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Abstract—Recent developments in storage class memory such
as PCM, MRAM, RRAM, and STT-RAM have strengthened
their leadership as storage media for memory-based file systems.
Traditional Linux memory-based file systems such as Ramfs and
Tmpfs utilize the Linux page cache as a file system. These file
systems, when adopted for SCM, have the following problems.
First, current implementations of Ramfs and Tmpfs have no
mechanism to explicitly allocate pages from specific memory. Sec-
ond, memory pages allocated from SCM do not follow the Linux
kernel’s page allocation process exactly, resulting in unnecessary
performance overhead. To resolve the aforementioned challenges,
we propose the development of a new memory-based file system
using Memory Zone Partitioning for SCM called ZonFS. ZonFS
is implemented by extending the Linux Ramfs. In particular, we
define a storage zone for SCM, modify the Ramfs to allocate a
file system page from SCM. ZonFS avoids running unnecessary
Linux VM kernel codes such as (i) inserting pages allocated from
SCM into the LRU list for VM page replacement and (ii) checking
dirty pages for write-back to disk. We also modify the Ramfs
to allocate inode cache in SCM and eliminate the risk of inode
cache loss in case of power failure. Extensive evaluations indicate
that ZonFS has up to 9.1% and 14.1% higher I/O throughputs
than native Ramfs and Tmpfs.

I. INTRODUCTION

Emergences of non-volatile memory such as STT-RAM [1],

PRAM (Phase change RAM) [2], RRAM (Resistive RAM) [3],

Intel and Micron 3D X-point [4] gave us the opportunity to

use memory as a storage, i.e., Storage Class Memory (SCM).

These memories are expected to be directly attached to a

processor along with DRAM. These memories fundamentally

differ from traditional block devices such as hard disk drives

(HDD) and solid-state drives (SSD), which should be accessed

through the I/O block layer in OS. On the other hand, SCM

can be accessed through memory load and store instructions

by CPU. A hybrid memory system combining DRAM and

SCM, as shown in Figure 1, was proposed for its high energy

efficiency compared to a system with only DRAM [5], [6],

[7]. In such a hybrid configuration, DRAM and SCM are both

connected to a memory bus and are directly accessed by the

CPU.
Memory file systems such as Linux Ramfs and Tmpfs allow

us to build memory file systems with host DRAM. These

file systems are basically implemented using Linux memory

management techniques. When a file is created, memory

pages are allocated by the OS. When the file is read, its

corresponding pages are referred. This makes it easy to read

and write file system data in memory. However, Tmpfs and

Fig. 1: Illustration of Memory Zone Partitioning for Hybrid

Memory combining DRAM and SCM.

Ramfs have not been implemented considering such hybrid

memory design. It allocates the pages without considering

memory type. Hence, it is not possible to know in which area

of the memory the page is allocated. Moreover, when system

power failure occurs, data in SCM (non-volatile) is preserved,

however, the corresponding file control blocks (inode cache)

will be lost if they are stored in DRAM (volatile memory). In

addition, when the system restarts, file system data of the SCM

area may be overwritten. Therefore, current Linux memory file

systems can not be directly used as a memory file system for

SCM in such a hybrid memory environment.

In this paper, we propose ZonFS, a memory file system

for SCM in a hybrid memory using Linux Memory Zone
Partitioning. Memory pages are allocated according to the

memory type and zone. In Linux, memory is divided into three

zones: DMA Zone, Normal Zone and HighMem Zone [8]. In

particular, the 64-bit kernel does not use the HighMem Zone.

To isolate SCM from DRAM, we define Storage Zone for the

SCM and specify the entire SCM address space as the Storage

Zone. Figure 1 illustrates memory zone partitioning for the

hybrid memory with DRAM and SCM. When file systems are

built upon SCM, memory pages of file system will be managed

in SCM separately from normal pages allocated from DRAM.

In this paper, the following contributions are made:

• Memory Zone Partitioning: We isolate memory pages of

SCM from DRAM memory pages using Memory Zone Par-

titioning. In Linux, physical memory addresses are allocated

sequentially in the memory slot. When the SCM is plugged

into the memory slot, the physical memory address can be

found in the BIOS. In this paper, we use part of DRAM as

SCM. We specify the start and end addresses of the SCM

in the Linux kernel code. Hence, the pages in SCM will be
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used only when file systems are built for SCM.

