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Abstract

Solid-state drives (SSD) are popular storage media de-

vices alongside magnetic hard disk drives (HDD). SSD flash

chips are packaged in HDD form factors and SSDs are com-

patible with regular HDD device drivers and I/O buses.

This compatibility allows easy replacement of individual

HDDs with SSDs in existing storage systems. However,

under certain circumstances, SSD write performance can

be significantly slowed by garbage collection (GC) pro-

cesses. The frequency of GC activity is directly correlated

with the frequency of write operations and the amount of

data written. GC scheduling is locally controlled by inter-

nal SSD logic. This paper studies the feasibility of Redun-

dant Arrays of Independent Flash-based Solid-state drives

(RAIS). We empirically analyze the RAIS performance using

commercially-off-the-shelf (COTS) SSDs. We investigate se-

lect RAIS configurations under a variety of I/O access pat-

terns. Finally, we present our comparisons of RAIS with

a fast, PCIe-based COTS SSD, in terms performance and

cost. As an illustrative observation, based on current mar-

ket prices, RAIS arrays built using multi-level cell (MLC)

SSDs can be cost-effective solutions and perform reason-

ably well compared to fast, PCIe-based SSDs, such as the

Fusion-io device. This is particularly the case for work-

loads that are small, random, and heavy read I/O dominant.

1 Introduction

Hard disk drives (HDD) are the leading media in stor-

age systems. HDDs are widely deployed from embedded to

enterprise-scale systems for the last several decades. HDD

manufacturers were successful in providing a continuous

improvement in total disk capacity by increasing the stor-

age density while bringing down the price-per-byte using

mass production. Perpendicular recording [28] has contin-

ued this trend but further advances will require new tech-

nologies such as patterned media [2] which present signif-

icant manufacturing challenges. On the other hand, HDD

I/O performance increased at a slower pace compared to the

storage density. Increasing the platter rotational speed (rota-

tions per minute – RPM) was key to this progress. A recent

single enterprise-class magnetic disk today can provide up

to 204 MB/s at 15,000 RPMs [39]. However, we are now at

a point where HDD designers conclude it is extremely hard

to increase platter RPM beyond its current state because of

power consumption and thermal dissipation issues [11].

Flash memory-based solid state disks (SSD), especially

NAND Flash, are another leading media in storage systems.

Unlike magnetic rotational disks, NAND Flash memory-

based SSDs have no mechanical moving parts, such as spin-

dles and voice-coil motors. Therefore, NAND Flash mem-

ory technology offers a number of benefits over the con-

ventional hard disk drives, such as lower power consump-

tion, lighter weight, higher resilience to external shocks,

ability to sustain hotter operating regimes, and smaller I/O

access times. Additionally, since SSD Flash chips are pack-

aged in HDD form factors and SSDs are compatible with

HDD device drivers and I/O buses, one-to-one replacement

of HDDs with SSDs is possible.

The Oak Ridge Leadership Computing Facility (OLCF)

at Oak Ridge National Laboratory (ORNL) has deployed

several HPC systems including Jaguar XT5 [32], the Cray

XT5 [7] simulation platform. Along with the core HPC sys-

tems at OLCF, a center-wide parallel file system has been

deployed, called “Spider” [41]. The Spider storage sys-

tem has been provisioned with 13,440 hard disk drives to

support over 2 petaflops of computing infrastructure. Cur-

rently, Spider has employed a RAID (Redundant Array of

Independent Disk) level 6 scheme in order to fulfill the need

to provide a highly reliable and available storage system, as

well as high I/O throughput.

Although Redundant Arrays of Inexpensive (or Indepen-



dent) Disks (RAID) [36, 43] can provide high I/O through-

put by exploiting parallelism across disks, the mechanical

movement involved in the operation of HDDs (seek opera-

tions in HDDs, moving the heads back and forth) can limit

the performance that an HDD-based system can offer to

workloads with significantly high non-sequential I/O pat-

terns. We envision that SSDs can overcome such key short-

comings of HDDs with faster access to non-sequential data,

and are investigating this area for future storage systems.

However, a storage system designer needs to carefully

consider the use cases of SSDs. In addition to limited life-

time issues (10K-1M erase cycles per block) on Flash [3],

the high price of SSDs ($/GB) is of significant concern.

