over OST2

and OST3 and Fileb is striped over OST1 and OST3.
In Figure 3(a), Thread 1 (T1) and T2 attempt to read
Filea and Fileb at the same time respectively. T1 and
T2 read different files, however, T1 and T2 can interfere
with each other on accessing the same OST. Based on a
dilation factor model [15], as T1 and T2 compete OST3 ,
T1 and T2 can slow down by 25% and 12.5% respectively.
In Figure 3(b), all four threads access different logical
regions of the same Fileb, however, as T1 and T2 compete
for OST1, and T3 and T4 compete for OST3. Thus, each
thread slows down by 50%. The results of this example
indicates that OST contention may increase due to the
lack of understanding of the physical layout of the file’s
objects.

In contrast, LADS views the entire workload from a
physical point of view based on the underlying file sys-
tem architecture. LADSconsiders the entire workload of
O objects, where O is all of the objects in the N total files,
and each object represents one transfer MTU of data.
It can also exploit the underlying storage architecture,
and can use the file layout information for scheduling
accesses of OSTs. Thus, it takes into account the S servers
and T targets that hold the O objects. We then load-
balance based on the physical distribution of the objects.
A thread can be assigned to an object of any file on any
OST without requiring that all objects of a particular file
be transferred before objects of another file.
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Fig. 3. Illustration of slow-down of each job(T) due to OST
contention when accessing the same resource at the same time.

3 DESIGN OF LADS

LADS is motivated to answer a simple question: how can
we exploit the underlying storage architecture to minimize
I/O contention at the data source and sink? In this sec-
tion, we describe our design rational behind the LADS
implementation, system architecture, and several key
design techniques using a physical view of files on the
underlying file system architecture.

We have implemented a data transfer framework with
the following main design goals – (i) improved paral-
lelism, (ii) network portability, and (iii) congestion-aware
scheduling. Our design tries to maximize parallelism by
overlapping as many operations as possible, combining
a threading and an event-driven model.

3.1 LADS Overview

System Architecture: Figure 4 provides an overview of
our design and implementation for I/O sourcing and
sinking for a PFS. LADS is composed of the following
threads: The Master thread maintains transfer state, while
I/O threads read and write objects of files from and to the
PFS. The Comm thread is in charge of all data transfers
between source and sink. In our implementation, there
is one Master thread, a configurable number of I/O
threads, and one Comm thread. Because the I/O threads
use blocking calls, we allow more threads than cores
(i.e., over-subscription). Since we can over-subscribe the
cores, the Master and I/O threads block when idle or
waiting for a resource. The Comm thread never blocks
and always tries to progress communication. The Comm
thread generates most of the events that drive the ap-
plication. If the Comm thread needs a resource (e.g., a
buffer) which it cannot get immediately, it queues the
request on the Master’s queue and wake the Master.

Several I/O optimization techniques are implemented
in LADS. A layout-aware technique can optimize the unit
size of the data accessed by the I/O threads to object
size in the underlying file systems, and improve the
stalled I/O time when the server is congested. The OST
congestion-aware algorithm can avoid the congested
servers. Non volatile memory (NVM) can be used as
an extended memory region, when the RMA buffer full
using the object caching technique. When the RMA
buffer is full, I/O threads are blocked and wait until
RMA buffer is freed. In order to reduce the blocking
time of I/O threads, we propose to implement NVM
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Fig. 4. An architecture overview.

as an extended memory region using the object caching
technique. This technique allows to use the NVM region
as an extended buffer region for object caching by I/O
threads. The Comm threads at source and sink, using
CCI, pin memory regions for RMA transfers between the
Comm threads at source and sink. At the source, if the
RMA buffer is full, the Master notifies I/O threads to use
the NVM buffer instead of directly copying objects from
the PFS into the RMA buffer, thus, it allows pre-loading
on the extended memory regions on the NVM. At sink,
if the RMA buffer is full, likewise, the extended NVM
regions can be used as an intermediate buffer before the
PFS to avoid stalling the network transfers.

3.2 Data Structure Overview

We organized the various data structures to minimize
false sharing by the various threads. The global state
includes a lock which is only used to synchronize the
threads at startup and shutdown as well as to manage
the number of files opened and completed. This lock
is never accessed in the fast path (i.e., in the Comm or
I/O threads). Other locks are resource specific. There are
two wait queues, one for the Master and the other for
the I/O threads. When using the solid-state drive (SSD)
as NVM to provide additional buffering, it has a wait
queue as well. The Master and I/O thread structures
also have a waiter structure that includes their condition
variable and an entry for the wait queue. The Master and
Comm threads have a work queue implemented using a
doubly-linked list protected by different mutexes. The
I/O threads will pull requests off of the OST work
queues (described below).

We manage the open files using the GNU tree search
interface, which is implemented as a red-black tree.
The tree has its own mutex and counter. We manage
the RMA and SSD buffers using bitmaps that indicate
which offsets are available (the offset is the index in the
bitmap multiplied by the object size), an array of contexts
(used to store block requests using that buffer), and
a mutex. Lastly, because our implementation currently
targets Lustre, we have an array of OST pointers. Each
OST has a work queue, mutex, queue count, and busy
flag. The number of OST queues is determined by the
number of OSTs in the PFS. The design can easily be
extended to other PFS.
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(a) Communication protocol between source and sink

typedef enum msg_type {
        CONNECT = 0,     
        READY,                
        NEW_FILE,          
        FILE_ID,               
        NEW_BLOCK,      
        BLOCK_DONE,    
        BYE,                    
        FILE_CLOSE       
} msg_type_t;

/* Block size, file list size, RMA handle */
/* Have FILE_LIST, start sending NEW_FILE */
/* Starting new file, need FILE_ID */
/* Here is FILE_ID, start sending NEW_BLOCKS */
/* Block is ready for RMA Read */
/* RMA Read is done, recycle this block */
/* Ready to disconnect */
/* File close*/

(b) Message Type

Fig. 5. A diagram for protocol design for source and sink

communication and various message types that source and sink

communication threads use.