• Avoiding Unnecessary Kernel Code: Ramfs and Tmpfs use

page cache to perform file I/O. Since the file operations

such as read() and write() use Linux kernel’s generic file I/O

functions such as generic perform write(), unnecessary

overheads are entailed, if pages are allocated from SCM.

These include (i) checking dirty pages and (ii) inserting

pages into LRU list. When dirty pages are more than certain

threshold of pages, kernel’s generic file I/O operations will

write them back to disk and make dirty pages under certain

number of pages throughout the system. In addition, page

cache is managed as an LRU list. In practice, pages in

SCM do not have to be replaced, but in current Linux

kernel, all pages in SCM are added to the LRU list for page

replacement, resulting in unnecessary search operations.

Thus, we modify the Linux kernel code to bypass the above-

mentioned unnecessary operations on the pages allocated

from the SCM.

• Linux Kernel Development and Evaluation: We developed

a memory file system for SCM by extending Linux Ramfs

and modifying the Linux kernel memory management code.

To demonstrate the efficacy of ZonFS with Memory Zone

Partitioning, we compare ZonFS with native Ramfs and

Tmpfs for I/O throughputs using IOZone benchmark [9].

As a representative example, for write operations, ZonFS
showed up to 9% and 13% performance improvements over

native Ramfs and Tmpfs.

The rest of this paper is organized as follows. Section II

describes describes the memory access method and its imple-

mentation for ZonFS. Section III shows performance compar-

ison results of ZonFS with Linux memory file systems, Tmpfs

and Ramfs. Section IV introduces other memory-based file

systems and their problems when implemented for SCM file

systems. We conclude our work in Section V.

II. DESIGN AND IMPLEMENTATION

In this section, we describe the design principles for the

SCM file system implementation using the Linux page-cache.

We implement ZonFS with the following design goals – (i)

manages the pages in storage zone separately from those in

DRAM memory zone and (ii) optimizes the current Linux

kernel code for SCM file systems. We achieve these goals

by adding a new memory zone in the Linux kernel and thus

allowing the kernel to distinguish pages of DRAM and SCM.

Before explaining the details of ZonFS implementation, we

describe the memory area management in the Linux kernel and

track the Linux kernel function calls to write and read in Ramfs

to understand the code-level I/O behavior of the page cache

based file system. We then describe the kernel modifications

made to optimize the file system for SCM.

A. Linux Memory Zone Management

Linux kernel manages memory region by dividing it

into three zones: ZONE DMA, ZONE NORMAL and

ZONE HIGHMEM . The DMA zone is a memory area

TABLE I: E820 Memory Map with Storage Zone.

E820 Type Usage
E820 RAM System RAM

E820 RESERVED Reserved Memory

E820 ACPI ACPI Tables

E820 NVS ACPI Non-volatile Storage

E820 UNUSABLE Unusable Memory

E820 PMEM Persistent Memory

E820 PRAM Persistent Memory (legacy)

E820 RESERVED KERN System RAM (reserved)

E820 STORAGE SCM Storage

for hardware that requires a specific memory range, and it

uses 0 to 16 MB of memory area.

The Normal zone is used for general memory allocations.

The purpose of the Highmem zone is to free the 4 GB

virtual memory space limitations of the 32-bit instruction set

architecture system. Hence, this area is not used in 64-bit

systems. During the booting phase, Linux splits memory space

into zones and divides each zone into multiple pages. Each of

the zone is managed by a kernel structure struct zone, which

also maintains a list of pages in its zone. A page requested

by the kernel is handled by allocating a new page or simply

returning an existing page. In a hybrid memory system, the

Linux kernel assigns physical address spaces to all connected

memories. In ZonFS, we distinguish space of DRAM and

SCM by adding Storage Zone for SCM using Memory Zone

Partitioning.

BIOS can get the physical memory address using the

driver. When SCM is attached, the BIOS can retrieve the

physical start and end addresses of the SCM through the SCM

driver. This information includes the usage of each memory

range. In the x86 architecture, E820 memory map contains

the information, as shown in Table I. Especially, we have

added a new E820 entry called E820 STORAGE for SCM

storage usage of ZonFS. E820 STORAGE entry is used

only for file allocation in ZonFS whereas E820 RAM and

E820 RESERV ED KERN entries are used for system

memory. Note that in our implementation for ZonFS, we

simulate SCM by using part of DRAM. Hence, we have

manually set the memory range of ZONE STORAGE in

the kernel code, without the aid of the driver.

