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Abstract—Flash memory-based SSD-RAIDs are swiftly replacing conventional hard disk drives by exhibiting improved performance

and stability, especially in I/O-intensive environments. However, the variations in latency and throughput occurring due to uncoordinated

internal garbage collection cripples further boosting of performance. In addition, the unwanted variations in each SSD can influence the

overall performance of the entire flash storage adversely. This performance bottleneck can be essentially reduced by an internal write

cache in the RAID controller designed prudently by considering the crucial device characteristics. The state-of-the-art cache write for

the RAID controller fails to incorporate device characteristics of flash memory-based SSDs and mitigates the performance gain. In this

paper, we propose a novel cache design namely Layout-Aware Write Cache (LAWC) to overcome the performance barrier inculcated

by independent garbage collections. LAWC implements (i) improved I/O scheduling for logically partitioned write caches, (ii) a destage

write synchronization mechanism to allow individual write caches to flush write blocks into the SSD array in a coordinated manner, and

(iii) a two-level hybrid cache algorithm utilizing small front level cache for the improved write cache efficiency. LAWC shows significant

reduction in response time by 82.39 percent on RAID-0 and 68.51 percent on RAID-5 types of SSDs when compared with state-of-the-

art write cache algorithms.

Index Terms—Flash memory, I/O scheduling, RAID, solid-state drive, storage system, write cache
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1 INTRODUCTION

WITH the advent of Big Data, the amount of data pro-
duced every year has exponentially increased. For

instance, many science facilities produce a vast amount of
experimental and simulation data: several U.S. Department
of Energy (DOE) leadership-computing facilities, such as
the Oak Ridge Leadership Computing Facility (OLCF) [1],
the Argonne Leadership Computing Facility (ALCF) [2],
and the National Energy Research Scientific Computing
(NERSC) [3] generate hundreds of petabytes per year of
simulation data and are projected to generate in excess of
1 exabyte per year by 2018 [4]. In fact, according to the Big
Data and Scientific Discovery report from the DOE, Office
of Science, Office of Advanced Scientific Computing
Research (ASCR) [5], some of the scientific data challenges
are the worsening input/output (I/O) bottleneck.

To accommodate such big data, organizations will con-
tinue to deploy larger storage infrastructures which need to
be well provisioned to meet the expected data growth rate.
The storage system can employ multiple disk drives to
build arrays of disk drives. Redundant array of inexpensive

disks (RAID) were introduced to increase the performance
and reliability of disk drive systems [6]. For example, a
peta-scale storage system for Titan at the Oak Ridge
National Laboratory uses 8+2 RAID-6 configuration for
each volume group [7], [8]. RAID provides parallelism of
I/O operations by combining multiple inexpensive disks,
thereby achieving higher performance and robustness.
RAID has become the de facto standard for building high
performance and robust storage systems.

Traditional storage systems use hard disk drives which
offered price efficiency. However, nowadays the solid-state
drive (SSD) storage market is continually growing towards
high performance storage at low cost per byte of data.
Unlike in-place update operations in HDDs, SSDs incorpo-
rate software to allow out-of-place update operations and to
map sectors from the host into their current locations in the
SSDs [9], [10], [11]. This out-of-place update operation even-
tually requires a sweep of storage area to find stale data and
consolidate active data in order to create free space. This
process, known as garbage collection (GC), can significantly
increase the service time of incoming requests. When SSDs
are configured in RAID, the performance variability of indi-
vidual SSDs becomes a major concern, because the overall
performance of the SSD-based RAID could be limited by the
slowest SSD [12], [13], [14], [15].

In this paper, we propose a novel Layout-Aware Write
Cache (LAWC) to alleviate the unstable performance con-
cern in SSD-based RAID systems. LAWC can mitigate the
performance degradation by uncoordinated GC operations
of SSDs in the array by performing coordinated destage
operations in the write buffer on the RAID controller.
LAWC organizes multiple sub-buffers, instead of a single
global buffer, as many as the number of SSDs, and the I/O
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scheduler synchronizes the requests in their corresponding
queues to increase the chance that multiple SSDs trigger GC
at the same time, resulting in improved I/O performance.
LAWC also implements a pre-parity-computation tech-
nique for reliable RAID configuration with parity computa-
tion, which will help flexible I/O scheduling. Moreover, to
alleviate the overhead of the pre-parity-computation, we
enhance LAWC by adding a small cache in front of LAWC.

LAWC is developed to offer comparable I/O perfor-
mance to Harmonia- a Globally Coordinated Garbage Col-
lection(GGC) [12], [13] without incurring an expense of
extension of storage protocols such as SATA and SCSI for
controlling the additional communication capabilities on
both RAID controller and individual SSDs. LAWC offers
significant performance improvement compared with the
state-of-art write cache algorithm for HDD-based RAID,
Wise Ordering of Writes (WOW) [16], by optimizing the
write cache architecture of the RAID controller.

The contributions of this paper are summarized as
below.

� This paper proposes independent write caches and
pre-parity-computation technique that allow flexible
I/O scheduling of destage writes, which contributes
to mitigating the adverse impact of performance var-
iation in SSDs in their arrays caused by GCs of indi-
vidual SSDs.

� The destage write synchronization technique is pro-
posed, which delays destage write operations of
write caches until all write caches are ready to
destage at once. In order to compensate the perfor-
mance penalty by pre-parity computation, the two-
level hybrid caching technique is proposed, which
serves as a higher-level cache for independent write
caches. It mitigates the overhead incurred by the
pre-parity-computation and synchronization techni-
ques for less I/O intensive workloads.

� Our experiments show that LAWC improves the
average number of synchronized GCs by up to
53.1 times compared to WOW. Moreover, LAWC
achieves huge performance improvement of
82.39 percent in average response time compared to
WOW for heavy write dominant workloads. For
non-intensive workloads, LAWC offers comparable
performance to WOW.