Since SSDs are much more expensive per gigabyte than

HDDs, replacing HDDs with SSDs in large-scale storage

systems is not a cost-effective approach under current mar-

ket prices [29]. Thus, conventional wisdom suggests us-

ing SSDs in existing large-scale storage systems to partially

replace HDDs using SSDs or augmenting the HDDs with

SSDs as a caching area.

There are several possible design approaches to employ

SSDs in our Spider storage system: (i) We can use SSDs as

an I/O accelerator to boost the overall I/O bandwidth, espe-

cially for workloads with significantly high randomness or

less locality. (ii) SSDs can be used as a fast write caching

tier that can absorb bulk sequential I/O traffic such as check-

pointing. (iii) In previous work [33] we examined the effi-

cacy of SSDs as file system journal targets.

SSDs are priced according to their Flash type (single-

level cell (SLC) and multi-level cell (MLC) Flash chips),

host interface (SATA and PCIe), and packaging technolo-

gies. SLC Flash chips store one bit of data per memory

cell, while MLC Flash chips store multiple bits of data per

memory cell [1]. SLC Flash chips provide faster read and

write latency than MLC Flash chips [1]. MLC-based SSDs

tend to have lower lifetimes when compared to SLC-based

SSDs. SLC Flash chips can achieve lower access latency

and high I/O throughput, but are more expensive than MLC

Flash chips.

In our study, we focus on RAID configurations built us-

ing COTS SSDs 1. Here are the salient contributions of our

work:

• We investigated the feasibility of RAIS levels in terms

of their performance behavior. One of the main short-

comings of SSDs is the slowdown during the garbage

collection (GC) process that is hastened by small, ran-

dom writes [23]. This slowdown can even further impact

future incoming requests, We term this “pathological be-

havior” of an SSD by delaying I/O request services.

1In the rest of this paper, we will use the term, Redundant Array of

Independent SSDs (RAIS) for describing the SSD-based RAID sets. We

analyzed RAIS-0, 5, and 6 configurations in our study, analog to conven-

tional RAID-0, 5, and 6 sets.

• We conducted a RAIS efficiency analysis. We used

COTS components (SSDs and RAID controllers) in our

experiments. We measured the I/O performance of each

RAIS configuration under various I/O access patterns

such as, small or large, random or sequential writes or

reads. We investigated each configuration in terms of:

1. I/O operations performed per second per dollar

2. Bytes per second per dollar

3. Capacity (gigabytes) per dollar.

We also compared our RAIS configurations with a PCIe-

interfaced SSD, in terms of performance, capacity, and

cost.

The rest of this paper is organized as follows. We first

present an overview of the Flash memory technology and

its applications in storage devices in Section 2. Section 3

provides a brief of overview of the RAIS configurations

used in this paper. Our experimental methodology is de-

scribed in Section 4. We provide a performance analysis of

SSDs and RAIS in Section 5.1 and 5.2. SSD pathological

behavior due to GC processes and its effects on aggregate

RAIS performance is discussed in Section 5.3. We present

a cost-based efficiency analysis of RAIS in Section 5.4. We

conclude in Section 6.

2 Background and Related Work

Flash memory-based storage devices require an erase op-

eration [30], unlike rotating media and volatile memories

which only need read and write operations, Characteristics

of these operations include: Erase operations are performed

at the granularity of a block which is composed of multiple

pages. A page is the granularity at which reads and writes

are performed. Each page on Flash can be in one of three

different states: (i) valid, (ii) invalid and (iii) free/erased.

When no data has been written to a page, it is in the erased

state. A write can be done only to an erased page, chang-

ing its state to valid. Erase operations (on average 1.5ms)

are significantly slower than reads/writes. Therefore, out-

of-place writes (as different from in-place writes in HDDs)

are performed to existing free pages along with marking

the page storing the previous version invalid. Additionally,

write latency can be higher than the read latency by up to

a factor of 4-5. The lifetime of Flash memory is limited by

the number of erase operations on its cells. Each memory

cell typically has a lifetime of 103-109 erase operations [9].

Wear-leveling techniques [15, 18, 26, 3] are used to delay

the wear-out of the first Flash block by spreading erases

evenly across the blocks.