To avoid threads spinning on mutexes as well as
“thundering herds” [16] when trying to acquire a re-
source, we use per-resource wait queues consisting of a
linked list, a mutex, and a per-thread condition variable.
If the master or an I/O thread has no work available, the
waiter will acquire the appropriate lock, enqueue itself
on the wait list, and then block on its own condition
variable. When another thread has new work available,
it acquires the lock, dequeues the first waiter, releases the
lock, and signals the waiter’s condition variable. This
ensures fairness and avoids spinning and thundering
herds.

In this design, we assume a single master thread, a
single communication thread, and multiple I/O threads,
where the number of I/O threads is the number of
available cores but much less than the number of OSTs
in the PFS. The I/O threads only compete with each
other to find work from the OSTs queues. Given that
the number of all threads is much less than the number
of queue/lock pairs, we believe that using traditional
mutexes are warranted and the wait queues enable
fairness. If in the future, that we determine that mutex
contention becomes a larger issue, we could switch to
lock-free mechanisms with the trade-off of less fairness.

3.3 Object Transfer Protocol

To better understand how source and sink processes
interact including connection establishment, termination,
and data transmission, we explain our LADS protocol
design and implementation using Figure 5(a). The figure
specifies several LADS functions and message types,
which captures the workflow of data transmission from
source to sink hosts. Source and sink processes can be

implemented by multiple threads. In our implementa-
tion, there is a master thread, N number of I/O threads
to fully utilize the parallelism in hosts and parallel file
systems for sourcing and sinking multiple data streams,
and a communication thread at data source and sink hosts.
A master thread maintains a tree of file descriptors for
source and sink, and schedules the I/O threads. I/O
threads can access the OST queues which are as many
as OSTs available in the file systems. A communication
thread will work on a communication queue, which
contains requests for file descriptor exchanges and block
requests. The I/O thread can access the queue one at
a time, and concurrent accesses by multiple threads to
queues are synchronized by OST queue locks. Figure 5(b)
describes the message types that communication threads
use.

For transferring files, first the source and sink pro-
cesses (hereafter simply source and sink) need to ini-
tialize some state, spawn threads, and exchange some
information. The initial state includes a lock used to
synchronize at startup, the various wait queues, the file
tree to manage open files, the OST work queues, and the
structure for managing the access to the RMA buffer. The
Master thread initializes its work queue, its wait queue,
and the wait queue for I/O threads.

The Comm thread opens a CCI endpoint (send and
receive queues, completion queue), allocates and regis-
ters with CCI its RMA buffer, and opens a connection
to the remote peer. The source Comm thread sends its
maximum object size, number of objects in the RMA
buffer, and the memory handle for the RMA buffer. The
sink Comm thread accepts the connection request, which
triggers the CCI connect event on the source. The I/O
threads simply wait for the other threads.

After the CCI initialization step, data transfer will
follow the steps as shown in Figure 6 at source and sink.

Step 1. For each file, (i) the source’s master opens
the file, determine the file’s length and layout (i.e.,, the
size of the stored object and on which OSTs they are
located), and generate a NEW_FILE request and enqueue
that request on the Comm thread’s work queue. (ii)
The Comm thread generates NEW_BLOCK requests for
each stored object and enqueue that request on the
appropriate OSTs’ work queues. (iii) The Comm thread
marshals the NEW_FILE request and send it to the sink.

Step 2. At sink, the Comm thread receives the
NEW_FILE request and enqueues it on the Master’s work
queue and wakes it up. The Master opens the file, adds
the file descriptor to the request, changes the request
type to FILE_ID and queues the request on the Comm’s
work queue. The Comm thread dequeues it and sends
it to the source.

Step 3. At source, when the Comm thread receives the
FILE_ID message, it wakes up N I/O threads, where N
is the number of OSTs over which the file is striped.
An I/O thread first reserves a buffer registered with
CCI for RMA. It then determines which OST queue it
should access and then dequeues the first NEW_BLOCK
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Fig. 6. Thread communication diagrams at source and sink hosts.

request. It uses pread() to read the data into the
RMA buffer. When the read completes, it enqueues the
request on the Comm thread’s work queue. The Comm
thread marshals the request and sends it to the sink.
Note, the source’s Comm thread’s work queue will have
intermingled NEW_FILE and NEW_BLOCK requests thus
overlapping file id exchange and block requests.

Step 4. At sink, the Comm thread receives the request
and attempts to reserve a RMA buffer. If successful, it
initiates a RMA Read of the data. If not, it enqueues
the request on the Master’s work queue and wakes the
Master. The Master will sleep on the RMA buffer’s wait
queue until a buffer is released. It then will queue the
request on the Comm’s queue, which will then issue the
RMA Read.

Step 5. At sink, when the RMA Read completes, it
sends a BLOCK_DONE message back to the source. The
sink’s Comm thread determines the appropriate OST by
the block’s file offset and queues it on the OST’s work
queue. It then wakes an I/O thread. The I/O thread
looks for the next OST to service, dequeues a request,
calls pwrite() to write the data to disk. When the
write completes, it releases the RMA buffer so the Comm
thread can initiate another RMA Read.

Step 6. When the source’s Comm thread receives the
BLOCK_DONE message, it releases the RMA buffer and
wakes an I/O thread. This pattern continues until all
of the file’s blocks have been transferred. When all
blocks have been written, the source sends a FILE_DONE
message and closes the file. When the sink receives that
message, it too closes the file.