The remainder of this paper is organized as follows. We
first present an overview of the material and technology in
Section 2 followed by motivation in Section 2.2. Section 3
presents our proposed layout-aware write cache design and
implementation with performance optimization techniques
such as destage write synchronization and two-level hybrid
caching techniques. Section 4 presents evaluation results of
our proposed design with realistic and synthetic workloads.
After discussing related works in Section 5, we conclude in
Section 6.

2 BACKGROUND

When SSDs are comprised for an array, the write cache on a
traditional RAID controller can be optimized considering the
hardware characteristics of devices. SSD has unique perfor-
mance characteristics different from HDD. SSD can exhibit

substantial variance in request latency and throughput as a
result of garbage collection [9], [11], [17]. The main problem
of applying traditional write cache architecture to an array of
SSDs is that each SSD in the array can show different perfor-
mance such as bandwidth and I/O response time due to
uncontrolled GC process and the overall read and write
bandwidth of the array is limited by the slowest SSD.

2.1 Traditional Write Cache for HDD Arrays

A traditional RAID controller employs a write cache [16],
[18]. It can employ non-volatile memory or battery-back
memory in order to prevent data loss in case of power-
failure on the system [16], [18]. As long as there is free space
in the write cache, an incoming write request is stored in
the write cache and it is immediately committed to the
requester. Otherwise, the request should be pending in the
I/O queue until the write cache becomes available. The data
in the write cache will be synchronized with the disks later
in background. This process is called destaging and write
operations to the disk issued for destaging are called destage
writes. A destage write is split into multiple strips. Here, a
strip means a discrete chuck of data, which is going to be
stored in one disk. Depending on the RAID configuration, a
parity strip may be added. A write group is a set of strips
that have to be stored in disks at the same time. In WOW,
when a write request comes, it is split to strips and strips
are stored in their corresponding write groups. When a
destage write is triggered, all strips in a write group are
transferred to their corresponding disks.

Fig. 1 presents an architectural overview for traditional
write caches in HDD arrays and their write back cache algo-
rithms. Wise Ordering of Writes [16] is the-state-of-the art
write cache algorithm. InWOW, awrite hit can be either a hit
on a strip or a hit on a write group. A write group consists of
multiple strips. A hit on a strip means there already exists
the requested strip in the write cache. Even if the requested
strip does not exist, its write group could exist (hit on a write
group). Since a parity strip is computed for each write group
and parity is computedwhen a write group is destaged, a hit
on a write group can reduce the number of parity computa-
tions. Write groups are always ordered by their logical block
address (LBA), which leverages spatial locality.

Fig. 1. Depiction of the-state-of-the art write cache algorithm, Wise
Ordering of Writes (WOW) [16] on the RAID controller for HDD arrays.
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What to destage follows a least recently used (LRU) pol-
icy that implements a heuristic approach using recency bits.
When destaging is necessary, the destage pointer advances.
If the recency bit of the write group pointed by the destage
pointer is zero, the write group is destaged. If the recency
bit is one, the write group is retained and the recency bit is
cleared. Then the destage pointer advances again until it
finds a write group whose recency bit is zero. The recency
bit is set when the write group is hit. The recency bit gives
one more chance for hit write groups to survive for one
more cycle, which leverages temporal locality.

In addition to what to destage, the write cache needs to
determine when to destage. WOW adopts a linear threshold
scheduling to determine when to start destaging and how
to adjust the destaging rate [19]. Low and high thresholds
are involved. Destaging begins to be triggered when the
number of write groups (W ) in the write cache reaches a
low threshold. The destaging rate linearly increases as W
increases. IfW reaches a high threshold, it runs at a full rate.

To fully exploit benefits of a write cache in WOW, a cache
controller should be designed to leverage temporal and spa-
tial locality as well as to resist bursty writes [16], [18]. High
temporal locality can be achieved by keeping as much hot
data as possible. On the other hand, to sustain bursty writes,
dirty data in the cache should be destaged in advance before
the bursty writes come in. Otherwise, it will increase pend-
ing requests in the queues, causing delays for writes. In the
context of HDDs, leveraging spatial locality means minimiz-
ing mechanical movement inside a HDD. Extensive research
has been conducted on these cache scheduling algorithms to
exploit the spatial locality on a HDD [20], [21]. In order to
minimize the delay due to the cache being full while main-
taining locality requirements, the cache controller should be
carefully designed to make an intelligent decision on when
to destage, what to destage, and howmuch to destage.

There are other basic approaches to decide when to
destage. In [22], a rapid destaging is performed on the dirty
blocks in idle time by prioritizing the bursty write resistance
over temporal locality. In [19], a balance between burstywrite
resistance and temporal locality is emphasized by scheduling
linear threshold levels. Here, destaging rate varies in accor-
dance with the amount of data present in the cache. At low
occupancy, slow destaging takes place to ensure locality
advantage and at higher occupancy the destaging rate grows
proportionally to avoid space tightening.

STOW [18] further improves WOW by identifying ran-
dom and sequential writes distinctly. All write back cache
algorithms including WOW [16] and STOW [18], however
well designed, do not consider the characteristics of drives,
and will suffer from performance degradation due to unco-
ordinated garbage collection processes on an array of SSDs.
Therefore, our claim is that write cache algorithms for an array
should be redesigned by considering the device characteristics.

2.2 Problem Definition: Slow Destaging I/Os

The pathological behavior of an array of SSDs has been
reported by one of previous studies [12], [23], [24] where
they conducted measurements of individual SSDs and the
array of SSDs for a variety of I/O workload patterns, and
made three important observations: (i) individual SSDs
experience sudden bandwidth drops and the frequencies

of those bandwidth drops are more likely to happen
when the intensity of write requests in the workloads
increases, (ii) the performance variability of an array of
SSDs increases with the number of SSDs, and (iii) per-
drive bandwidth decreases with the number of SSDs. The
main cause of this pathological behavior of the SSD array
is attributed to uncoordinated GC operations of individ-
ual SSDs in their array [12], [23], [24] The write cache on
the RAID controller could be utilized to mitigate the
problem of the pathological behavior of the SSD array,
however, when blocks on the write cache are destaged
into the SSD array, uncoordinated destage writes can hurt
overall I/O performance of the SSD array.