The Flash Translation Layer (FTL) is a software layer in

an SSD that translates logical addresses from the file system

into physical addresses on a Flash device. The FTL helps



in emulating Flash as a normal block device by performing

out-of-place updates which in turn helps to hide the erase

operations in the Flash media. The mapping table is stored

in a small, fast SRAM. These FTLs can be implemented

at different granularities in terms of how large an address

space a single entry in the mapping table captures. Many

FTL schemes [20, 6, 24, 17, 25, 38, 5] and their improve-

ment by write-buffering [19] have been studied. A recent

page-based FTL scheme called DFTL [10] utilizes temporal

locality in workloads to overcome the shortcomings of the

regular page-based scheme by storing only a subset of map-

pings (those likely to be accessed) on the limited SRAM and

storing the remainder on the Flash device itself. Also, there

are several works in progress on the optimization of buffer

management in NAND Flash based environments [34, 14].

There are several empirical studies that test SSD perfor-

mance and power consumption with respect to different ac-

cess patterns [40, 4]. However, these studies are limited by

the analysis of single devices, and did not extend to RAID

configurations. There is recent work from Microsoft [16]

that addresses the reliability concern in RAIS that every

SSD could wear out simultaneously when configured in

RAID-4 or 5. They proposed a new RAID variant, called

“Diff-RAID” that maintains differential ages among de-

vices, reducing the probability of correlated failures. How-

ever, their work is different from our work in that their work

is not only based on an analytical modeling and simulation

approach but also concerned about reliability issues in an

SSD array.

We identified a lack of research on empirical studies of

RAIS configurations. In order to fill the void, we built an

experimental RAIS testbed for using real COTS SSDs and

conducted comprehensive studies of different RAIS config-

urations (0, 5, and 6, analogous to traditional RAID-0, 5,

and 6 configurations). We evaluated the RAIS configura-

tions in terms of performance and cost efficiency.

There is another study published by Microsoft Research

examining SSDs in enterprise storage systems [29]. They

explored the cost-benefit trade-offs of various SSD and

HDD configurations and concluded that SSDs cannot re-

place the existing HDDs because of current prices of SSDs.

Our work is different from their work in that we conducted a

cost efficiency analysis of COTS SSDs-based RAIS config-

urations against against COTS PCIe-based SSDs. We will

discuss this in Section 5.4.

3 RAIS Overview

In our study, we have focused in a RAID storage using

solid-state disk drives (SSDs) instead of hard disk drives

(HDDs), called RAIS. We defined RAIS-0, 5, and 6 analog

to RAID-0, 5, and 6 as follows:

RAIS Scheme 0, 5, 6

Write Cache Write Through

Read Ahead No

Direct I/O Yes

Stripe Size 64KB

Table 1: Default settings of a LSI MegaRAID Controller.

• RAIS-0: A request is striped across multiple SSDs. As

there is no redundantcy in the storage, data loss will occur

if an SSD fails.

• RAIS-5: A request is striped across multiple SSDs with

parity data across multiple SSDs. In RAIS-5, there is

no dedicated parity SSD. Instead, the parity is distributed

over all SSDs in a round-robin fashion, enabling writing

data and parity blocks all the SSD in the array, protecting

from a single SSD failure.

• RAIS-6: Different than RAIS-5, a request is striped with

dual parity blocks over all SSDs. It is logically a combi-

nation of n − 2 data SSDs and 2 additional parity SSDs

among n number of SSDs. It can protect data against any

two SSD failures.

4 Experimental Methodology

All experiments were performed on a single server with

24 GB of RAM and an Intel Xeon Quad Core 2.93GHz

CPU [12]. The operating system was Linux and used an Or-

acle (nee Sun) Lustre-patched 2.6.18-128 kernel. The noop

I/O scheduler that implements FIFO queue was used [37].

The testbed had seven 8x PCIe slots and two of these were

installed with PCIe RAID controller cards. We used two

LSI MegaRAID SAS 9260-8i KIT RAID Adapters [27],

each of which can support up to 8 SATA drives.

We used three representative SSDs in our evaluation. We

selected the Super Talent 128GB FTM28GX25H SSD [42]

as a representative of MLC-based SSDs with SATA inter-

faces and the Intel 64GB SSDSA2SH064G101 SSD [13] as

a representative of SLC-based SSDs. We used a Fusion-io

640GB ioDrive Duo [8] as a representative of PCIe-based

SSDs. We denote the SuperTalent MLC, Intel SLC, and the

Fusion-io MLC devices as SSD(A), SSD(B), and SSD(C)

in the remainder of this study, respectively. Their details

are presented in Table 2.