3.4 Scheduling

Layout-aware Scheduling: In a PFS, the file is stored as
a collection of objects and stored across multiple servers
to improve overall I/O throughput. Best practices for
accessing a PFS is for the application to issue large
requests in order to reap the benefits of parallel accesses
across many servers. A single thread accessing a file will
request N objects and can read M objects (assuming M
< N, and the file is striped over M servers) in parallel

at once. If one of the servers is congested, however, the
request duration is determined by the slowest server. So
the throughput of the request for N objects is determined
by the throughput of objects from the congested server.
In contrast, in our approach, instead of a single thread
requesting N objects, we have N threads request one
object each from separate servers, because we align all
I/O accesses to object boundaries. If one of the requests
is delayed by a congested server, the N-1 threads are free
to issue new requests to other servers. By the time that
the request to the slow server completes, we may be able
to retrieve more than N objects.

While the aligned-access technique aims to reduce the
I/O stall times and improve overall throughput, it does
not specify to which servers to send requests. Most, if
not all, data movement tools attempt to move one file at
a time (e.g., bbcp, XDD) or a small subset (e.g., GridFTP)
at a time. In a PFS, however, a single file is striped over
N servers. In the case of the Atlas file system at ORNL,
the default is four servers. Although the file system may
have hundreds of storage servers, most data movement
tools will access a very small subset of them at a time.
If one of those servers is congested, overall performance
will suffer during the congested period.

Congestion-aware Scheduling: For congestion-aware
I/O scheduling, we attempt to avoid intermittently con-
gested storage servers. Given a set of files, we determine
where all of the objects reside in the case of reading
at the source or determine which servers to stripe the
objects over when writing at the sink. We then schedule
the accesses based on the location of the objects, not
based on the file. We enqueue a request for a specific
object on a particular OST’s queue. The I/O threads then
select a queue in a round-robin fashion and dequeue
the first request. If another thread is accessing an OST,
the other threads skip that queue and move on to the
next. If one OST is congested, a thread may stall, but
the other threads are free to move on to other, non-
congested servers. This is important in a HPC facility like
ORNL. The PFS’s primary user is the HPC system. We
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do not want to tune the data movement tools such that
they reduce the performance of the HPC system, which
is a very expensive resource. Our goal is to maximize
performance while using the lightest touch on the PFS.

The basic per-OST queues and simple round-robin
scheduling over all the OSTs is able to improve overall
I/O performance. We then extend layout-aware schedul-
ing to be congestion-aware by implementing a heuristic
algorithm to detect and avoid the congested OSTs. The
algorithm can make proactive decisions for selecting
storage targets that next I/O threads will work on. The
algorithm uses a threshold-based throttling mechanism
to further lessen our impact on the HPC system’s use
of the PFS. When reading at the source, for example, an
I/O thread reads a object from its appropriate server and
records the read time, and computes an average of multi-
ple object read times during a pre-set time window time
(W ). If the average read time during W is greater than
the pre-set threshold value (T ), then it marks the server
as congested. The algorithm tells the threads that they
should skip congested servers M times. Consequently,
the I/O threads avoid the congested servers for a short
amount of time, leading to the reduced I/O stall times.

Algorithm 1 formally describes the congestion-aware
algorithm we developed for LADS. Let u be a user
(DTN), and let S be the set of object storage targets
(OST) stores a set of objects O. Per each OST s ∈ S,
a queue qs maintains information about read or write
requests sent to the OST. For simplicity, we denote the
location of object o, the OST which contains the object, by
Φ(o). When a user u wants to read a set of files that are
composed of a set of objects OF , as the first step, every
queue for each OST is initialized. After initialization,
each I/O thread performs the OST-congestion aware
algorithm as described in Algorithm 1.

3.5 Object Caching on SSDs

In the case when the sink is experiencing wide-spread
congestion (i.e., every I/O thread is accessing a con-
gested server), newly arriving objects will quickly fill
the RMA buffer. The sink will then stall the pipeline
of RMA Read requests from the source causing the
source’s RMA buffer to fill. Once full, the source’s I/O
threads will stall because they have no buffers in which
to read. To mitigate this, we investigate using a fast
NVM device to extend the buffer space available for
reading at the source. Several efforts have introduced
new interfaces to efficiently use NVM as an extended
memory region [17], [18], [19], [20]. In this work, we
specifically use the NVMalloc library [18] to build a
NVM based, intermediate buffer pool at the source using
fast PCIe-based COTS SSDs, where we create a log-file
memory-mapped using a mmap() system call. The key
use of NVM buffer pool is to continue reading objects
when the RMA buffer is full at source.

In our implementation, when servicing a new request,
an I/O thread tries to reserve a RMA buffer. If one is not
available, it attempts to reserve one in the SSD buffer.

begin
/* Initialization */

for o ∈ OF do
s ← Φ(o) // get the location of an object

skips = 0; // initialize skip counter

qs.enqueue(o); // add the object to corresponding

queue

end
end
begin

/* OST-congestion aware algorithm */

while true do
/* A function getNextOST_RR() returns an OST

with the round-robin policy */

s ← getNextOST RR();
if skips>0 then

skips=skips−1;
end
else

/* A function averageReadTime(W) returns

average read time by measuring readtime

for n times in time window W. Let T be a

given threshold */

if averageReadTime(W )>T then
skips = M ; // Set skips to skip the OST s

for M times

end
else

o ← qs.dequeue();
read(o);

end
end
if all per-OST queues are empty then

break;
end

end
end

Algorithm 1: Congestion-aware I/O Scheduling.

If successful, it reads into the SSD buffer, enqueues the
request on a SSD queue, and wakes the SSD thread. The
SSD thread then attempts to acquire a RMA buffer. If
not available, it sleeps waiting for a RMA buffer to be
released. When a buffer is released, it wakes, reserves
the RMA buffer, copies the data to the RMA buffer, and
enqueues the request on the Comm thread’s work queue.
Lastly, the Comm thread marshals the NEW_BLOCK and
sends it off to the sink.

