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Processing In Memory (PIM), the concept of integrating
processing directly with memory, has been attracting a
lot of attention since PIM can assist in overcoming the
throughput limitation caused by data movement between
CPU and memory. The challenge, however, is that it requires
the programmers to have a deep understanding of the PIM
architecture to maximize the benefits such as data locality
and parallel thread execution on multiple PIM devices.
In this study, we present AnalyzeThat, a programmable
shared-memory system for parallel data processing with
PIM devices. Thematic to AnalyzeThat is a rich PIM-
Aware Data Structure (PADS), which is an encapsulation
that integrally ties together the data, the analysis tasks
and the runtime needed to interface with the PIM device
array. The PADS abstraction provides (i) a key-value data
container that allows programmers to easily store data on
multiple PIMs, (ii) a suite of parallel operations with which
users can easily implement data analysis applications, and
(iii) a runtime, hidden to programmers, which provides the
mechanisms needed to overlay both the data and the tasks
on the PIM device array in an intelligent fashion, based
on PIM-specific information collected from the hardware.
We have developed a PIM emulation framework called An-
alyzeThat. Our experimental evaluation with representative
data analytics applications suggests that the proposed system
can significantly reduce the PIM programming effort without
losing its technology benefits.

I. INTRODUCTION

Processing-in-memory (PIM) is a well-known concept of
integrating processing units (cores) with memory devices in
order to reduce memory latency and increase memory band-
width [1]. PIM was originally introduced more than a decade
ago, with several studies showing its potential advantages in
various applications such as knowledge discovery, scientific
computing, image processing and databases [2], [3], [4],
[5], [6]. However, due to the difficulty in the heterogeneous
manufacturing process of logic and memory, so far, PIM has
not been widely adopted in commodity systems [7].

Recently, there has been a renewed interest in PIM from
academia and industry [8]. Emergence of advanced 3D mem-
ory allows the stacking of memory chips atop a processing
unit (e.g., GPU), enabling processing near memory, e.g.,
TOP-PIM [9] that was put forward by AMD. Even without
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3D memory, specialized PIM devices have been prototyped
by Micron in their “Automata Processor” in November 2013,
which is a DRAM chip with an array of processors [10].
NVRAM such as PRAM [11], memristors [12], and STT-
MRAM [13] is expected to replace DRAM as it is non-
volatile and power-efficient. PIM architectures can also em-
ploy such emerging memory in place of DRAM. However,
since NVRAM is limited in write cycles, the write frequency
on the memory needs to be carefully controlled.

Exploiting PIM architectures has potential advantages for
processing big data in terms of both energy efficiency and
processing time [7], [14]. Not only can multiple PIM cores
process data in a parallel fashion, but each PIM core can also
achieve higher data processing throughput than commodity
systems by accessing data stored in its corresponding local
memory device with lower latency [9], [15], [14]. The
concept of PIM is now also acknowledged to be useful in
extreme-scale systems, where power consumption is increas-
ingly becoming a significant design constraint.

For example, the U.S. Department of Energy’s (DOE)
CORAL consortium is deploying three O(100) petaflops
systems, SUMMIT, SEIRRA and AURORA systems at Oak
Ridge National Laboratory (ORNL), Lawrence Livermore
National Laboratory (LLNL) and Argonne National Lab-
oratory (ANL), respectively in the 2018-2019 timeframe,
which are expected to consume in the range of 10-13MW of
power. These systems will be equipped with deep memory
tiers ranging from tens of GBs of high-bandwidth memory
(HBM), several PBs of DRAM and persistent memory.
In such systems, DRAM is a significant source of power
consumption. The DOE’s future exascale system in 2023 is
expected to be built within an energy envelope of 20MW.
At exascale, it is widely expected that the cost of data
movement between the deep memory tiers will rival the cost
of computation itself [16]. While technologies such as HBM
and persistent memory help alleviate this concern, PIM and
processing near memory can be a significant step in this
direction as well.

However, it is a significant challenge to integrate PIM
architectures into extant user application software. Program-
ming the PIM architecture can be a non-intuitive task for
users, since it is necessary to properly distribute data and
tasks to multiple PIM devices to fully take advantage of data
locality and parallelism of the PIM devices [9]. If memory
allocation and concurrency control are not accomplished
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properly, efficiency and scalability of the application can
significantly decrease due to data skew [17] and massive
remote access [18].