SSD(A) and SSD(B) use SATA-II interfaces that can

provide up to 375 MB/s data transfer rates, while SSD C

utilizes a PCIe interface, which provides data transfers up to

2 GBytes/s. To compare the performance of SSD(C) with

RAISs configured with SSD(A)s and SSD(B)s 2, we used

two PCIe interfaced hardware RAID controllers for each

2Hereafter, we call RAIS(A) and RAIS(B) for RAIS configurations us-

ing SSD(A)s and SSD(B)s respectively.



Label SSD(A) SSD(B) SSD(C)

Company Super-Talent Intel Fusion-io

Model FTM28GX25H SSDSA2SH064G101 ioDrive Duo

Type MLC SLC MLC

Interface SATA-II SATA-II PCIe x8

Capacity (GB) 120 64 640

Price ($) 415 799 13,990

Erase (#) 10-100K 100K-1M 10-100K

Power (W) 1-2 1-2 -

Table 2: Storage device characteristics examined in our study. SSD prices are based on current market values (January 2010).

configuration. Each RAID controller can be equipped with

up to 8 SATA-II interfaced SSDs. The default settings of

the RAID controller are given in Table 1.

In order to minimize the skew in our data due to start-up

effects, we “warmed-up” each SSD device prior to collect-

ing data. At the beginning of each evaluation, all SSDs are

exercised with an I/O pattern identical to that of the exper-

iment. We repeated every experiment five times for all test

cases.

To measure the I/O performance, we developed a bench-

mark tool that uses the libaio asynchronous I/O li-

brary on Linux. libaio provides an interface that

can submit one or more I/O requests in one system call

(io submit()) without waiting for I/O completion. It

also can perform reads and writes on raw block devices.

We used the direct I/O interface to bypass the operating sys-

tem I/O buffer cache by setting the O DIRECT and O SYNC

flags in the file open call – open(). We measured the

performance of our test configurations with random and se-

quential I/O access patterns by varying the amount of reads

in the workloads. Although the definition of a “sequential”

I/O access can be debated, our definition is simple: If a re-

quest starts at the logical address immediately following the

last address accessed by the previously generated request,

we consider it a sequential request. Otherwise, we classify

it as a random request.

5 Experimental Results

We conducted two phases of experiments. In the first

phase, we examined the performance of individual, single

SSDs of type A, B, and C given in Table 2 to obtain the in-

dividual baseline performance of each device. We present

these results in Section 5.1. In the second phase, we eval-

uated RAIS configured SSD performance. These results

are presented in Section 5.2. Based on data obtained in

these two phases, we investigate the pathological behav-

ior of RAIS configured SSDs due to locally controlled and

scheduled GC processes on each individual SSD. In Sec-

tion 5.4 we present our insight on the factors to be con-

sidered when building storage systems with SSDs, such as

which SSDs to buy, how to configure them, etc., based on

our storage efficiency analysis.

5.1 Individual SSD Performance

5.1.1 Sequential I/O Performance

In this subsection we present experimental results on indi-

vidual SSD devices using sequential I/O requests. We var-

ied the request size and number of outstanding requests in

the I/O queue.

In Figure 1(a)(b), we present the read performance char-

acteristics of SSD(A) and (B). As can be seen, read band-

width for each device increases with queue depth and re-

quest size. Maximum read performance is around 235

MB/s and 260 MB/s for SSD(A) and SSD(B), respectively.

For large requests, both devices scale well. However,

SSD(A) does not scale as well as SSD(B) with respect to

queue depth when the request size is small. (Refer to Fig-

ure 1(a)(b)).

For reads, we found that SSD(B) performs better than

SSD(A). This can be explained by the fact that SSD(B)

uses SLC Flash chips while SSD(A) uses MLC Flash chips.

Read access time on SLC Flash is faster than on MLC

Flash [22, 35].

For sequential writes, as shown in Figure 1(d)(e), we can

see that SSD(A) has a maximum throughput of 140 MB/s

while SSD(B) performs at 175 MB/s. These write values

are smaller than the read values for both devices. Flash

writes are slower than reads in part because writes can cause

garbage collection events (GCs). Similar to reads, we see

that SSD(A) does not scale well compared to SSD(B) for

small write requests.