We could apply the same idea of source-side SSD
buffering algorithm for sink-side SSD buffering, how-
ever, as we will discuss in the evaluation section in
detail, sink-side buffering does little to improve data
transfer rates, when buffered I/Os are allowed. Typically
writes are buffered I/Os. The key for the SSD buffering is
to decide when to use the SSD buffer or not. When using
buffered I/Os at sink, our algorithm can not account
for the effect of OS’s buffer cache and fails to correctly
detect congested servers. Using direct I/O for the writes
is possible and would allow our algorithm to detect
congested servers, but direct I/O performs much worse
and we chose not to use it for sink-side SSD buffering.

The copy from SSD buffer to RMA buffer is needed
when using hardware that supports zero-copy RMA
because the memory must be pinned and registered
with the hardware and we cannot register the mapped
SSD file. Our design does this even when the hardware
does not provide RMA support (i.e., when using sockets
underneath CCI). We could detect this scenario and
avoid the copy by sending directly from the SSD buffer,
but we do not implement this feature at this time. Also,
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should future interconnects support RMA from NVM,
we could avoid the copy as well.

4 EXPERIMENTAL ENVIRONMENT

4.1 Experimental Systems

For the evaluation of LADS, we use two experimental en-
vironments, without and with server congestion, and our
production environment. LADS has been implemented
using 4 K lines of C code using Pthreads. We used
CCI, which is an open-source network abstraction layer,
downloadable from CCI-Forum [21]. The communica-
tion model follows a client-server model. On the server
side, the LADS server daemon has to be run before the
LADS client starts to transfer data.

In this setup, we used a private testbed with two nodes
(source and sink) connected by InfiniBand (IB) QDR (40
Gb/s). The nodes used the IB network to communicate
with each other and the disk arrays. We used two
Intel R© Xeon R© CPU E5-2609 @ 2.40 GHz servers with
eight cores, 256 GB DRAM, and two node-local Fusion-
io Duo SSDs [22] for data transfer nodes (source and
sink hosts) running with Linux kernel 2.6.32-358.23.2.
Both the source and sink nodes have separate Lustre
file systems with one OSS server, one MDS server, and
32 OSTs, mounted over 32 SAS 10K RPM 1TB drives
each. For each file systems, we created 32 logical volume
drives on top of the drives to have each disk to become
an OST.

To fairly evaluate our implementation framework,
we ensured that storage server bandwidth is not over-
provisioned with respect to network bandwidth between
those source and sink servers (i.e., the network would
not be the bottleneck). The maximum IB and I/O
bandwidths were measured at 3.2 GB/s and 2.3 GB/s
respectively. This testbed allowed us to replicate the
temporal congestion of the disks to provide fair com-
parisons between LADS and bbcp.

Production system: We have also tested LADS and
bbcp between our production Data Transfer Nodes
(DTNs), connected to two separate Lustre file systems at
ORNL. Each DTN is connected to the OLCF backbone
network via a QDR or FDR IB connection to the OLCF’s
Scalable I/O Network where Atlas’ Lustre file systems
are mounted. In our evaluation, we measured the data
transfer rate from atlas1 to atlas2 via DTN nodes with
LADS and bbcp. In order to minimize the OS page-
cache effect, we cleared out OS page cache before each
measurement at both test-bed and production system.

For a realistic performance comparison, we used a file
system snapshot taken for a widow3 partition in the
Spider-I file systems hosted by ORNL in 2013 to deter-
mine file set sizes. Figure 7 plots a file size distribution
in terms of the number of files and the aggregate size of
files. We plotted a file size distribution in terms of the
number of files and the aggregate size of files [23]. We
observed that 90.35% of the files are less than 4 MB and
86.76% are less than 1 MB. Less than 10% of the files
are greater than 4 MB whereas the larger files occupy
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Fig. 7. File size distribution.

most of the file system space. For the purpose of our
evaluation, we used two representative file sizes to have
two file groups; one for small files with 10,000 1MB files,
and the other for big files with 100 1GB files.

5 EVALUATING LADS

5.1 Scheduling Objects versus Files in an Uncon-
gested Environment

In this section, we show the effectiveness of object
scheduling in LADS versus file-based scheduling used
by bbcp in a controlled, uncongested environment. This
section focuses only on the difference between object
versus file scheduling; Sections 5.2 and 5.3 will examine
two mitigation strategies for congested environments.

Within our controlled test-bed environment, we eval-
uate the performance of LADS for big and small data
sets, and compare it against bbcp. For big files, 1 GB 100
files are used and for small files, 10,000 1 MB files are
used. In both sets, the stripe count is one (i.e., each file
is stored in 1 MB objects on a single OST). We note that
our tests with a higher file stripe count are shown in the
results of production system in our prior work [23].