To address these challenges, we present AnalyzeThat, a
programmable shared memory system for PIM devices. The
system provides an abstraction for parallel data processing
with PIM devices, which allows programmers to focus on
the functionality of their programs and not on the man-
agement of data placement and thread concurrency. More
specifically, the abstraction is provided as a PIM-Aware Data
Structure (PADS), which is a collection of key-value pairs
distributed over multiple PIM devices. Programmers load
their data into the PADS objects and execute the workflow
of data analytics applications with PADS parallel operations.
Thereafter, AnalyzeThat’s runtime is responsible for making
decisions to efficiently process the PADS parallel operations
on a system having an array of PIM devices. The decisions
(e.g., how to distribute key-value pairs and which PIM
to offload a task to) can be made based on PIM-specific
information that is collected from hardware devices. For
such a capability, AnalyzeThat exploits operating system
and hardware support (e.g., device driver and global address
space). Further, to give more control to programmers to
achieve generality of PIM programming, a low-level PIM
programming library that resembles POSIX pthread APIs is
provided as part of the AnalyzeThat library suite.

II. ANALYZETHAT PROGRAMMABLE SYSTEM

Figure 1 depicts the interactions between various compo-
nents of AnalyzeThat.

• Array of PIM Devices At the lowest level is an
array of PIM devices, capable of processing. As we
will discuss in § III-A, emerging hardware technologies
support a single shared memory address space for a node
composed of general CPUs and compute accelerators such
as PIM, where any core can globally access any memory
region [19], [20]. The PIM device can either be 3D
stacked with memory chips layered atop the logic chip on
the same die or a discreet PIM device with an embedded
controller.

• PIM Device Driver We have developed a first order
implementation of a device driver that each PIM device
needs to support in order to realize the functionality
needed in the AnalyzeThat system. In our implemen-
tation, the device driver is responsible for providing
the communication path between the PIM hardware and
the higher-level components in AnalyzeThat, maintain-
ing PIM-specific internal information (e.g., wearout, data
load) that will be queried for data placement, task offload-
ing and data segment expansion.

• Low-Level PIM Programming Library Atop the
PIM array and the device driver is a low-level PIM
programming library, which gives direct control of PIM
devices to programmers, such as allocating PIM memory
and offloading a task to a PIM device. An advanced
programmer can implement his application directly using
the low-level library.
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Figure 1: The hardware and software architecture of AnalyzeThat.
PC denotes the PIM-core.

• PADS (PIM-Aware Data Structure) The PADS library
provides an easier way of programming with PIM devices.
PADS provides an object-oriented abstraction that tightly
couples a data object and its operations. Specifically,
PADS provides an abstraction of a key-value container,
hiding hardware-specific details (e.g., a PIM location)
from programmers. In addition, the PADS key-value con-
tainer supports a suite of parallel operations, such as
map() and reduce(), which can be used to manipulate the
key-value dataset in parallel. For instance, a programmer
can create a PADS object and populate it from an input
file. The PADS library then transparently distributes the
input data across multiple PIM devices based on a data
placement policy. Thereafter, the programmer can perform
data manipulation in parallel by invoking the PADS
operations.

• Runtime Environment Behind the PADS abstraction, a
runtime handles the hardware-specific details such as data
distribution and task execution across the PIM array. For
this, the runtime periodically collects the status of each
PIM device using the low-level library and the device
driver. Based on the device status, the runtime dynami-
cally makes decisions on data and task load distribution.

AnalyzeThat utilizes the PIM cores to process the data
in parallel. Together, these constructs provide a very potent,
programmable shared memory abstraction for in-situ data
analytics atop an array of PIM devices.

III. ANALYZETHAT LOW-LEVEL FRAMEWORK

A. Hardware Architecture
Each PIM device in AnalyzeThat is composed of a

dedicated computing unit (PIM core), a set of programmable
registers and memory chips (PIM memory). The PIM core is
a fully programmable low-power processor similar to ARM
processors [21]. This allows any general program to be
executed on the devices and, therefore, grants more flexible
programming than FPGA-based accelerators [22]. However,
due to the difference in the instruction set architectures
between the host CPU and the PIM core, the target binary
code that is to be executed on the PIM core should be
compiled and built separately with a supporting compiler. In
addition to general programmability, each PIM core contains
its own hardware cache and MMU (Memory Management
Unit), and runs a firmware to control the internal hardware
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Low-level

void* pimmalloc(size t size, int pim) Allocates size bytes of memory in PIM device pim
void pimfree(void* addr) Frees memory of address addr
int pimexec exec(pimexec data t* pe) Initiate offloading of a user-defined function

int pimexec wait(pimexec data t* pe) Block the current thread until the execution completes