Fig. 2 illustrates how destage writes can be slowed down
when they interfere with some GC operations. Suppose that
write requests A and B arrive, which are stored in the cache
immediately, and the write cache controller will decide
destage at some later time. The request A is split into A0 , A1

and A2 which are going to SSD0, SSD1 and SSD2, respec-
tively. If a strip that goes to SSD1 is delayed by GC, the
destage write cannot be committed until SSD1 finishes GC
and processes strip A1. Only after SSD1 finishes processing
A1, the cache controller can destage the next write group. If
bursty write requests come during this period, the write
cache may become full, which incurs long latency to subse-
quent write requests. Even while SSD1 is delayed by GC,
other SSDs can accept strips. This is because all strips in the
same write group have to destage together for parity com-
putation. However, if strips can be destaged independently,
it can avoid delay caused by the slow SSD. In HDD arrays,
the performance variability is not a big problem because the
performance variability is not significant in HDDs. In con-
trast, in SSDs, the shortest response time and the longest
response time could be order-of-magnitude different. Thus,
the performance variability should be carefully managed
when a write cache is designed.

3 LAYOUT-AWARE WRITE CACHE

LAWC is motivated to answer a simple question: how can we
exploit the underlying storage architecture to minimize GC over-
heads in an array of SSDs? The ultimate goal of LAWC is to
achieve the performance improvement by mitigating perfor-
mance degradation caused by GCs in SSDs. LAWC has
three design components: (i) I/O scheduler with pre-parity
computation by logically partitioned write cache design, (ii)
destage write synchronization technique, and (iii) two-level
hybrid caching technique. LAWC is implemented by modi-
fying the state-of-the-art write cache algorithm–WOW [16].
These three components are explained one by one in follow-
ing sections.

Fig. 2. Timing diagram of destage writes in traditional write caches.
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3.1 I/O Scheduling with Pre-Parity Computation

Traditional write caches employ a single unified write cache.
A unified write cache does not effectively handle the perfor-
mance variance of SSDs. As shown in Fig. 2, if any SSD is
delayed by GC, which takes a significant amount of time, no
destage operation can be performed until the GC finishes. To
mitigate this problem, we split the write cache so that other
write caches can perform destage operations even if one of
SSDs is delayed by GC. LAWC employs multiple indepen-
dent write caches instead of a single unified write cache.
Each cache is implemented using separate request queue. In
addition, LAWC can use a small non-volatile front cache to
further improve the efficiency of the next level write cache.
The architectural depiction of LAWC is presented in Fig. 3.

In LAWC, to maximize independent destage operations,
parity has to be computed before strips are cached. The pre-
parity-computation is not free. It involves parity computa-
tion overhead and additional internal I/O overhead cost in
the SSD array. Moreover, even if there is a write cache hit,
in order to compute parity, it has to additionally read its
related data blocks. However, the performance overhead of
the pre-parity-computation can be compensated by destage
write synchronization and two-level hybrid caching techniques,
described in detail in Sections 3.2 and 3.3. Note that there is
no write operation involved in this parity computation pro-
cess due to write cache hits in the SSD array. Thus, it does
not affect the lifetime of SSDs by this operation.

In order to understand the overhead of additional I/Os
incurred by the pre-parity-computation and its impact on
the locality, let us consider the following example as illus-
trated in Fig. 4. To simplify the discussion, we consider the
RAID-4 with four SSDs (three data SSDs and one parity
SSD), which are denoted as SSD0, SSD1, SSD2 (data SSDs)
and SSDp (parity SSD). The scenario is that request A comes,
which is split toA0 andA1 going toSSD0 andSSD1, followed
by request A0, which is split to A0

1 and A0
2 going to SSD1,

SSD2. RequestsA andA0 belong to the samewrite group.
Fig. 4a shows the WOW algorithm. In WOW, Request A

is stored in the write cache if there is room. When request
A0 arrives, which belongs to the same write group of request
A, but updates different strips. If request A is still stored in

the write cache, a hit on a write group occurs. Thus, A1 and
A2 are updated to A0

1 and A0
2 in the write cache. After a

while, when they need to be destaged, A0, A
0
1, and A0

2 are
stored to SSD0, SSD1, and SSD2, respectively. The parity is
computed when they are destaged and stored in SSDp.
Thus, four write operations are performed in total.

Fig. 4b illustrates our proposed pre-parity-computation
and SSD-aware I/O scheduling algorithm in LAWC. In
LAWC, the entire physical write cache is logically parti-
tioned into sub write caches as many as the number of SSDs
in the array. Suppose such logically partitioned write caches
are W0, W1, W2 and Wp for SSD0, SSD1, SSD2 and SSDp,
respectively. When request A arrives, A0 and A1 are stored
in W0 and W1. To compute the parity a read operation is
performed to SSD2, which reads A2; the parity is computed;
and the parity strip, Ap is stored in Wp. When request A0

arrives, A0
1 in W1 is replaced (hit on a strip) to A0

1, A2 is
updated to A0

2 in W2. To compute parity, the RAID control-
ler needs to read A0, A

0
1, and A0

2, all of which are stored in
their corresponding write caches. Thus, no more read oper-
ation from disks is required. The parity strip, Ap, is updated
to A0

p in Wp (hit on a strip). Therefore, until they are
destaged, 4 write and 1 read operations are involved.

LAWC can incur additional read operations to compute
the parity, but does not increase write operations as shown
in the example. This is because the write caches can still
absorb write requests to SSDs as long as write cache space is
available. As it will be demonstrated by experiments in
Section 4, write caches of LAWC have lower chance of being
full. As for additional read operations, they do not have sig-
nificant impact on the overall performance because read
operations are very fast in SSDs. Also, it does not have any
adverse impact on the lifetime of SSDs.