In Figure 1(c)(f), we see that SSD(C) achieves a maxi-

mum read bandwidth of 1.38 GB/s and its maximum write

bandwidth is around 1 GB/s. These two values are much

higher than their SSD(A) and (B) counterparts.

Overall, for reads as shown in Figure 1(a)(b)(c), we ob-

serve that variance is high at several measurement points.

We speculate that following factors may have caused the
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Figure 1: Observed sequential I/O throughput of single, individual SSD(A), (B), and (C) devices, using the libio benchmark.

‘QD’ (Queue Depth) denotes the number of outstanding requests in an I/O queue. The error bars show 95% confidence

intervals. Note that some intervals are too narrow to be apparent here.
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Figure 2: Observed random I/O throughput single, individual of SSD(A), (B), and (C) devices. Error bars show 95% con-

fidence intervals. I/O Operations Per Second (IOPS) were measured by generating 4 KB read and write requests that were

random in a 1 GB logical address space.

higher variance in read measurements:

• Garbage collection processes (GCs) can be triggered

even in read-dominant workloads (possibly because of

past write-dominant workloads). GCs can increase the

queueing delay (the time a request waits in an I/O queue)

of incoming requests, resulting high request service la-

tencies.

• Devices might have different internal fragmentation lev-



els, which can directly impact the scheduling of GC pro-

cesses [4].

Unfortunately, there is no easy way to query the internal

fragmentation status of SSDs. We investigate this patholog-

ical behavior more in Section 5.3.

5.1.2 Random I/O Performance

Figure 2 shows the performance characteristics of SSD(A),

(B), and (C) for 4 KB random I/O access patterns with re-

spect to varying queue depth for each case. We use IOPs

as a metric for comparing random I/O performance in the

rest of this paper. IOPs is one of the widely used metrics in

benchmarking storage systems for random I/O access pat-

terns.

In Figure 2(a)(b), we see that SSD(B) outperforms

SSD(A) for both random reads and writes. For 4 KB ran-

dom reads on both devices, we see that I/O throughput in-

creases with respect to the queue depth. On 4 KB random

writes, surprisingly, we see that SSD(A) does not scale at

all with respect to queue depth. This behavior was not

observed for SSD(B). We also see that SSD(B) performs

significantly better than SSD(A) in terms of IOPs, even

though we observed a high variance in SSD(B) results. This

high variance on random writes can be explained by: (i)

In our experiment, we used a simple definition for sequen-

tial/random requests in workloads. However, random re-

quests can be further divided by a distance of successive

requests, which can differently impact the internal fragmen-

tation level of an SSD and its scheduling of GCs. We have

seen this similar behavior in our previous work [21]. We

leave a more detailed investigation of this issue as future

work. (ii) We believe internal caching policies (prefetching

or write-buffering) can perform differently based on manu-

facturers’ design choices.

Interestingly, SSD(B) and SSD(C) (Figure 2(c)(d)) per-

form better in terms of IOPs under a random write heavy

workload compared to a random read heavy workload,

while SSD(A) exhibits lower throughput on random writes

than on random reads. Poor random writes has been one of

the biggest problems to overcome in SSDs [23, 10].

We suspect that SSD(B) and (C) were designed to pro-

vide better performance on random writes. We speculate

that the manufacturer of SSD(B) and (C) might have em-

ployed an enhanced write-buffering scheme [19] or em-

ployed an enhanced FTL scheme optimized for random

writes [10].

5.2 RAIS SSD Performance

In our experiments, we used 4 SSDs for the RAIS-0 con-

figuration. Since RAIS-5 and 6 configurations need extra

parity drives, we used 5 SSDs (4 data drives and 1 parity

drive) for RAIS-5 and 6 SSDs (4 data drives and 2 parity

drives) for RAIS-6. All SSDs were connected to the RAID

controller via SATA-II interfaces. Settings for the RAID

controller are presented in Table 1.

5.2.1 Sequential I/O Performance

Here we present our results of performance testing on

RAIS(A) and RAIS(B) with respect to a variety of I/O ac-

cess patterns and I/O queue depths.