Figures 8 shows the results of LADS and bbcp for these
workloads. We had multiple runs for each test, however
the variability was very small. Both experiments were
tested while increasing the number of threads on each
application. In LADS, we can vary the number of I/O
threads, which can maximize CPU utilization on the data
transfer node, but use a single Comm thread. On these
hosts, LADS uses CCI’s Verbs transport, which natively
uses the underlying InfiniBand interconnect. In bbcp,
we can only tune the number of TCP/IP streams for a
performance improvement. bbcp only uses a single I/O
thread, and for an I/O performance improvement, we
have tested bbcp by varying the block size, however
we have seen little performance difference between 1
MB and 4 MB, so we show the results with a block
size of 1 MB for bbcp tests. The streams ran over
the same InfiniBand interconnect, but used the IPoIB
interface which supports traditional sockets. Using Net-
perf, we measured IPoIB throughput at almost 1 GB/s.
A newer OFED release should provide higher sockets
performance, but we ensured that the network was never
the bottleneck for these tests. In bbcp, we calculated the
TCP window size (W ) using the formula for bandwidth-
delay product: using ping time (Tping) and a network
bandwidth (Bnet) as follows: W = Tping×Bnet. We used
10 MB for a TCP window size in our evaluation setup.
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Performance comparison for object scheduling of
LADS and file-based scheduling of bbcp: In Fig-
ure 8(a)(b), we see that LADS shows almost a perfect
linear scaling in terms of data transfer rate with respect
to the increased number of I/O threads, whereas there is
little improvement in bbcp with respect to the increased
number of TCP/IP streams. bbcp is implemented us-
ing a file-based data transfer protocol in which, files
are transferred one by one, and multiple TCP streams
operate on the same file. Therefore, the bottleneck is
determined by how wide the PFS stripes the file. We
also found that with bbcp multiple TCP/IP streams will
only offer a performance gain when a network speed
is moderately slow compared with I/O bandwidth of
the storage. Overall, we observe that LADS significantly
outperforms bbcp for all test cases in Figure 8, except for
the results when LADS transfer uses one I/O thread for a
big file set. In this case, we believe that bbcp is benefiting
from hardware-level read-ahead in our testbed. LADS
did not benefit from it because the round-robin access
of the I/O queues might mean that we are accessing an
object from a different file the next time we visit this OST
and lose the benefit of read-ahead. OLCF production
systems disable read-ahead for this reason.

In LADS, we observe the maximum throughput at
around 400-450MB/s for the experiment of a big data
set, which is reasonable based on our test-bed config-
uration. The block-level throughput for all 16 disks is
2.3GB/s, the file system overhead reduces that by about
40% to 1.3-1.4GB/s. We tested with up to eight threads
reducing the optimum to 650-700MB/s. Given thread
synchronization overhead, 400-500MB/s is reasonable
but improvement is still possible. LADS uses DIRECT
I/O for the source’s read operations to minimize the
resource utilization for CPU and memory, while the sink
writes using buffered I/O.

We also evaluated resource (CPU and memory) utiliza-
tion of LADS and we witnessed LADS moderately uses
system resources, and there is only a slight increase in
CPU utilization as the number of I/O threads increases.
The detail results can be found in our prior work [23].

All the experiments in the preceding subsections were
done by utilizing a large, fixed amount of DRAM (256
MB) for use as RMA buffers at both the source and
sink. Given that DTNs are shared resources and multiple

users may be using them concurrently, we studied the
impact of RMA buffer size on the performance of LADS.
The detail experiment results can be found in our prior
work [23].

5.2 Congestion-aware I/O Scheduling in Congested
Environment

In the previous section, we showed the effectiveness of
object scheduling compared to file-based scheduling. In
this section, we show the effectiveness of a congestion-
aware scheduling algorithm on top of object scheduling
in LADS for variable I/O load environment on storage
systems.

Figure 9 shows the run time comparison results of
transferring a total of 100 GB of data in both a nor-
mal and storage-congested environment. We executed
multiple runs for each test, however there was very
little variability in measurement between runs. In the
figure, “Normal” indicates when there are no congested
disks, “C” means a condition where there are congested
disks, and “RR” and “CA” represent Round Robin and
Congestion-Aware scheduling algorithms respectively. In
(A, B), A means a threshold to determine if disks are
congested, and B denotes a number of times the I/O
threads skip one or more disks. To simulate conges-
tion, we used a Linux I/O load generator which uses
libaio [24]. It generates sequential read requests to four
disks with an iteration of five seconds, issuing enough
requests to generate 310-350 MB/s of I/O. It runs 10
iterations before it moves on to the next four disks. We
had the I/O load generator issue 4 MB requests with a
queue depth of four.

For Figure 9(a), we tested various parameter settings,
to see the effectiveness of our CA algorithm when the
source storage is partially in congestion. Overall, we
see that the CA performance can improve by 35% over
the RR performance when experiencing congestion. The
ranges of a performance improvement can be deter-
mined in a function of the threshold, and the number
of skips over congested servers. We notice that if the
threshold value is set too large or if the number of skips
for congested servers to be set either too small or too
large, the algorithm likely makes false-positive decisions,
negating the performance gain from avoiding congested
disks.

For Figure 9(b) shows the results for congestion at
the sink PFS. Overall, the performance impact is much
significantly higher than when source servers are con-
gested. Surprisingly, the congestion-aware scheduling
is almost never improving performance, showing ex-
ecution times as high as those obtained with the RR
algorithm. Irrespective of tuning parameter values, the
run times are quite random, mainly because our schedul-
ing algorithm failed to detect congested servers. The
congestion-aware algorithm measures I/O service time
for each object, but our use of buffered I/Os prevented it
from accurately measuring the OSTs’ actual level of con-
gestion. We confirmed from our evaluation that most of
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Fig. 9. Comparing average run times of transferring 100 x 1
GB files under normal and congested conditions. Source and
sink processes are run with eight I/O threads.

predictions were false positives, often wrongly assigning
I/O threads to busy or overloaded OSTs.

bbcp
Uncongested Congested (Side)

Condition Source Sink

Runtime 21m53s 26m11s 21m54s
Throughput (MB/s) 78 65 78

TABLE 1

Run times and throughput for bbcp under normal and

congested environment.