The aforementioned example illustrates the situation
where both temporal and spatial localities are exploited by
LAWC. A1 is updated by both request A and A0. Since A1 is
stored in W1, a hit occurs when request A0 comes, which is
an example of temporal locality. Request A and A0 are

Fig. 3. Architectural overview. The figure shows logically partitioned write
caches, instead of a single unified write cache and a small non-
volatile front write cache.

Fig. 4. Illustration of destage writes (WOW versus LAWC).
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spatially adjacent. Since they are of the same write group,
they could be coalesced. In case of WOW, the coalescing is
explicit. In case of LAWC, it is not explicit, but it happens.
As shown in the example, request A0 does not incur any
additional I/O to SSDs. By exploiting existing strips of
request A, request A0 is coalesced with request A.

As for the error recovery, the proposed design has no
issues with recovery from a disk failure because it employs
non-volatilememory as a cache. If the RAID controller detects
failure on an SSD, it destages all the data stored in the cache
into the SSDs except for the failed SSD before it starts rebuild-
ing the failed disk. Then it can rebuild the failed SSD based on
other SSDs since all the up-to-date data is in the SSDs.

3.2 Destage Write Synchronization

Independent write cache structure allows flexible I/O sched-
uling for destage writes. However, uncoordinated GCs
across SSDs may interfere with incoming requests. Fig. 5a
illustrates this situation. The scenario of incoming requests is
the same with Fig. 2. When request A comes, it is immedi-
ately split into three strips and they are stored in correspond-
ing write caches. One of the three stripsmay be a parity strip,
whichmeans that parity computation is done at this moment
(by pre-parity-computation). Similarly, when request B
comes, which is independent from request A, it is split into
two strips and they are stored. At this moment, SSD0 has A0

in its write cache; SSD1 has A1; SSD2 has A2 and B2; and
SSD3 hasB3. If all write caches work independently, destage
writes can also happen independently. It is hard to predict
when any request is affected by GC. In this example, read
requestsX and Y come after write requestsA andB. Request
X is split to SSD1, SSD2, and SSD3. When requestX arrives,
SSD3 is runningGC. Therefore, requestX cannot be commit-
ted until the strip going to SSD3 completes. In the same way,
request Y is markedly delayed by SSD1.

To address this issue, we propose a destage write synchroni-
zation technique. It attempts to destage strips in all write
caches together at the same time. If all the write caches have
at least one strip to destage, they destage together. Note
that those strips destaged together do not have to belong
to the same write group. The destage pointer advances

independently. It advances while clearing the recency bit,
until it finds a strip whose recency bit has been already
cleared. The stripwith cleared recency bit is ready to destage.
When the pointer finds a strip to destage, it has to stop there
until all the other pointers find one. However, if the waiting
time of those strips to be destaged together exceeds a prede-
fined threshold, it is allowed to destage to prevent the wait-
ing write caches from becoming full. Except for those having
no strip, other write caches can destage together.

The destrage write synchronization technique incurs two
types of overhead. One is additional complexity to schedul-
ing, and the other is additional delay in destrage writes. The
additional complexity is negligible because what is added is
only looking up other write caches to check if they have a
strip to destage. The additional delay occurs because the
write cache should wait for other caches to be ready. This
may cause the waiting cache to become full, when it might
be available if the synchronizationwere not employed. How-
ever, this additional delay can be compensated by mitigated
GC delay effect as demonstrated by experiments in Section 4.

The pre-parity-computation followed by the parities to
be cached will help increase the chances that a whole strip
group are destaged together. Moreover, with this pre-
parity-computation, multiple write caches are independent
in that strips belonging to one write group do not have to be
destaged together because a parity strip is already com-
puted. Even if any SSD is delayed by GC, independent
scheduling of write caches allow other SSDs to accept a strip
from their corresponding write caches.

GC synchronization of individual SSDs in the array can
improve the overall performance of an SSD array [12], [13].
Kim et. al. [12], [13] proposed a coordinated GC mechanism
to forcefully trigger GCs of individual SSDs at the same time.
However this technique requires bus interface (e.g., SATA)
to be modified for synchronization of GCs and all SSDs in
the array to support it. In LAWC, instead of GCs of individ-
ual SSDs, destage writes are synchronized because destage
writes cause to trigger GCs. Synchronization of destage
writes increases the possibility of GC synchronization.

Fig. 5b illustrates the impact of synchronization. As
shown in this figure, destages writes, A0, A1, A2, and B3, are
triggered at the same time. Note that B3 does not belong to
the same write group of other strips. The synchronization
mechanism contributes to the performance improvement by
increasing the chance of GCs running simultaneously. Since
GC is triggered by a destage write, synchronized destage
writes increase the probability of GC synchronization
between SSDs. In this example, we can see that request X is
not affected by any GC whereas request Y is now affected
by two GCs. However, even if request Y is delayed by two
GCs, its response time does not become doubled because
the two strips are serviced in parallel.

3.3 Two-Level Hybrid Caching

One drawback of LAWC is additional computation over-
head by the pre-parity-computation. Even though the write
cache hits, the parity computation delay is always added to
the response time. The overhead is compensated by coordi-
nating GC processes when the workload is write-intensive,
which means the inter-arrival time of subsequent write
requests is short and their request size is large. However,

Fig. 5. Timing diagram of destage writes in LAWC.
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for non-intensive workloads, this overhead cannot be com-
pensated. Since the GC processes do not incur much over-
head for the non-intensive workloads, the pre-parity-
computation overhead is hardly compensated by coordinat-
ing them. To overcome this problem, a small write cache is
employed to mitigate the pre-parity-computation overhead
for non-intensive workloads.