Overall, we see that bandwidth increases with respect to

queue depth for all RAIS configurations. Figure 3(a)(b)(c)

shows sequential read bandwidth for RAIS(A). Surpris-

ingly, we observe that the bandwidth for the RAIS-5(A)

configuration is higher than RAIS-0(A). The LSI RAID

controller may be able to do RAID calculations at line

rate, faster than the disk bandwidth. We also see that the

RAIS-6(A) configuration performs even better than RAIS-

5(A). From the figures, we see RAIS-0(A), RAIS-5(A), and

RAIS-6(A) provide up to 850 MB/s, 985 MB/s, and 1190

MB/s, respectively. Based on our understanding in RAID

theory, we did not expect the RAIS-5 and 6 configurations

to perform better than RAIS-0 due to the extra computa-

tional power and bandwidth required in processing parity

blocks, given that all three RAIS configurations have the

same number of data disks. We had a similar observation

on RAIS(B) setups. In Figure 3(g)(h)(j), we see that the

bandwidth of RAIS-5(B) drops slightly down to 917 MB/s,

which is lower than RAIS-0(B) by 144 MB/s, and reaches

1,088 MB/s, which is slightly beyond the 1,061 MB/s peak

of RAIS-0(B).

We found that, unlike HDDs, more parallelism can be

exploited for a given SSD as we increase the number of de-

vices employed in RAIS sets [31]. Recently marketed SSDs

use 4 or 8-way data channels, enabling them to process mul-

tiple requests simultaneously at different Flash chips. We

infer that, in RAIS, individual SSDs can exploit more paral-

lelism by interleaving requests over individual SSDs as the

total number of SSDs drives in an array increases, regard-

less of the RAIS configuration. Moreover, the performance

benefit due to this parallelism may outweigh the extra parity

calculation overhead in RAIS-5 and 6 configurations.

5.2.2 Random I/O Performance

For random reads as shown in Figure 4(a)(c), we see both

configurations’ IOPs performance increase with respect to

queue depth and request size, as we expected, from the in-

dividual SSD performance given in Figure 2. Among dif-

ferent RAIS schemes, we can not see any significant perfor-

mance differences.

For random writes, Figure 4(b)(d), we see that RAIS-

0(A) performs poorly compared to RAIS-0(B). This is con-

gruent with our observations illustrated in Figure 2. We
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Figure 3: Test results of RAIS(A) and (B) for sequential I/O access patterns. Note that RAIS-0, 5, and 6 are configured

with 4 SSDs, 5 SSDs including 1 parity drive, and 6 SSDs including 2 parity drives, respectively. The error bars show 95%

confidence intervals. Note that some intervals are too narrow to be apparent here.

have seen that SSD(A) shows much lower bandwidth than

SSD(B) for random writes dominant workloads. Also, in-

terestingly, we see that RAIS-0(B) performs much better

compared to RAIS-0(A) with respect to queue depth. How-
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Figure 4: Performance of RAIS(A) and (B) sets under ran-

dom I/O access patterns. The error bars show 95% confi-

dence intervals.

ever, as can be seen in Figure 4(b)(d), RAIS-5 and 6 do not

scale as we increase queue depth. Our knowledge about

RAIS schemes coupled with these observations suggests

that extra random writes due to parity block updates may

be degrading performance.

5.3 Pathological Behavior

HDDs update data in-place, while SSDs are designed to

provide out-of-place updates to hide the erase operation la-

tency on their Flash devices. Out-of-place update opera-

tions trigger GC processes that can delay the servicing of

incoming requests while invalid pages that are stale are col-

lected and space is freed for new writes. In this section, we

investigate the slowdowns on SSDs and RAIS performance

due to GC processes. To illustrate this effect, we conducted

analyses on bandwidth patterns in time series.

In this experiment, we used the following RAIS config-

urations: We configured 6 SSDs for RAIS-0 in order to ob-

serve the maximum achievable throughput. For RAIS-5,

we used one parity drive out of 6 SSDs and the remaining 5

SSDs were used for storing actual data. In RAIS-6, 2 parity

SSDs and 4 data storage SSDs were used.

Type Metric
Write (%) in Workload

80 60 40 20

SSD(A)
Avg 162.6 179.1 205.6 225.9

Stdev 10.9 7.2 4.2 3.1

SSD(B)
Avg 214.3 229.4 249.3 259.6

Stdev 23.7 16.4 9.6 6.3

Table 3: Average and standard deviations of the values in

Figure 5.

Type Metric
RAIS Scheme

0 5 6

RAIS(A)
Avg 1109.4 609.4 612.5

Stdev 33.6 60.8 37.6

RAIS(B)
Avg 1386.3 837.2 737.6

Stdev 98.2 92.4 72.6

Table 4: Average and standard deviations of the values in

Figure 6.