Linux kernel initializes the variables, max pfn and

max low pfn based on E820 memory map. The values

of max pfn and max low pfn indicate the maximum

and minimum page frame numbers that can be used for

system memory. Then it divides the memory zone using

these variables. Figure 2 shows memory zone structure with

Storage Zone for SCM. We have created a new memory

zone, ZONE STORAGE that lies on the whole range of

E820 STORAGE. It prevents the storage zone from being

used as system memory.

B. I/O Flows for Write and Read Requests

In Linux, file I/O data goes through page cache. Accessing

the disk for every file request is inefficient. OS stores the data
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Fig. 2: Linux Memory Zone Partitioning with Storage Zone.

in memory’s page cache at the first access of the data. By

this way, we can access the same file data from memory for

later requests. If page cache pages need to be used for other

purpose when the physical memory is low, kernel write-backs

the pages into backing store in case of the dirty page. Since

Ramfs does not have backing store, all of the files of Ramfs

are stored only in the page cache. Therefore, page cache pages

of Ramfs are never write-backed.

ZonFS is based on Ramfs, thus we investigate the I/O

path of Linux Ramfs in detail. Figure 3 describes Ramfs file

I/O paths in kernel function level starting from virtual file

system operations. Write requests are initially handled by the

virtual file system, which then calls the file system’s own write

function. Since Ramfs takes advantage of kernel’s generic

I/O functions, generic perform write() is called. Then it

follows simple write begin(), where the file is locked and

the page searching occurs.

For write operations, there are two scenarios: initial write

and normal write (update). Initial writes happen when pages

for required file offset are not previously allocated, and

normal writes happen when already allocated. In case of

an initial write, pagecache get page() is called to check

whether the desired page exists. If the page was not allo-

cated, page alloc node mask() determines proper mem-

ory zone and allocates the page. Without any specified zone

option, ZONE NORMAL is the default allocation area.

However, ZonFS can assign pages to ZONE STORAGE.

For updates, since desired pages were already allocated,

page allocation is not needed. It acquired wanted page,

iov iter copy from user atomic() performs actual write

and simple write end() releases the lock. These steps are

repeated until all the requested data is written.

Read operations follow a similar process like the write

operations. But, it never allocates pages because the required

pages always exist. This is obvious because absence of pages

means that they need to be copied from backing store, which

is not the case of memory-based file systems. Even after

acquiring required pages, actual read is delayed until the pages

are ready to use, since other processes may be writing on

the pages. Data is read in copy page to iter(). The details

of kernel function calls for complete read and write I/Os are

shown in Figure 3(a)-(b).

C. Linux Kernel Code Modification for ZonFS

ZonFS uses Linux page cache with pages in Storage Zone to

store file data. In current Linux kernel, all the page cache pages

Fig. 3: Write and Read I/O Flow of Ramfs.

are the potential victims of virtual memory management: 1)

they can be swapped out by kernel when the physical memory

is low, and 2) the kernel periodically checks the dirty pages

and write backs to the backing store to save VM resources

for later use. These tasks are not required in ZonFS. They can

be bypassed, when pages are allocated from SCM for storage.

Ramfs and Tmpfs set PG UNEV ICTABLE flag for pages

in page cache not to swap them out, but they still remain to

be the targets of VM management, which is an overhead in

ZonFS. Therefore, in ZonFS, we make pages in Storage Zone,

free from VM management.

Unnecessary operations on the above-mentioned mem-

ory access paths include the followings: First, when they

allocate pages, although pages of the page cache’s flag

PG UNEV ICTABLE is set to prevent them from being

swapped-out, they needlessly add the pages into LRU list that

contains page replacement candidates. This causes LRU list

maintaining overhead. Second is dirty page check overhead.

Write processes periodically counts the number of dirty pages

in the page cache. If the number exceeds the threshold, it

write-backs all the dirty pages or in worse case, throttles the

process for some time.

Figure 4(a) describes tasks. When a write request arrives,

if it is the first write, a new page is allocated from page

cache. It then sets the page with PG Dirty flag and adds

the page to the LRU list for later VM management. Then,

it checks if write-back operations for dirty pages need to

be performed. Definitely, these tasks are essential for virtual

memory management that critically affects the entire system

performance. However, pages allocated from SCM for storage

are not subject to management. Therefore, we follow different

memory access paths for DRAM and SCM requests in VM
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Fig. 4: Illustration of the relationship between Write operation

and Page Cache. (a) and (b) show the operation procedures for

Ramfs and ZonFS respectively.

management. DRAM accesses are triggered by application

memory requests, and SCM accesses by requests for files. For

DRAM accesses, we fully exploit Linux virtual memory layer.