As illustrated in Fig. 3, an additional small write cache can
be employed in front of independent write caches. The small
write cache works in the same way as WOW does except for
when it is full. In WOW, when it is full, subsequent write
requests are pending until it becomes available. In LAWC,
when the small cache is full, subsequent write requests
bypass the cache unless they have dependency on those in
the small cache. Here, dependency means requests on the
same address. For non-intensive workloads, the small cache
can effectively serve requests. Since it does not require pre-
parity-computation, its performance is close to WOW. For
intensive workloads, small cache can more frequently
become full. Most of requests are likely to bypass the small
cache. When they bypass the small cache, pre-parity-
computation overhead incurs, but this overhead is compen-
sated by the mechanism of independent write caches and
destage write synchronization technique. For intensive
workloads, LAWC can improve performance by coordinat-
ing GC processes. In summary, for non-intensive workloads,
the upper-level small cache can serve most of requests and
offer similar performance with WOW, while for intensive
workloads, the small cache is bypassed and the independent
write caches contribute to the performance improvement.

3.4 Algorithm: Putting All Together

Algorithm 1 shows the pseudo code of LAWC that integrates
all three techniques aforementioned. When a write request
arrives, a procedure named RequestArrive is called. It
first checks if a front small cache is full. If it is full, it forwards
the request down to independent write caches unless it has
dependency. If the incoming request has dependency on
requests stored in the small cache, the incoming request is
pending until the small cache becomes available. Otherwise,
it stores the request in the small cache. The small cache will
make free space after destage procedure is performed.

In IndependentWriteCache, the incoming request is
split into strips and the parity is computed. All strips
including the parity are stored in their corresponding write
caches. If any write cache is full, the request is pending until
it becomes available by destage writes. Destage writes are
triggered independently from handling requests. The small
cache destages strips in the same way with WOW.

DestageSmallCache shows the destage write algo-
rithm. The destage pointer indicates a candidatewrite group.
If the recency bit of a candidate is true, the bit is cleared and
the write group is retained. The destage pointer advances
until a write group whose recency bit is false is found. The
write group with false recency bit is removed from the small
cache and forwarded down to independent write caches.

Destaging of each level write cache (front write cache and
next level independent write caches) is triggered indepen-
dently. A candidate strip for destaging is selected in the
same way with WOW, as shown in Destage. Note that a
unit of destaging is a strip in independent write caches,

whereas it is a write group in the small cache. Even though
a candidate is found, it will not be immediately destaged.
Instead, it is delayed until other write caches find candi-
dates or the timer expires. The timer prevents a write cache
from being pended for a long time.

4 EVALUATION

4.1 Experimental Setup

In order to study the performance implications of LAWC,
we enhanced the DiskSim and SSD simulator developed by
Microsoft Research [17]. Our tests were performed on
RAID-0 and RAID-5. In RAID-0, eight SSDs are employed,
and in RAID-5, nine SSDs are employed, where eight SSDs
are for data strips and one is for a parity strip. The strip unit
size for RAID is 128 KB, so the 1 MB request constitutes a
write group (128 KB � 8 = 1 MB) for RAID-0 configuration.
In simulating an SSD, we used 15 percent reserved free
blocks with 5 percent minimum free blocks and a greedy
GC policy. Each SSD uses four flash chip packages, where
each package consists of four planes, and each plane uses
512 blocks. Each block consists of 64 4 KB pages. Thus, the
size of each SSD is 2 GB. Page read and write times of 0.025
and 0.2 ms are used and block erase time of 1.5 ms is used.
The simulation parameters are summarized in Table 1.

We assume a byte-addressable non-volatile memory
is employed for the small cache and independent write
caches. Any type of byte addressable non-volatile memory
(NVM) is applicable. The read and write latency varies a lot
depending on the type of the memory. For evaluation, we
used phase-change random-access memory (PRAM) as the
front write cache, where read and write latencies are 0.125
and 1 ms respectively [25]. The write cache configuration
parameters are shown in Table 2.

Implementation.DiskSim implements a single global queue
at the I/O driver to handle incoming I/O requests. For
implementing WOW write cache, we implemented another
write cache layer on the RAID controller. When I/O requests
are dequeued from the I/O driver queue, they are inserted to

TABLE 1
SSD Model Parameters

SSD configuration

Total capacity 8 GB
Reserved free blocks 15 %
Minimum free blocks 5 %
Cleaning policy Greedy
Flash chip packages 4
Planes per package 4
Blocks per plane 512
Pages per block 64
Page size 4 KB

Latency

Page read 0.025 ms
Page write 0.200 ms
Block erase 1.5 ms
Copy back disabled

RAID

No. of SSDs 8, 9
Redundancy RAID-0/5
Write cache 32 KB per SSD
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the WOW write cache queue on the RAID controller. Unlike
WOW write cache queue, LAWC implements partitioned
subqueues on the RAID controller as many as the number of
SSDs in the array. To handle the events of cache hit andmiss,
we defined hit andmiss events forWOWand LAWC.

Workloads.We used a mixture of real enterprise-scale I/O
workloads and synthetic HPC workloads to study the effi-
cacy of LAWC on a wide spectrum of I/O workloads. We
use Microsoft (MSR) Exchange Server [26], Cello [27], Finan-
cial [28], TPC-H [29], FIU-VM [30], and FIU-MAIL [30] traces
as real-world enterprise workloads. In addition, a skewed
trace is used to validate the effectiveness of LAWC for a
heavily skewed workload. To further explore the perfor-
mance of the proposed cache design in multi-application
storage environment, we used the multistream trace which
is a mixture of different workloads. For an intensive multi-
stream workload, we mixed Exchange and Cello applica-
tions, which is denoted by MS-EC. And for a non-intensive
multistreamworkload (MS-FT), we used a mixture of Finan-
cial and TPC-H. Finally, we mixed these four traces into one
multistreamworkload, which is denoted byMS-ECFT. Char-
acteristics of these workloads are summarized in Table 3.