PADS

void PADS.import(char* file, parser t* pf) Import data from a file using a parser function pf
void PADS.map(PADS& out, mapper t* mf, void* arg) Performs a user-defined map function mf and stores results in out
void PADS.reduce(PADS& out, reducer t* rf, void* arg) Performs a user-defined reduce function rf and stores results in out
void PADS.export(char* file) Export data into file

Table I: Example APIs of low-level PIM library in C and high-level PADS library in C++. pimexec data t is a record type that
encapsulates all information regarding a code execution on a PIM core.

operations. The programmable registers can be read and
written by host applications to initiate a task execution or to
fetch runtime information, e.g., memory duty cycles. Such
information is used by the AnalyzeThat runtime (§ V).

As shown in Figure 1, multiple PIM devices are con-
nected to a single host via a fast switch interconnect, i.e.,
PCI Express. AnalyzeThat exploits the emerging memory
interconnect protocol, i.e., Cache Coherent Interconnect for
Accelerators (CCIX) [19], which allows cache coherent ac-
cesses across heterogeneous memory devices from different
processors and accelerators. Note that CCIX protocol does
not require any modifications to existing system software or
operating systems, because the protocol is fully implemented
in hardware and firmware [19]. The coherent memory ac-
cess protocol and the fast switch interconnect allow host
CPUs to directly access the PIM memories without having
to explicitly transfer data between the host and the PIM
memories. Similarly, a PIM core can access not only its own
local PIM memory but also other remote PIM memories and
DRAM on the host. Overall, this shared memory abstraction
from the hardware enables us to project a consistent virtual
address space to both the offloaded PIM task and its parent
application on the host, e.g., a memory pointer can be
shared between them, and greatly facilitates application
development.

B. PIM Device Driver
In addition to its capability as a memory storage device,

the PIM device features its own processing power. To
exploit the processing power, e.g., execute a task using a
PIM core, a host software needs to communicate with a
PIM device, which requires access to the programmable
registers of the PIM device. The PIM device driver primarily
assists userspace programs to allocate memory space and
also to access the programmable registers by providing a
memory-mapped I/O interface. Specifically, during system
initialization, the device driver detects available PIM devices
that are connected to the host. For each PIM device, the
device driver then creates a dedicated device file, i.e.,
/dev/pimN, and /proc entries, i.e., /proc/pim/pimN/ on the
host. Also, a set of ioctl() operations through the device
files are supported for userspace applications. For instance,
to allocate memory space on a specific PIM device (e.g.,
40 KB memory allocation on the first PIM device), an
application first opens the device file (e.g., /dev/pim0) and
invokes the ioctl() system call with a predefined operation
id (e.g., PIM IOC GETPAGES) and the amount of requesting
space in the number of pages (e.g., 10). Similarly, to
initiate a task execution on a PIM device, the application

invokes ioctl() with a pointer to a structure containing target
function and argument addresses, and a dedicated operation
id (e.g., PIM IOC EXECUTE). In addition, the device driver
supports ioctl() operations that allow host applications to
access PIM-internal runtime information such as PIM core
utilization and memory usage. In our design, the physical
space allocation of PIM memory is managed by the device
driver. Current allocation status of each PIM memory can
be acquired by reading the /proc entry.

C. Low-Level PIM Library
The low-level PIM library of AnalyzeThat is layered

atop the PIM device driver and consists of a set of func-
tions that allow users to manually control PIM devices.
Its usage is similar to that of POSIX dynamic memory
and pthread functions. The library primarily provides two
functionalities—memory management and task offloading,
by wrapping the low-level ioctl interface. For memory man-
agement, it provides pimmalloc() and pimfree(). Program-
mers can allocate memory using the pimmalloc() function
similar to the standard malloc() function, with an additional
argument of pim id to specify a PIM device that the
space is allocated from. Similar to the malloc() function
that internally invokes the brk() system call to extend the
data segment if needed, pimmalloc() requests the device
driver via the aforementioned ioctl() interface to allocate
memory pages and expand the data segment. Note that
the device driver globally synchronizes memory allocation
requests from multiple applications, and grants applications
access to acquire a particular memory region. To offload
tasks to the PIM cores, the library provides pimexec exec().
Programmers can offload a function to a specific PIM core
by providing the pointer of the function and a pim id. For
functions running in parallel on PIM cores, programmers
can synchronize the tasks using the pimexec wait(), which
forces a wait for the specified thread to terminate.