However, for SCM accesses, we provide a simple access path

which uses page cache to store files but prevents them from

being virtual memory management targets.

To differentiate memory access path for DRAM and

SCM, we must be able to distinguish file requests from

process memory requests. As mentioned earlier, we have

achieved this by adding a new memory zone in Linux called

ZONE
STORAGE, which is allocated to SCM for storage

usage. But since we implemented our design by only using

DRAM, we have allocated new storage zone in a certain range

of DRAM. All the flags GFP STORAGE corresponding

to the file inodes in ZonFS, to let the kernel know this is a file

and store its data into our new zone. This zone partitioning

method enables us to bypass LRU list insertion for the pages of

ZONE STORAGE. Previous LRU list insertion was done

after page cache allocation, thus we do not add the pages to

the list in the case of file pages in ZONE STORAGE. We

also skip dirty page check for the file page writes. We have

restricted write operation to execute dirty check for process

memory requests only, thus preventing write-backs and I/O

process throttling. The new management of page cache for

ZonFS is described in Figure 4(b).

Note that storing only the file contents into our new zone

is not sufficient for consistency of the file system, but also

inodes must be kept in that zone. Failure of this will will

result in inaccessible isolated data. In Linux kernel, inode

structure is allocated by slab allocator, which we use when

allocating frequently allocated structures such as inode, per-

thread structure, etc. It reduces the allocation and de-allocation

overhead. Slab allocator pre-allocates caches dedicated to

certain structure, and actual structure is allocated from those

pre-allocated caches. A structure cannot be de-allocated, but

handed over to cache so that future inode allocations can occur

from it. Since slab allocator allocates caches from normal

zone, an unexpected power failure can cause loss of inodes,

which makes it impossible to reach the corresponding files.

Therefore, for ZonFS, we modify Ramfs such that the inode

cache is allocated in ZONE STORAGE at the mount time

of the file system. Since actual inode structures are allocated

from the inode cache, we can guarantee all the inode structures

are persistent.

III. EVALUATION

For the evaluation of ZonFS, we compare ZonFS with two

linux memory file systems, Ramfs and Tmpfs. We show the

results of ZonFS with varying record size, and then we explore

the performance of ZonFS by increasing the number of I/O

threads for scaling performance.

A. Experimental Setup

ZonFS has been developed by modifying the Linux kernel

version 4.7.4 source code. The total number of modified kernel

code lines is approximately 50. We use Intel server comprising

of 8 cores with two 4-Core Intel Xeon Processor E5410 CPUs.

The server is equipped with total of 16 GB DRAM, where

10 GB of DRAM area is assigned as storage zone to simulate

non-volatile memory.

We have used IOzone [9] benchmarking tool to generate

workload datasets. All the experiments were conducted for

basic file operations such as Write, Re-Write, Random Write,
Read, Re-Read, and Random Read. We have evaluated the per-

formance of ZonFS and native Ramfs and Tmpfs by changing

record size and the number of threads. The record size of the

files varied from 4 KB to 1 MB, and the number of threads

used in the experiment ranges from 1 to 40.

B. Results

1) Impact of Record Size: Figure 5 compares ZonFS with

native Tmpfs and Ramfs for different file operations by varying

record size. In this experiment, we measured the performance

of single I/O thread file operations on a single 10 GB file.

Figure 5(a)-(c) show results for write workloads. Fig-

ure 5(a) shows the performance comparison for initial write.

We observe that ZonFS shows the maximum performance

improvement of 7.5% compared to Ramfs, and a maximum

improvement of 11.4% over Tmpfs for 4K record size. We

have similar performance improvement for bigger record size.

Figure 5(b) shows results for re-write. ZonFS shows improve-

ment, but overall performance improvement of initial write is

much bigger than that of re-write. This is because, for every

Ramfs page allocation, always the page has to be pushed to

LRU list whereas in ZonFS it is not. Since we eliminated

that overhead, initial write shows much better improvement

than re-write. In Tmpfs initial write case, there is some degree

of performance degradation because it requires an additional

step to check whether the allocated page has exceeded the file

system capacity. For re-write, for every process that writes or

re-writes to a Ramfs file, it validates whether it exceeded the

dirty page limit of the system. Since ZonFS bypasses dirty

check, it slightly improves re-write performance compared to

Ramfs. For all file systems, re-write shows higher throughput

than initial write. We suspect that this can be attributed to CPU

cache effect: although ZonFS does not use page cache (it is

itself the storage), the data is cached in CPU cache. For initial

and random operations, however, caching effect can not help.
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Fig. 5: Comparing ZonFS with Tmpfs and Ramfs for varying record size. We used a single thread for I/O operations on a

10 GB file.

In Figure 5(c), we see random write performance is same or

slightly better than Ramfs for 64K, 256K and 1M records.