In addition, for the synthetic HPC workload, we used a
synthesizedHPC trace that was generated based on the char-
acterization study of real HPC I/O workloads of the Spider
file system [7]. The HPC trace analyzed shows about 60 per-
cent writes and 40 percent reads, a bi-normal distribution for
request size, and a Poisson distribution for inter-arrival times
with an average of 20 ms. For the request size distribution,
there are about 50 percent 4K small requests and 50 percent
large requests (17 percent of 512 KB and 32 percent of 1 MB
requests). Based on this study, we performed experiments
varying I/O request size, arrival rate of the requests, and the
percentage of write requests. Table 4 summarizes the values
of these parameters used in the experiments.

4.2 Performance Analysis of LAWC

To evaluate the performance of LAWC, we compare the fol-
lowing algorithms:

� WOW [16]: A state-of-the-art write cache algorithm
for RAID of HDDs.

� GGC [12]: A technique that improves the perfor-
mance of RAID by coordinating GCs of SSDs.

� IWC: An independent write caches (IWC) without
synchronization nor the small cache.

� IWC+S: an enhanced IWC with destage write syn-
chronization technique but not the small cache.

� LAWC: a combination of IWC, synchronization and
the small cache.

To make fair comparisons, the total amount of cache size
(including the small write cache) is the same across different
architectures.

WOW employs a linear threshold scheme to determine
when to trigger destage writes, as mentioned in Section 2.1.
The same scheme could be applied to the small cache and
independent write caches in LAWC. However, in our
implementation, both high and low threshold values are
zero, which means destaging is triggered immediately at a
full rate when any request is stored in write caches of both
LAWC and WOW. Due to fundamental difference in archi-
tecture, different threshold values have different impact on
performance of LAWC and WOW. For example, LAWC
offers the best performance with a certain threshold value,
which does not work for WOW. Since the threshold value is
orthogonal to LAWC design, we exclude the impact of
threshold for fair comparison by setting them zero.

4.2.1 Impact of Front Cache Size

Recall that LAWC consists of a small cache and an array of
independent write caches. Different size distributed between
the small cache and the independent write caches was
experimented to get an idea of the size distribution which
offers optimal performance. This experimental analysis is
important to decide the size ratio of the small buffer to the
main cache by learning how size has an effect on overall per-
formance. Exchange and Financial workloads are used as
one representative intensive workload and one non-inten-
siveworkload for these sensitivity analysis respectively.

TABLE 2
Write Cache Parameters

Configuraton RAID-0 RAID-5

Size of small cache (Ss) 64 KB 72 KB
Size of one write cache (Sc) 24 KB 24 KB
No. of SSDs (N) 8 9
Total Size (Ss þN � Sc) 256 KB 288 KB
Read Latency 0.125 ms
Write Latency 1 ms

TABLE 3
Characteristics of Realistic Workloads

Workload Write IOP/s Write Size (KB) Read IOP/s Read Size (KB) Total IOP/s Total Size (KB)

Exchange 533.57 7.77 159.40 8.01 692.87 7.82
Cello 55.36 6.05 18.91 7.96 73.53 6.54
Financial 4.08 8.44 1.81 4.05 5.89 7.04
TPC-H 4.57 10.19 17.03 37.35 21.59 31.62
FIU-VM 15.80 4.00 3.80 4.00 19.16 4.00
FIU-MAIL 83.62 4.00 62.02 4.00 142.19 4.00
Skewed 199.76 4.00 50.33 4.00 250.08 4.00

TABLE 4
Synthetic Workload Characteristics

Parameter Values

Request size (R) 4 KB, 512 KB, 1024 KB, 4096 KB
Inter-arrival time (I) 10 ms, 20 ms, 40 ms
Write percentage (W) 20 %, 60 %, 80 %

W(R, I, W) denotes request size R (KB), inter-arrival time I (ms), and
write percentage W (%).
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Algorithm 1. Pseudo-Code of LAWC

1 PROCEDURE: ReqestArrive
2 Input: R /* A write request

3 if the small cache is full then
4 if R has dependency on requests in the small cache then
5 wait until the small cache is available;
6 else
7 call IndependentWriteCache(R);
8 end
9 else

10 store R to the small cache;
11 end
12
13 PROCEDURE: IndependentWriteCache
14 Input: R /* A write request

15 split R to strips, R0; R1; . . .Rk;
16 compute parity strip Rp;
17 for all strips do
18 if the corresponding write cache is full then
19 wait until the cache is available;
20 end
21 store the strip to the corresponding write cache;
22 set the recency bit of the stript as true;
23 end
24
25 PROCEDURE: DestageSmallCache
26 if the write cache is not empty then
27 repeat
28 advance the destage pointer;
29 if the recency bit is true then
30 clear the recency bit;
31 end
32 until a write group is found whose recency bit is false;
33 call IndepedentWriteCache(the found write group);
34 end
35
36 PROCEDURE: Destage
37 Input: i /* The index of the write cache

38 if the write cache is not empty then
39 repeat
40 advance the destage pointer;
41 if the recency bit is true then
42 clear the recency bit;
43 end
44 until a strip is found whose recency bit is false;
45 mark i� thwrite cache is ready to destage;
46 repeat
47 wait;
48 until Synchronization();
49 destage the found strip to the corresponding SSD;
50 end
51
52 PROCEDURE: Synchronization
53 Output: true or false
54 if all write caches are ready to destage then
55 clear marks;
56 reset timer;
57 return true;
58 end
59 if timer expires then
60 clear marks;
61 reset timer;
62 return true;
63 end

In our experiment, the small cache ratio is calculated as
the following; Denote the size of the small cache as Ss, the
number of SSDs as N , and the size of one write cache Sc.
Then the ratio is calculated as Ss

SsþN�Sc:
We explored the ratio

by changing Ss and Sc while keeping the total size
(Ss þN � Sc) unchanged. For example, we used 64 KB as Ss

and 24 KB as Sc, which give us 256 KB as the total size and
25 percent as the ratio for RAID-0 (refer to Table 2). If we use
24 KB as Ss and 29 KB as Sc, the total size is the same (256
KB), but the ratio is 9.375 percent. Fig. 6 shows the perfor-
mance of LAWC with respect to the varied ratio of small
cache to the main cache. Precisely, the size of the small cache
and the size of independent write caches are varied to
explore different ratios. In both Figs. 6a and 6b, we observe
that the peak performance is achieved when the small cache
size is 25 percent. For a fair comparison, we use 25 percent as
the small cache size ratio throughout the rest of simulations.