Although the low-level library could have been imple-
mented with an existing heterogeneous computing frame-
work (i.e., OpenCL [23]), we adopt a PIM-specific frame-
work since OpenCL is known to sacrifice the performance
to provide portability among different hardware [24].

IV. PADS: ANALYZETHAT PROGRAMMING INTERFACE

While the low-level library (§ III-C) provides direct
access to the PIM devices to advanced programmers, the
PIM-Aware Data Structure (PADS) is a higher-level data
abstraction that hides the intricate details of the hardware.
Thematic to PADS is the encapsulation of data, the analysis
to be performed on the data and the mechanisms to overlay
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both the data and the analysis on the PIM device array. Users
only need to create and manipulate the data structure in order
to take advantage of the PIM functionality, while remaining
oblivious to the complexity of the hardware. To this end, the
PADS abstraction is composed of two components, namely
the key-value container and parallel operations.

A. PADS Key-Value Container
We have chosen to represent the data within PADS using

a key-value container, i.e., data is stored as key-value pairs.
Key-value pair representation of data is simple yet generic
enough to be used for various data analysis applications.
Various data analysis systems and modern databases adopt
key-value pair representation [25], [26], [27]. Internally,
a PADS key-value container consists of n sub-containers,
each of which is associated with a single PIM device. To
use the PADS data structure, an application first creates a
PADS key-value container object (referred to as a PADS
object, hereafter). Then, the application can simply put key-
value pairs into the PADS object, similar to using other
familiar data containers, e.g., C++ queue, set, map, etc. The
application does not have to specify the sub-container that
internally stores the key-value pair. Instead, the AnalyzeThat
runtime transparently selects a sub-container based on a data
placement policy, as we will explain further in § V-B.

B. PADS Operations
PADS supports a set of operations that run on the associ-

ated PADS object. This includes operations that can facilitate
data analysis tasks on the PADS object. Many data analysis
tasks in practice take input data from files. Manually parsing
a file and converting raw data to a structured record set
is a tedious, error-prone task. PADS provides an import()
function that automatically parses a given input file and
populates a PADS object with the parsed key-value pairs. It
supports many popular formats such as txt, csv and netCDF.
A user can specify his own parser function. Similarly, the
export() function writes all key-value pairs in a PADS object
to a file in a specified format. Moreover, PADS allows users
to perform customized data processing via the popular map()
and reduce() interface [25]. The map() function, a member
function of the PADS object, takes a user-defined function
and an output PADS object as arguments. The user-defined
function is executed on every key-value pair in the PADS
object. The reduce() function groups key-value pairs in a
PADS object based on their keys and produces a single,
reduced key-value pair for each key group.

V. ANALYZETHAT RUNTIME

When programming with the high-level PADS abstraction
(§ IV), users can focus on writing application logic without
having to understand the PIM hardware architecture. Below
the PADS abstraction, the AnalyzeThat runtime transpar-
ently handles PIM hardware-specific details, i.e., data dis-
tribution and parallel task execution across the PIM array.
Figure 2 shows the internal architecture of the runtime.
Users can simply populate a PADS key-value container
and perform parallel operations, e.g., map() and reduce().
The runtime consists of the Device Manager, Placement
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Figure 2: Users write applications with the PADS library, and the
AnalyzeThat runtime transparently manages PIM-specific details.

Manager and Task Manager, and internally handles all PADS
operations with regard to the underlying PIM hardware
architecture.

A. Device Manager
To optimize the performance, the runtime should con-

sistently keep track of the device status. For instance, the
runtime should know which PIM core is busy before assign-
ing tasks to the PIM device. Likewise, to evenly distribute
data load, the runtime needs to track which PIM memory
is most- or least-populated. To this end, the Device Man-
ager in the runtime periodically gathers PIM device-specific
information and stores each device’s utilization statistics
into a global device status table in memory. The records in
the device status table are updated every 3 seconds, which
is tunable. In particular, device-specific information, e.g.,
memory wearout status and PIM core utilization, is directly
fetched from the device via the ioctl() system call (§ III-C).
The device utilization statistics can be gathered directly from
the PADS objects. The device status table is referenced by
the Placement Manager and the Task Manager for making
runtime decisions such as data placement and PIM thread
dispatch, respectively.