Figure 5(d)-(f) show results for read operations. For the read

operation, no page allocation occurs because it is performed

on an existing file. Therefore, it shows similar performance

to Ramfs. But re-read results show noticeable improvement of

maximum 6.4% and 5.8% compared to Ramfs and Tmpfs.

We have also observed that the performance gradually

improved as the size of the record grows, whereas the per-

formance degraded for the 1 MB record. To explain this

performance variance, we need to take into account the effect

of record size. Note that, as the size of the record grows, a

smaller number of requests occur because the size of the data

requested at a time increases. Thus, it reduces the number

of function calls, resulting in performance gain. The reason

for the performance degradation in 1 MB records can be

explained by cache effect: bigger record size means greater

CPU cache miss penalty, which can negate the benefit of

decreased number of write requests.

2) Impact of Multiple Threads: Figure 6 shows the through-

put comparisons of ZonFS, Ramfs and Tmpfs with varying

number of I/O threads. In this experiment, we use a mix of

read and write threads for files of different sizes. In all cases,

there was no significant performance difference as compared

to the existing Linux memory-based file systems. We can see

dramatic performance gain as the number of threads increases

from 1 to 10. This is because multiple threads leads to parallel

file I/Os. But those gains are saturated to around 5 GB/s

(write) and 5.6 GB/s (read) for 20 and 40 threads. The

reason for this saturation is, we suspect, 10 threads sufficiently

exploits memory bus bandwidth. Note that our experimental

test-bed was not a NUMA memory architecture. However,

NUMA (Non-Uniform Memory Access) system enables us

to solve the problem of memory bus or controller contention

by assigning independent memories to each processor node.

Hence throughput will increase after 10 threads for NUMA,

but it will compel NUMA-aware file page allocations.

IV. RELATED WORK

There have been several prior studies on the file system

for non-volatile memory [10], [11], [11]. BPFS [10] is a file

system for non-volatile byte-addressable memories. It focuses

on the problems of copy-on-write in file systems and proposes

shadow paging technique to consistently update changes on

the file system tree at fine granularity. The measured file

system performance was too low to be used for actual SCM

file system. SCMFS [12] is another memory file system for

storage class memory connected to a memory bus. SCMFS is

a file system developed using the Linux memory manager, and

suggests a simple file system structure. SCMFS uses the virtual

memory page as a file system page, thus significant TLB miss

overhead can degrade overall file system performance. SCMFS

also proposes a technique for partitioning memory into zones.

Conquest [11] uses a battery backed DRAM for storing file

metadata and small files to improve the overall file system

performance. Unlike these file systems, ZonFS is developed

by extending Ramfs, which implements the file system in the

page cache. ZonFS also uses the Memory Partition technique.

However, Ramfs is a DRAM based file system, and it can not

be used as a file system for SCM. So we modify the Linux

kernel code to develop SCM-specific file system. In particular,

it minimizes unnecessary calls to kernel code by separating

the DRAM memory pages in the page cache used for various

purposes and the SCM pages for file system use.
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Fig. 6: Scaling performance comparisons of ZonFS with Tmpfs and Ramfs by varying the number of I/O threads.

V. CONCLUSION

In this paper, we proposed a memory file system to partition

Linux memory zone to efficiently utilize storage class mem-

ory as storage. We have implemented the proposed memory

file system, ZonFS by extending the Ramfs implementation.

ZonFS improved the performance by preventing storage class

memory (SCM) space for storing files from being used for

other purposes on Linux and minimizing unnecessary over-

head when using the SCM as storage in the page allocation

process. We conducted series of experiments to evaluate the

ZonFS using IOzone. The experimental results showed that

the performance of initial write is improved up to 9.1% and

13.8%, respectively, as compared to Ramfs and Tmpfs. The

read operation depicts a performance gain up to 8% when

compared against Tmpfs. Ensuring file system consistency is

an important issue in developing SCM file system. We will

consider the crash-consistency problem in ZonFS for future

work.
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