5.3.1 Performance Anomaly on Individual SSDs

In Figure 5(a)(b), we examine the large sequential I/O band-

width responses of individual SSDs in time series. We var-

ied the percentage of writes in workloads between 20% and

80% in increasing steps of 20%. We measured I/O band-

width in one second intervals.

For write-dominant workloads, we observe that the

bandwidth fluctuates widely due to excessive GCs . For

example, the SSD(A) I/O throughput drops below 180MB/s

at the 6th and 7th seconds under an 80% write workload.

However, I/O throughput drops below 160MB/s for the 8th

second and then drops further to 130MB/s in the next 3

seconds. Overall SSD(B) shows higher bandwidth than

SSD(A). Also, surprisingly, SSD(B) has a higher variance

than SSD(A). (Refer to Table 3). For instance, SSD B’s

I/O throughput reached 240MB/s at the peak and dropped

to 140MB/s (at 25th to 27th seconds). As we increased the

amount of reads in the workloads from 20% to 80%, we

observed that SSD(A)’s and B’s I/O throughput increased

around 50% and 18%, respectively.

5.3.2 Pathological Behavior with RAIS

In Figure 6(a)(b) we show results for a workload mix of

60% writes and 40% reads. Similar to previous observa-

tions from test results on individual SSDs, we see that the

bandwidth variance of RAIS(B) is higher than RAIS(A)

(see Table 4), even though RAIS(B) provides higher band-

width than RAIS(A). For example, we see that RAIS-0(B)

reached 1.5 GB/s at the peak and then dropped to 1.2 GB/s.

RAIS-0(A) varied between 1 GB/s and 1.15 GB/s. Also, we

see from the results on RAIS-5 and RAIS-6 that their over-

all performance is much lower than RAIS-0 because of the
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extra operation for parity block updates. However, we did

not observe a large difference between RAIS-5 and RAIS-6

performance, specifically for RAIS(A) (see the average and

standard deviation values of RAIS(A) for RAIS-5 and 6 in

Table 4). RAIS-5(A) and RAIS-6(A) performed identically

as can be seen in Figure 6(a). Under current RAIS setups,

GC scheduling is controlled locally by internal SSD logic.

In RAIS, the lack of a global GC scheduling mechanism

can cause overall synchronization problems across SSDs,

reducing the efficiency of the RAIS set.

5.4 RAIS Efficiency Analysis

Unlike HDDs, SSDs are expose more flexible design

spaces to manufacturers, as they do not require mechani-

cal moving parts such as spindle and voice-coil motors. As

described in Table 2, an SSD can be designed in different

ways – from its internal design (e.g. internal memory size,

firmware, and Flash chips) to external interface (SATA, PCI,

etc.) [31]. Thus, SSDs show differences in market prices.

5.4.1 Efficiency Metrics

To do a complete comparison among RAIS configurations,

performance (i.e. MB/s, IOP/s) and capacity (GB) are not

sufficient metrics. We need additional efficiency metrics in-

cluding performance and capacity per dollar. Performance

should be measured as IOPs per second per dollar or bytes

per second per dollar. Systems can also be compared based

on total cost, total formatted capacity, and performance.

Also, the primary metric for comparing different systems

should be dependent on applications. In transaction pro-

cessing applications, more requests are small and random.

The right metric for this type of applications should be IOPs

per second per dollar. On the other hand, media servers pro-

cess sequential I/O requests to provide streaming services

where bytes per second per dollar might be the correct met-

ric.

We conducted experiments to answer the question, “can

RAIS built on COTS SATA SSDs be competitive against a

large, fast, PCIe SSD, such as the Fusion-io device?” To an-
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IOPs
Read (%) in Workload

0 20 40 60 80 100

RAIS-0(A) 9,472 13,827 12,614 11,146 17,844 28,416

RAIS-0(B) 40,960 34,059 29,787 25,918 31,656 32,256

SSD(C) 140,544 111,050 65,509 58,571 56,499 51,456

MB/s
Read (%) in Workload

0 20 40 60 80 100

RAIS-0(A) 792 1,085 1,099 1,104 1,231 1,259

RAIS-0(B) 1,165 1,445 1,412 1,449 1,518 1,557

SSD(C) 983 998 1,040 1256 1,445 1,506

Table 5: Average performance values used in Figure 7(a)(b).