We measured the throughput of bbcp for a congested
condition in the storage. The results are shown in Table 1
to compare against the results of LADS. The same test-
scenarios is used for the LADS evaluation presented in
Figure 9. We executed multiple runs for each test, how-
ever there were very little variability in measurement
between runs. It is not surprising that LADS is faster
than bbcp in both normal and congested conditions.
Interestingly, we note that the bbcp run times when
the sink is congested are not much different from those
under normal conditions, which is most likely due to
combination of the OS buffer cache and bbcp’s slower
communication throughput. It is obvious that buffered
I/Os for writes should have been able to hide disk write
latency. On the other hand, we observe that bbcp’s run
time, when the source is experiencing congestion, can
increase by 19% over when normal condition. Moreover,
bbcp’s use of sockets incurs additional copies, user-to-
kernel context switches, as well as TCP/IP stack process-
ing. The slower network throughput masks the sink disk
congestion. LADS clearly benefits from utilizing zero-
copy networks when available.

5.3 Source-based Buffering using Flash in Con-
gested Environment

In the previous subsection, we observed that LADS’ data
transfer throughput significantly drops when the sink
is overloaded. In this case, the source’s RMA buffer
becomes full, which stalls the I/O threads from reading
additional objects. Therefore, we propose a source-based
buffering technique that uses flash-based storage. This
source-based SSD buffering utilizes available buffers on
flash, which are slower than DRAM yet faster than HDD,

 0

 50

 100

 150

 200

 250

 300

 350

(2
5
6
,0

)
(2

5
6
,2

5
6
)

(2
5
6
,5

1
2
)

(2
5
6
,1

0
2
4
)

(2
5
6
,2

0
4
8
)

(2
5
6
,3

0
7
2
)

(5
1
2
,0

)
(1

0
2
4
,0

)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Size: (src-DRAM,src-SSD)

256MB DRAM only
256MB DRAM w/ SSD

512MB DRAM only
1GB DRAM only

 0

 2

 4

 6

 8

 10

 12

 14

(2
5
6
,0

)
(2

5
6
,2

5
6
)

(2
5
6
,5

1
2
)

(2
5
6
,1

0
2
4
)

(2
5
6
,2

0
4
8
)

(2
5
6
,3

0
7
2
)

(5
1
2
,0

)
(1

0
2
4
,0

)

N
o

rm
a

liz
e

d
 P

ri
c
e

 w
.r

.t
 (

2
5

6
,0

)/
(m

:f
=

1
0

0
:1

)

Size: (src-DRAM,src-SSD)

m:f=100:1
m:f=200:1
m:f=300:1

(a) Throughput (b) Price

Fig. 10. Performance analysis of SSD-based object buffering
at source. In (a), we showed average throughput with 95%
confidence intervals in error bars. In (b), m : f denotes the price
ratio between DRAM and Flash.

to load ahead data blocks to be transferred.
To evaluate it, we slightly modified the overloading

workload that we used for Figure 9(b) by inserting ten
seconds of idleness between storage congestion periods.
During this congestion-free period at sink, source can
copy the buffered data from SSD buffer to network RMA
buffer. For a fair evaluation, the sink host is set to use
only 256 MB RMA buffer, and source and sink run eight
I/O threads. The source and sink do not employ the
congestion-aware algorithm.

Figure 10(a) shows the results of the effectiveness of
the source-based buffering technique using flash. We ob-
serve that throughput increases as the available memory
for communications at the source increases. However,
referring to Figure 10(b), doubling the size of DRAM
is very expensive and the same throughput could be
achieved using cheaper flash memory.

bbcp’s single I/O thread issues larger reads that Lustre
converts to multiple object reads, while LADS’ single
I/O thread only reads a single object at a time. I/O
parallelism for bbcp is limited to four, which is a Lustre
default file stripe count. On the other hand, LADS allows
multiple I/O threads to operate on multiple objects from
differing files, resulting in multiple threads to work on
multiple OSTs simultaneously. Therefore, LADS can fully
take advantage of the parallelism available from multiple
object storage targets.

We also evaluated large-scale performance of LADS,
and we compared the times for transferring a big data
set from atlas1 to atlas2 via two DTNs available at ORNL
using both LADS and bbcp. We observed that LADS can
fully take advantage of the parallelism available from
multiple object storage targets, showing significantly
improved throughput compared to bbcp. The detail ex-
periment results can be found in our prior work [23].

6 EVALUATING LADS TOOLS FOR MULTIPLE

PAIRS OF SOURCE AND SINK HOSTS

6.1 I/O Contention from Multiple LADS Services

I/O contention does occur when multiple DTNs access
the PFS concurrently. In this section, we first illustrate
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this problem with scaling experiments when multiple
LADS processes work concurrently. In order to see how
much I/O contention degrades the throughput of the
concurrently active LADS tools, we ran experiments by
increasing the number of LADS tools in use, where each
LADS uses 32 I/O threads, and sends big file workloads
The files at the source are placed in a round robin
manner across the OSTs in the PFS.

In Figure 11, we compare the performance of LADS
with respect to the increased number of source-sink
LADS pairs. It shows the average per-pair throughput
decreases as the number of LADS pairs increases. Stan-
dard deviations are shown in error bars. Although ag-
gregate throughput does increase, there are diminishing
returns. For example, when there is only one LADS
tool, exclusively accessing the PFS, it can achieve 400-
450MB/s of throughput. However, if four LADS tools
share the PFS and they have to complete the PFS,
each LADS’s throughput drops below half of an ideal
bandwidth without sharing the PFS. We also observe
starvation in which one LADS tool finishes much faster
than the others. For the experiment of 2 pairs of LADS,
the first LADS transferred data at 261 MB/s and while
the other transferred at 357 MB/s. By executing multiple
LADS on multiple DTNs, each LADS competes for the
PFS causing contention and reduced per-LADS through-
put.
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Fig. 11. Average per-pair throughput for LADS tool.