B. Placement Manager
When an application inserts a key-value pair into a PADS

container the Placement Manager selects a sub-container
that is associated with a single PIM device. Particularly,
the decision is made based on the following three objec-
tives: 1) Balancing the load evenly across the PIM array.
Load imbalance can slow down the overall execution time,
which is determined by the completion time of the slowest
PIM task. 2) Grouping key-value pairs in a single PIM
device based on their keys. The reduce() operation runs
faster if the key-value pairs are already grouped by their
keys. In addition, the absence of proper aggregation may
incur frequent remote PIM accesses, which can lead to a
significant performance drop. 3) Storing output key-value
pairs in a local PIM memory. Again, accessing local PIM
memory is substantially faster than accessing remote PIM
memory. Moreover, it eliminates potential lock contention
among multiple PIM threads. Based on these objectives, the
Placement Manager implements the following three static
and one dynamic data placement policies. Round-Robin
(RR) stores data in a round-robin order. Local-Assignment
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(LA) always assigns a key-value pair to the same PIM device
to maximize the local PIM memory accesses. Hashing (HS)
effectively aggregates key-value pairs based on the key.
Dynamic (DY) is a hybrid approach that takes advantage
of the other three static policies.

C. Task Manager
The Task Manager is responsible for the execution of the

PADS application program by utilizing the PIM-architecture,
i.e., fast local memory access and parallelism. Specifically,
to maximize the local PIM memory access, the Task Man-
ager spawns a PIM thread on every PIM device. Each PIM
thread then executes the user-defined PADS operation, which
is tightly associated with the PADS key-value pairs in the
local PIM memory. Internally, the runtime exploits the low-
level PIM library functions (§ III-C) to accomplish task
offloading. In addition, the Task Manager also optimizes the
PADS operations based on workload characteristics.

VI. EVALUATION

Implementation We have implemented an emulation
framework for AnalyzeThat using 5,000 lines of C/C++
code. We emulated the PIM device by preallocating the
system memory and binding threads to cores. To emulate
the different access characteristics of the PIM memory, we
introduced delays according to the memory access types,
i.e., access from the host core or the PIM core. Specifically,
a thread stays in a busy loop until the processor timestamp
counter (TSC) reaches a desired value. The delay is com-
puted based on a relative delay from a baseline when the
PIM core accesses its local memory. When the PIM core
accesses remote PIM memory, we add a delay corresponding
to the time taken to access remote memory in a NUMA node.
Our measurements of local and remote memory bandwidth
on a NUMA node are 6,733.7 MB/s and 4,567.5 MB/s,
respectively, i.e., remote memory is 32.2% slower than local
memory. When the PIM accesses the remote memory, either
the DRAM on the host or memory on another PIM, we add
a 32% delay. Also, in our setup the DRAM access is 4×
slower than PIM’s local memory access [9].
Testbed Our test machine comprised of two processors
(1.8 GHz Intel Xeon E5-2603, each with four cores), 64 GB
RAM and ran the RedHat Enterprise Linux 6.5 with the
3.1.22 kernel. We dedicated one core for the host-side
processing and emulated up to seven PIM devices with the
remaining seven cores. For each emulated PIM device, we
preallocated 4 GB of host memory and decreased the clock
speed of the core to 1.2 GHz.

A. Programmability of PADS
First, we demonstrate the effectiveness of the PADS

library. Using the PADS library, we implemented four rep-
resentative big data applications in a few tens of lines of
code. Here, we briefly explain each application and our
implementation.
GroupByAggregation (GAG) computes the statistical
summary, e.g., the total sum and average value from numer-
ical datasets. Each line of the input file is composed of key-
value pairs, delimited by a comma (“,”). The program first

1 // Group-by-Aggregation and Aggregation
2 void aggMap(char *k, char *v, PADS& t) {
3 strcpy(new_val, v);
4 strcat(new_val, "1");
5 t.insert(k, new_val); // "A" instead of k for AG
6 }
7 char *aggReduce(char *k, char *v, char *reduced) {
8 tokenizer(v, head, tail, " ");
9 tokenizer(reduced, sum, int, avg, " ");

10 sum = stoi(sum) + stoi(head)
11 cnt = stoi(cnt) + stoi(int)
12 avg = (double) sum / cnt;
13 sprintf(reduced, "%d %d %f", sum, int, avg);
14 }
15 int main(void) {
16 PADS data, mapped, result;
17 data.import("input.txt");
18 data.map(mapped, aggMap);
19 mapped.reduce(result, aggReduce);
20 }