swer this question, we configured 6 SSD(A) and 6 SSD(B)

devices in RAIS-0(A) and RAIS-0(B) configurations, re-

spectively. We analyzed and compared their performance

and storage efficiency against a single Fusion-io device (de-

noted as SSD(C)). Unlike SSD(C), RAIS-0(A) and (B) con-

figurations require an additional RAID controller to config-

ure the array. We also included the cost of this extra RAID

controller in our calculations and metrics. The details of the

test configurations are described in Table 6

5.4.2 Performance Cost Efficiency Analysis

Figure 7(a)(b) compares the efficiency of performance and

storage capacity for our test configurations. Performance

values that we considered are shown in Table 5. Since

writes can be slower than reads for SSDs, we varied the

amount of reads in the workload. In Figure 7(a), IOP/s per

dollar has been used as a metric to compare the performance

efficiency for workloads where small random requests are

dominant. On write-dominant access patterns (e.g. 0-20%

reads), we observed that SSD(C) outperforms RAIS-0(A)

by 300% and RAIS-0(B) by 30%. However, we see that

the performance efficiency of SSD(C) decreases while that

of RAIS-0(A) increases as the mix of reads in the workload

increases. Interestingly, we see that RAIS-0(A) and SSD(C)

perform similarly around 60% reads and RAIS-0(A) is more

economically efficient than SSD(C). Moreover, SSD(C) is

less efficient than RAIS-0(B) as reads in workload exceed

40%. On read-dominant access patterns, RAIS-0(A) has

twice the efficiency of SSD(C).

Figure 7(b) presents our comparisons on throughput ef-

ficiency of our storage configurations for large sequential

access patterns. We used MB per second per dollar as a met-

ric for estimating throughput efficiency. Unlike our previ-

ous observation, we see that the throughput efficiency does

not change regardless of percentage of reads in the work-

load. Surprisingly, SSD(C) shows much lower efficiency

than both RAIS configurations. Also we observe that the

efficiency of RAIS-0(A) increases by 10-20% as reads be-

come more dominant in the workload. Overall, we observed

that RAIS configurations are more efficient than SSD(C) for

workloads with large sequential I/O access patterns. For the



Type
RAIS RAIS Cap. Device RAID

Scheme (GB) (#) Controller (#)

RAIS-0(A) (Striping) 768 6 1

RAIS-0(B) (Striping) 384 6 1

SSDC() - 640 1 0

Table 6: Test configurations. The price of the additional

RAID controller is $579 (based on the current market price

(January 2010)).

devices we considered, based on their current market prices,

we see that I/O workload characteristics should be consid-

ered and for different workloads different storage solutions

might be optimal.

5.4.3 Storage Capacity Cost Efficiency Analysis

In Figure 7(c), we compare the storage capacity efficiency

based on current market prices shown in Table 2. We see

that RAIS-0(A) is the most efficient storage configuration

irrespective of I/O access patterns.

6 Summary and Future Work

We conducted a comprehensive empirical study on SSDs

and RAIS configurations in terms of performance and cost

efficiency. We also studied the performance anomalies in

SSDs and RAISs that can be caused by the local garbage

collection (GC) processes of individual SSDs. From I/O

throughput analyses in time series, we identified a short-

coming that future RAIS sets should overcome: RAIS can

not provide sustained bandwidth due to the independent,

local GC processes of individual SSDs. Such local pro-

cesses cause synchronization problems in RAIS configura-

tions, degrading the overall I/O throughput. Moreover, we

performed a cost efficiency analysis of various SATA RAIS

configurations against a fast, but expensive PCIe SSD. We

used mixes of four different major I/O access patterns (i.e.

large sequential reads and writes, and small random reads

and writes) in our tests and we observed that, under the cur-

rent market prices of such devices, a RAIS-0 configuration

using MLC based SSDs may currently be the most cost-

effective option for workloads that are dominated by small

random reads or large sequential reads.

Our work is still in progress. Our results are based on

micro-benchmark tests and we performed performance tests

on devices of interest for representative I/O access patterns.

However, a more realistic approach will be to conduct file

system level performance tests and cost efficiency analyses

with higher-level benchmarks and applications. Our future

plans include deploying RAIS configurations as a read and

write cache that can be placed above HDD tiers in an exper-

imental testbed.
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