6.2 LADS Meta-Scheduling for Multiple LADS tools

In order to avoid I/O contention on the PFS between
LADS tools, we design and evaluate a LADS meta-
scheduler, which defines an access control protocol to
the PFS between LADS tools.

The LADS meta-scheduler follows a client/server
model, where the meta-server runs on a head node,
making scheduling decisions, and a meta-client is em-
bedded in each LADS tool to consult with the meta-
server to request an I/O access privilege. The meta-server
maintains resource (e.g., OST) privilege vectors for LADS
tool clients, and gives information about which OSTs in
the PFS can be accessed or not.

We first illustrate our proposed algorithm for the
Meta-scheduler with the following term definitions. Let
U be the set of users (DTNs), and let S be the set of
object storage targets (OST) which store objects o ∈ O.
We simply denote the location of object o by Φ(o). The
meta-server m maintains a set Rsi and another set Psi for
each OST si. Rsi contains the information of requested
objects, and the Psi contains the privileged users who are

/* Meta-client cj */

begin
/* Processing transfer requests */

Orequest ← newly requested objects by user uj ;
Cj .addSet(Orequest);
if Cj 6=φ then

Cj
′ ← scheduler(Cj );

// Cj
′
is a selected subset of Cj by the local

scheduler

forall the o ∈Cj
′ do

RΦ(o).add(<uj ,o>); // uj is user of cj
end

end
/* Starting new object transfers */

forall the o ∈ Cj
′ do

if uj ∈ PΦ(o) then
startTransfer(o);
Cj .remove(o);/* Privilege confirmed, remove

from the scheduling waiting list */

end
end
/* Processing completed transfers */

Ofinished ← completely transferred objects;
forall the o ∈ Ofinished do

RΦ(o).remove(<uj ,o>);
end

end
/* Meta-server m */

begin
/* Updating privilege information */

for i=1 to n do
// n is the number of OST

Psi
← updatePrivilege(Rsi

); // Requests from multiple

users are globally considered

end
end

Algorithm 2: Meta-Scheduling.

allowed to transfer data from OST si. Each meta-client cj
of uj maintains a set Cj , and Cj is composed of objects
that are waiting to be scheduled for transfers requested
by user uj .

Algorithm 2 describes the process of each meta-client
for collaborative data transfers. For a meta-client cj , it
has to periodically query the meta-server to obtain an
OST-access privilege. After an object transfer finishes,
it notifies the meta-server of object’s transfer comple-
tion. The meta-server then updates the list of OST priv-
ileges. updatePrivilege() takes Rsi={<uk,ok>|k=1 . . . m}
as its arguments and returns a set of users Uprivileged

⊂ {u1, . . . , uk}, where the users are allowed to transfer
data from the OST si. If Rsi=φ, it returns φ as its output.
Note that in the function updatePrivilege(), each Rsi is
implemented in a queue, and it returns an oldest user
from the queue and if the queue is empty, it returns
NULL.

6.3 LADS Meta-Scheduler Performance

We performed scalability experiments for LADS tools
by comparing our proposed meta-scheduling algo-
rithm (LADS-meta), LADS tools without meta-scheduling
(LADS-base), and bbcp. For comparison, we measured
average aggregate throughput and average per-pair
throughput (source-to-sink in a pair) by increasing the
number of source-sink instances. For these experiments,
we have used big files and small files workloads.

Figures 12(a) & (b) show the results of the big
files workload when increasing the number of paired-
instances to sixteen. In Figure 12(a), we observe that
LADS-base significantly outperforms bbcp in aggre-



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16  18

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Number of Source Sink Pairs

Aggregate throughput

LADS(meta)
LADS(base)

bbcp
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  2  4  6  8  10  12  14  16  18

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Number of Source Sink Pairs

Per-pair throughput

LADS(meta)
LADS(base)

bbcp

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16  18

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Number of Source Sink Pairs

Aggregate throughput

LADS(meta)
LADS(base)

bbcp

 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16  18

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Number of Source Sink Pairs

Per-pair throughput

LADS(meta)
LADS(base)

bbcp

(a) (b) (c) (d)

Fig. 12. Scaling experiments by increasing the number of DTN source and sink pairs. (a)&(b) and (c)&(d) are the results for big
files workload and small files workload respectively.

gate throughput as the number of paired-instances in-
creases. At each number of paired-instances, LADS out-
performs bbcp by a significant amount. LADS-meta
shows the improved throughput over LADS-base. At
two paired instances, LADS-meta showed an 12.5% im-
proved throughput than LADS-base. The improvement
becomes 10.95% at eight paired instances. However, the
rate of improvement shows diminishing returns at 16
paired instances. This is because the PFS is overwhelmed
by too may I/O simultaneous accesses, so our meta
scheduling algorithm cannot find room for scheduling.
Figure 12(b) shows that the average per-pair throughput
for LADS (both LADS-meta and LADS-base) experiences
diminishing returns. bbcp, on the other hand, scales
nearly linearly up to eight paired-instances, albeit at a
lower level than LADS, and then it too shows diminish-
ing returns.

We have similar findings for the small files workload
in which LADS-base significantly outperforms bbcp in
terms of both aggregate and per-pair throughput. Inter-
estingly, bbcp’s aggregate throughput is not increasing
as much as we observed in the big files workload
results. We believe this is partly due to the lack of I/O
parallelism within bbcp because each file is contained
by a single OST. bbcp’s per-pair throughput shows a
sharp drop from one pair to four pairs possibly due to
accessing the same OSTs. LADS-meta further improves
the performance of LADS-base by up to 13.5%. At
present, current the meta-scheduling algorithm does not
guarantee quality of service (QoS) for each LADS tool,
however, the algorithm described in Algorithm 2 can be
easily extended to offer QoS guarantees.