Figure 3: Implementation overview of data analysis applications
using PADS library.

parses the input file and produces a set of key-value pairs.
It then performs calculations by grouping the key-value
pairs on the same key. Figure 3 shows the code snippet of
our implementation. In the code snippet, aggMap() function
appends “1” to the value of each key-value pair in data, and
inserts the key-value pair into mapped. Then, aggReduce()
performs calculations by aggregating all values in mapped
based on their keys and stores the result in result.
Aggregation (AG) works similar to GAG but calculates
the global statistical summary, i.e., not based on keys. We
implemented AG with a slight modification to the GAG
program. In particular, we replace key in every key-value
pair with the same value (e.g., ‘A’) in aggMap(), to make all
key-value pairs share the same key. Therefore, aggReduce()
calculates the statistical summary of all key-value pairs.
Grep (GR) is a string matching application that prints lines
containing a matching keyword from the input file.
WordCount (WC) counts the occurrences of each word in
the input text file. Each line is parsed as a < line no, text >
pair. wcMap() then generates < word, 1 > for each pair,
which is appended to target.

For the rest of this section, we use these four applications
to study the performance of AnalyzeThat. In particular, for
AG and GAG, we synthetically generated the input data
consisting of 100 million entries (850 MB) with a normal
distribution. For GR and WC, we used a 6.4 GB text file that
concatenates contents of a wiki site [28]. Each experiment
was repeated five times, and we report the average with the
95% confidence interval.

B. AnalyzeThat Performance
We compared the performance of AnalyzeThat against

a host-based approach for running the applications from
§ VI-A For AnalyzeThat, we also evaluated four different
data placement policies, i.e., Round-Robin (RR), Hashing
(HS), Local-Assignment (LA) and Dynamic (DY) (§ IV).

Figure 4 shows the application runtimes of AnalyzeThat
and the host-based approach. The results are normalized
to the runtimes of the host-based approach. We observe
that AnalyzeThat with a single PIM (PIM(1)) is 15-30%
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(c) Local-Assignment (LA) (d) Dynamic (DY)

Figure 4: Comparison of AnalyzeThat for different data placement
policies, without Local Reduce. DY does not run wearout-aware
algorithm (w = 0). Host(1) refers to the host with a single CPU,
and PIM(n) refers to n PIM devices connected to a single host.
Runtimes of Host(1) for GAG, AG, and GR were 405.7, 356.8,
189.8, and 44.1 seconds, respectively.

slower than the host-based approach with a single core
(Host(1)). Even though the PIM internal memory bandwidth
is greater than the host DRAM bandwidth, most workloads
are compute-intensive, and thus the more powerful host CPU
outweighs the higher memory bandwidth. However, Ana-
lyzeThat with two PIM devices (PIM(2)) outperforms the
host-based approach by 20-30%. In addition, AnalyzeThat
scales almost linearly as we use more PIM devices, except
for AG. For AG, the runtimes increase as more PIMs are
used due to its workload characteristics (Figure 4(a), (c) and
(d)). In addition, HS shows a different trend from the other
policies for the AG workload. This is because HS places all
intermediate data with the same key into a single PIM device
so that it can avoid lock contentions during the reduce task.

For GR, we observe little performance variance across
the different data placement policies. This is because GR
is implemented only with map() operations (§ VI-A) and
not affected by the performance variance of the reduce()
operation, i.e., the lock contention and skewed distribution
of the intermediate data.

We expect that further optimization can be achieved
by adopting the Local Reduce (LR) technique, in which
each PIM thread performs the reduce() operation locally
by creating an intermediate PADS object in the local PIM
memory. After Local Reduce, the global reduce() takes the
sorted key-value pairs in the intermediate PADS objects to
create the final result. We will perform further experiments
on the effect of Local Reduce in future work.

VII. CONCLUDING REMARKS

We have developed AnalyzeThat as a means to abstract
the complexity of PIM hardware, and to reduce the program-
ming efforts needed to use the same. We have shown how
representative data analysis applications can be effectively
implemented using PADS, a high-level data and program-
ming abstraction. PADS enables the use of an array of
PIM devices as a key-value container, and applies a set of
operations on the container based on an intelligent runtime

system. Together, these concepts alleviate the effort required
to program the PIM hardware.
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