4.2.2 Evaluating LAWC for Enterprise Workloads

Fig. 7 shows the results with real enterprise workloads. We
observe that WOW outperforms IWC because IWC has sep-
arate caches, but WOW has a unified cache, which results in
higher utilization of the cache space. In IWC, one of write
caches may become full while there is room in other write
caches because there is no interaction between write caches.
In contrast, WOW can mitigate this problem because all
SSDs share the unified write cache.

We see that IWC does not help to improve performance.
However, when the destage write synchronization tech-
nique is employed, the performance of IWC+S is drastically
improved when compared to IWC. In particular, for write-
intensive workloads (Exchange, Cell, FIU-VM, FIU-MAIL,
MS-EC, and MS-ECFT), IWC+S significantly outperforms
WOW. IWC+S outperforms WOW by 82.39 and 68.51
percent for RAID-0 and RAID-5, respectively, as shown in
Figs. 7a and 7b. This is because IWC+S increases the proba-
bility of GC synchronization. GGC enforces GC coordina-
tion with a help of modified block interface on both RAID
and individual controllers, which results in the best perfor-
mance in Figs. 7a and 7b.

The drawback of IWC+S could be the pre-parity-
computation. The overhead of pre-parity-computation is
compensated by GC synchronization for write-intensive
workloads, but for non-intensive workloads (Financial and
TPC-H), it is not. By employing the small cache,
LAWCcan mask the performance degradation due to this
overhead from the response time. Thus, LAWCoffers simi-
lar performance with WOW for non-intensive workloads.

Fig. 6. Performance of LAWC compared to cache size.
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The difference in the average response time between LAWC
and WOW is 8.19 and 2.19 percent for Financial and TPC-H,
respectively. Therefore, LAWC offers similar performance
with WOW for non-intensive workloads, while outperform-
ing WOW for intensive workloads.

We performed experiments with highly skewed trace. In
the skewed trace, 50 percent of requests are on one SSD,
and 50 percent of requests are randomly distributed.
Though the performance improvement of LAWC for the
skewed trace is not as significant as for other write-intensive

Fig. 7. Performance comparison of different implementations. Each bar is shown as the following order: WOW, GGC, IWC, IWC+S, and LAWC.

1898 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:40:41 UTC from IEEE Xplore.  Restrictions apply. 



workloads, LAWC still offers drastic improvement in aver-
age response time. Specifically, LAWC improves the aver-
age response time by 29.22 and 24.47 percent compared to
WOW for RAID-0 and RAID-5, respectively.

In both RAID-0 and RAID-5, the trend of the standard
deviation, shown in Figs. 7c and 7d is similar with that of the

average response time. GGC exhibits the smallest standard
deviation, and LAWCoffers smaller standard deviation com-
pared toWOW. Specifically, LAWCoffers 4.77 and 10.79 per-
cent smaller average standard deviation compared to WOW,
for RAID-0 and RAID-5, respectively. In case of maximum
response time shown in Figs. 7e and 7f, it is similar across all
implementations. The throughput is reversely related with
the response time. Figs. 7g and 7h show that the average
throughput of LAWC is improved by 85.53 and 78.35 percent
compared toWOW for RAID-0 and RAID-5, respectively.

Effect of Synchronized Destage Writes. The synchronization
mechanism improves the performance by increasing the
probability of GCs operating simultaneously. Fig. 8 com-
pares the average number of synchronized GC processes.
We count the number of SSDs that run GCs during a fixed
time slice, for which we use 0.1 ms in our measurement.
This result clearly shows that the probability of GC synchro-
nization markedly increases with LAWC compared to
WOW. The average number of synchronized GC operations
is increased by up to 6.24 times.

Fig. 8. Average number of synchronized GC processes. Each bar is
shown as the following order: WOW, GGC, and LAWC.

Fig. 9. Comparing WOWand LAWC for a wider range of workload characteristics. Each bar is shown as the following order: WOW, GGC, and LAWC.

Fig. 10. Sensitivity analysis for different cache sizes. Each bar is shown as the following order: WOW, GGC, IWC, IWC+S, and LAWC.
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4.2.3 Evaluating LAWC for HPC Workloads

In order to cover a wide-range of workload characteristics,
we evaluated LAWC with synthetic HPC workloads. Fig. 9
shows the results comparing LAWC and WOW. The main
benefit of employing LAWC comes from large requests. In
Fig. 9a, compared to WOW, the response time of W(1024,
20, 60), W(4096, 20, 60), and W(1024, 10, 60) is reduced by
32.33, 27.13, and 47.24 percent, respectively. Since the
response time of large requests is much longer than that of
small requests, the response time reduction for large
requests substantially improves the overall performance.
Varying inter-arrival time (e.g., W(1024, 10, 60) and W(1024,
40, 60)) and percentage of write requests (e.g., W(1024, 20,
20) and W(1024, 20, 80)) does not affect the overall trend.

If the RAID configuration requires parity computation
(RAID-5), the overhead of the pre-parity-computation
increases, but the front small cache effectively hides it.
Fig. 9b shows the results of RAID-5. For W(1024, 20, 60), W
(4096, 20, 60) and W(1024, 10, 60), the performance improve-
ment is 35.22, 30.14, and 33.36 percent, respectively.

4.2.4 Sensitivity Analysis with Different Cache

Parameters

To further examine the effective performance of the pro-
posed techniques, different cache sizes were used to study

the performance of RAID SSD with intensive and non-
intensive workloads. Exchange [26] and Financial [28]
workloads were chosen for evaluation.