6.4 Integration of LADS Meta-Scheduler with HPC
Storage Health Monitoring

The LADS Meta-scheduler can be integrated with the
HPC Storage Health Monitoring Service [25] to enable
better scheduling of the shared storage. At present, our
Meta-scheduler is only designed to control the PFS ac-
cess by multiple LADS tools to avoid I/O interference to
the PFS between them. Thus, it is blind to I/O traffic and
usage on the PFS by simulation platforms (e.g., Titan).
The health monitoring infrastructure [26], [25] monitors

LADS Meta-

Scheduler

Database
I/O stats

System Logs

Titan

Spider

Feed-back

LADS

DTNs

HPC Storage 

Health Monitoring 

Service Decision System

Fig. 13. Integration of LADS Meta-Scheduler with HPC Stor-
age Health Monitoring Service.

the file system usage using a custom, in-house built-
in tool [26] by querying the RAID controllers for the
read/write bandwidth and IOPS data, along with the
request size distribution at certain time intervals. The
data collected is stored in a Mysql database for offline
analysis, and used to predict future I/O access patterns
on the PFS. Figure 13 outlines our proposed integra-
tion of the LADS Meta-Scheduler with the HPC Health
Monitoring tool to give the Meta-Scheduler insight into
the overall PFS activity levels. To determine the I/O
utilization of a particular server or disk, the LADS Meta-
Scheduler requires information about I/O utilization (re-
ferring to bandwidth and IOPS usage information) from
the HPC Storage Health Monitoring service. In response
to this request, the health monitoring infrastructure can
return historical information of I/O usage on the PFS
and expected future I/O usage based on the regular I/O
patterns of the competing systems’ workloads. There-
fore, an iterative procedure is proposed to update the
resource vectors in the LADS Meta-Scheduler with these
I/O usage information for each server or disk in the PFS.
When the Meta-scheduler is requested from LADS tools,
it returns with the updated vector information.

7 RELATED WORK

Many prior studies were performed on the design
and implementation of bulk data movement frame-
works [11], [10], [12], [13], [27], [14]. GridFTP, provided
by Globus toolkit, extends the standard File Transfer Pro-
tocol (FTP), and provides high speed, reliable, and secure
data transfer. It has a striping feature that enables multi-
host to multi-host transfers with each host transferring
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a subset of files, but does not try to schedule based
on the underlying object locations. bbcp [10] is another
data transfer utility for moving large files securely, and
quickly using multiple streams. It uses a single I/O
thread and a file based I/O, and its I/O bandwidth
is limited by the stripe width of a file. XDD [12] op-
timizes the disk I/O performance; enabling file access
with direct I/Os and multiple threads for parallelism,
and varying file offset ordering to improve I/O access
times. These tools are useful for moving large data
faster and securely from source host to remote host
over the network, but none try to schedule based on
the underlying object locations or to detect congested
storage targets. Other related work has focused on
coupling MPI applications over a terabit network infras-
tructure [9]. It has investigated a model based on MPI-
IO and CCI for transferring large data sets between two
MPI applications at different sites. This work does not
exploit the underlying file system layouts to improving
I/O performance for data transfers either.

Our work differs in several key areas from prior
works: (i) We use layout-aware data scheduling to maxi-
mize parallelism within the PFS’ network paths, servers,
and disks. (ii) We focus on the total workload of objects
without artificially synchronizing on logical files. (iii)
We detect server congestion to minimize our impact
on the PFS in order to avoid negatively impacting the
performance of the PFS’ primary customer, a large HPC
system. (iv) We use a modern network abstraction layer,
CCI, to take advantage of HPC interconnects to improve
throughput.

8 CONCLUSION

To minimize the effects of transient congestion within
a subset of storage servers, LADS implemented three
I/O optimization techniques: layout-aware scheduling,
congestion-aware scheduling, and object caching using
SSDs. We designed and evaluated an intra-DTN LADS
scheduling algorithm to control uncoordinated I/O traf-
fic on the shared PFS, minimizing the impact of the PFS
I/O contention on LADS. To demonstrate the efficiency
of LADS, we evaluated it on a controlled test-bed with
a 32 disk Lustre file system as well as on production
DTN nodes, which mount the Atlas file systems at
ORNL. We studied throughput and resource utilization
comparisons for LADS and bbcp, and demonstrated that
LADS can better utilize the parallelism available in the
PFS. We also evaluated the efficiency of our layout-aware
I/O algorithm as well as adding congestion-awareness to
it. We showed that the congestion-aware I/O algorithm
can provide about 30-40% higher throughput than when
the layout-aware algorithm is used alone. We also pro-
posed a source-based SSD buffering technique in order
to further improve the performance of LADS when sink
servers are congested. LADS is implemented using CCI,
which is portable and can be used in just about any
network environment without any modification to the

LADS prototype. CCI also allows LADS to take advan-
tage of networks which provide advanced capabilities,
such as zero-copy transfers. Lastly, we comprehensively
evaluated our proposed meta-scheduling algorithms to
control I/O loads on the PFS between competing LADS
services. Our evaluation showed the meta-scheduling
algorithm further improve per-pair throughput by up to
11% compared to a case without meta-scheduling.

We can extend our research to develop a holistic data
transfer framework, which determines timing of data
transfers in the system environment where I/O loads
on the PFS are dynamically changing. The LADS meta-
scheduler integrated with the HPC Health Monitoring
tool will give the meta-scheduler insight into the overall
PFS activity levels, such that it can optimally schedule
I/O accesses on the PFS. Moreover, we can extend LADS
to be fault-tolerant. In the existing file based transfer,
on a DTN failure, a current file transfer has to be re-
transmitted, however, in LADS, objects of the incomplete
files, which have not been transferred, will only need to
be transferred by simply maintaining persistent logs at
sink. We plan on developing a fault-tolerant LADS in the
future work.
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