Fig. 10 show the results of RAID-0 and RAID-5 configu-
rations for Exchange and Financial workloads. The results
for intensive workload show that, for all cache sizes, from
small to large, LAWC still outperforms WOW in terms of
average response time. We can clearly see WOW performs
worst in all different cache sizes, whereas LAWC offers
comparable performance to GGC. LAWC offers 84.67 per-
cent decrease in response time when compared with WOW
and performs 8.47 percent worse than GGC. Therefore,
LAWC offers drastic performance improvement by exploit-
ing internal cache design. The results of non-intensive
workload, shown in Figs. 10c and 10d, show that for small
cache size, performance of WOW is 9.57 and 15.76 percent
better than LAWC. The performance of LAWC is compara-
ble even for non-intensive workloads when the cache size is
small. For other sizes, the performance is in accordance
with other results; LAWC offers more optimal performance
than IWC+S for non-intensive workloads, by mitigating the
pre-parity-computation overhead.

To quantify the impact of the write cache access time,
we performed a sensitivity analysis with different access
latencies. The cache latency parameters used for this analy-
sis are summarized in Table 5. As shown in Fig. 11, the
cache configuration (access latency) has negligible impact
on the results. This is because the portion of the access time
of the cache over the average overall access time is not sig-
nificant. For example, in the case of LAWC, RAID0, and
Exchange, the average access time is 0.045 ms while the
read and write latency of the baseline cache configuration is
only 0.000125 and 0.001 ms, respectively. Furthermore, we
assumed the same cache configuration for all other techni-
ques. The performance difference depicted in Fig. 11 is
mainly attributed to the way how GC of SSDs affect the

TABLE 5
Write Cache Access Latency Parameters

for the Sensitivity Analysis

Configuration Read latency (ms) Write latency (ms)

SS (Very Slow) 0.5 4
S (Slow) 0.25 2
B (Baseline) 0.125 1
F (Fast) 0.0625 0.5
FF (Very Fast) 0.03125 0.25

Fig. 11. Sensitivity analysis for different cache access latencies. Each bar is shown as the following order: WOW, GGC, IWC, IWC+S, and LAWC.
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response time. LAWC and GGCminimize the GC impact by
synchronizing GC processes in the array of SSDs.

5 RELATED WORK

RAID combines multiple disks into a logical unit to provide
fault tolerance and improve overall performance in a system.
RAID uses “striping” technique. It breaks data into segments
and sends each segment to independent disks, offering
read/write to more than one disk at the same time to
improve performance. In addition, parity in RAID provides
data redundancy to improving reliability. Performance of
RAID in the context of hard disk drives has been extensively
studied in [31], [32], [33], [34], [35]. On the other hand, SSDs
offer significance performance improvement than HDDs,
however, they suffer performance variability due to internal
characteristics [12], [13], [14], [15]. When SSDs are configured
in RAID, the performance variability of individual SSDs
becomes amajor concern, because the overall performance of
the SSD-based RAID could be limited by the slowest SSD.
Themain reason behind this performance degradation is due
to uncoordinated garbage collection. Kim et al. [12], [13] pro-
posed a coordinated GG algorithm, called GGC [12] to miti-
gate the performance degradation problem in SSD arrays.

WOW [16] and STOW [18] are popular write cache algo-
rithms for the arrays of HDDs, Even if WOW [16], and
STOW [18] significantly improve write performance, their
work is limited only to an array of hard drives, On the con-
trary, our work focuses on the design of write cache for an
array of SSDs for all-flash storage. LAWC considers internal
SSD characteristics in the array such as multiple chips, chan-
nels, multiple cores, etc. To the best of our knowledge, no
prior work has been performed on the write cache design for
All Flash storage. GC needs to be carefully considered in
cachemanagement on the RAID controller for SSDs. The pro-
posed write cache improves performance by increasing the
probability of GC synchronization. When GC processes are
invoked at the same time, the performance variation across
SSDs is reduced, which contributes to reducing the response
time. While the proposed write cache increases the probabil-
ity of GC synchronization, GGC [12] guarantees it. However,
GGC requires a modification to the interface (e.g., SATA) to
enable the GC synchronization. Since the interface modifica-
tion is not widely accepted yet, our proposedwrite cache is a
practical solution for an array of existing commodity SSDs.

6 CONCLUSION

All flash array storage system becomes more and more pop-
ular with its high I/O performance and high reliability.
Although they offer better performance than HDD based
array, frequency of garbage collection makes SSD RAID
incur higher overheads. From our study, we observed that
independent garbage collection process on different SSDs
contributes to the overheads in serving the incoming
requests, thus resulting in a overall performance variability
of the all-flash array storage.

To minimize the effect of not optimized RAID destage
writes, we proposed a Layout-aware Write Cache design,
which implements an asynchronous write cache algorithm
with a pre-parity-computation technique. Specifically LAWC
implements I/O scheduling with pre-parity computation,

synchronized destage write, and two-level hybrid caching
techniques. Unlike a traditional write cache, LAWC employs
as many separate write queues as the number of SSDs in the
array. By employing multiple write queues, an impact of GC
on any write queue can be isolated from other queues. The
results revealed that the synchronization of destage writes
across SSDs can increase the probability of overlapped GC
operations across SSDs in the array, improving the overall
performance of SSD arrays, without requiring interface
changes to the architecture as in GGC.

We designed and evaluated LAWC by enhancing the
well regarded MSR’s SSD simulator. With extensive evalua-
tions, our conclusion is that LAWC increases the average
number of synchronized GCs, when compared to a state-of-
the-art RAID write cache, WOW [16]. As a result, it offers
performance improvement by 89.37 and 89.94 percent for
RAID-0 and RAID-5, respectively, on multi-stream storage
environment, when compared to WOW. Moreover, the pro-
posed technique is more practical than an existing GC coor-
dination technique such as GGC because it does not require
modification to the block interface.
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