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Abstract—Although solid-state drives (SSDs) offer significant performance improvements over hard disk drives (HDDs) for a number

of workloads, they can exhibit substantial variance in request latency and throughput as a result of garbage collection (GC). When GC

conflicts with an I/O stream, the stream can make no forward progress until the GC cycle completes. GC cycles are scheduled by logic

internal to the SSD based on several factors such as the pattern, frequency, and volume of write requests. When SSDs are used in a

RAID with currently available technology, the lack of coordination of the SSD-local GC cycles amplifies this performance variance. We

propose a global garbage collection (GGC) mechanism to improve response times and reduce performance variability for a RAID of

SSDs. We include a high-level design of SSD-aware RAID controller and GGC-capable SSD devices and algorithms to coordinate the

GGC cycles. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase

counts for various workloads. Our simulations show that GC coordination by a reactive scheme improves average response time and

reduces performance variability for a wide variety of enterprise workloads. For bursty, write-dominated workloads, response time was

improved by 69 percent and performance variability was reduced by 71 percent. We show that a proactive GC coordination algorithm

can further improve the I/O response times by up to 9 percent and the performance variability by up to 15 percent. We also observe that

it could increase the lifetimes of SSDs with some workloads (e.g., Financial) by reducing the number of block erase counts by up to

79 percent relative to a reactive algorithm for write-dominant enterprise workloads.

Index Terms—Storage systems, solid-state drives, flash memory, garbage collection, redundant array of inexpensive disks
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1 INTRODUCTION

WIDELY deployed in systems ranging from enterprise-
scale down to embedded deployments, hard disk

drives (HDDs) remain the dominant media in online and
nearline storage systems. HDD manufacturers have been
successful in providing a long series of improvements in
storage density, which have increased the total disk
capacity while bringing down the price per byte. Perpen-
dicular recording [26] has extended this trend, but further
advances will likely require new technologies, such as
patterned media [41]. The changes in technology will
present significant manufacturing challenges and may
disrupt the economies of scale that mass production has
brought to the industry.

Although storage density has seen numerous improve-
ments, I/O performance has been increasing at a much
slower pace. The improved density helps move more data
onto and off the disk in a single revolution, but the largest
gains have come from increasing the rotational speed—a
single enterprise-class HDD can now provide up to 204
MB/s when operating at 15,000 revolutions per minute [36].

Unfortunately, HDD designers now believe it will be
extremely difficult to further increase the rotational speed
of the platters because of power consumption and challeng-
ing thermal dissipation issues [10], [17].

In contrast, solid state disks (SSDs) are the up-and-comer
in the storage industry, with SSDs based on NAND Flash
memory leading the charge. SSDs offer a number of benefits
over conventional HDDs [6]: improved I/O access times,
less power consumption, better resilience to operating in
harsh environments with external shocks and hotter tem-
peratures, and lighter-weight devices that help reduce the
need for additional floor reinforcement in data centers.
These benefits have led to several successful deployments
in enterprise and high-performance computing (HPC) stor-
age systems [2], [11], [24], [29], and the pace of adoption is
likely to increase. There is also ongoing research into
designing hybrid storage systems combining SSDs and
HDDs to balance the benefits and costs associated with each
technology [8], [16], [29].

Packaging SSDs with form factors and electrical interfaces
common to HDDs permits a direct replacement in current
systems. Operating systems interact with the SSDs as normal
block devices, allowing system designers the ability to plug
in an SSD and gain the performance benefits without a full
redesign of the system. However, this interoperability comes
with costs—not only is current process technology more
expensive in terms of price per GB, but also NAND Flash
presents different semantics from magnetic media, requiring
a software translation layer between the block storage APIs
and the Flash itself. This layer of abstraction can restrict the
high bandwidth and low latency achievable by SSDs when
presented with particular I/O access patterns.
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NAND Flash memory is unable to directly overwrite a
storage location in the same manner as magnetic media.
Once a location has been written, NAND requires an erase
operation before data in that location can be changed [31].
Further complicating matters, read and write operations
can be performed at a finer granularity than erase opera-
tions. Reads and writes work on pages, typically 2 to 4 KB
in size, whereas groups of 64 to 128 pages called blocks
must be erased as a single unit. As erase cycles are much
more expensive than read/write operations, SSDs incorpo-
rate software to allow out-of-place update operations and to
map sectors from the storage API to their current location in
the Flash. This out-of-place update eventually requires a
sweep of the storage area to find stale data and consolidate
active pages in order to create blocks that can be erased.
This process, known as garbage collection (GC), can block
incoming requests that are mapped to Flash chips currently
performing erase operations [20]. Note that SSDs are com-
posed of multiple flash chips. The frequency and overhead
of GC operations are significantly affected by random
writes and updates with small request sizes [3], [15], [22].
These I/O patterns can also increase the movement of active
data and incur more block erase operations [9], [15], which
further slow down GC and decrease the lifetime of the
NAND device.

Redundant arrays of inexpensive (or independent) disks
(RAID) [34] were introduced to increase the performance
and reliability of disk drive systems. RAID provides paral-
lelism of I/O operations by combining multiple inexpensive
disks, thereby achieving higher performance and robust-
ness than a single drive. RAID has become the de facto stan-
dard for building high-performance and robust HDD-based
storage systems. Hypothesizing that RAID could provide
similar benefits for SSDs, we analyzed SSD-based configura-
tions and found that a RAID consisting of commercial-off-
the-shelf (COTS) SSDs was more cost-effective than a high-
performance peripheral component interconnect express
(PCIe) based SSD [18], [19]. However, our comprehensive
evaluation also found that SSD-based RAID configurations
exhibit serious bandwidth variability due to GCs of individ-
ual SSDs [18]. Note that the aggregate performance of a
RAID is often dictated by the slowest drive in it. Our inves-
tigation provided empirical evidence that uncoordinated
GC processes on individual SSDs are a significant contribu-
tor to the performance variability of the RAID [19]. We thus
proposed Harmonia, a garbage collector that operates at the
RAID level and globally coordinates local GC cycles for
each SSD in the array. In this paper, we make the following
specific contributions:

� Although the effects of unsynchronized processes
on performance variability in large-scale HPC sys-
tems have been discussed [5], [32], [35], research
into the effects of uncoordinated GC processes on
the performance of a RAID is an open field. To
our knowledge, this is the first work addressing
this performance variability.

� We empirically observe that the performance of an
SSD can be highly degraded by GC processes. We
observe that this effect is amplified in RAID configu-
rations without coordinated GC cycles.

� We propose a global GC (GGC) mechanism to coor-
dinate GC cycles across a set of SSDs, thereby reduc-
ing overall performance variability. This proposal
includes SSD-aware RAID controllers that imple-
ment our synchronized GC algorithms, and RAID-
aware SSDs that provide information to the RAID
controllers and additional functionality to allow par-
ticipation in a global GC cycle.

� We propose both reactive and proactive GGC algo-
rithms. We describe two reactive algorithm imple-
mentations that differ in the conditions under which
each individual SSD in the array participates in the
GGC cycle. Our proactive algorithm initiates oppor-
tunistic GGC during idle periods of the incoming I/
O stream.

� We extend Microsoft Research (MSR)’s SSD simula-
tor to implement our proposed SSD GGC algorithms
for SSD RAID storage system. Using industry-stan-
dard workloads, our experiments show that GGC
can reduce overall latency by up to 15 percent as
well as provide a significant reduction in the perfor-
mance variability when compared with the standard
uncoordinated GC of individual drives in the RAID.

The remainder of this paper is organized as follows.
We first present an overview of the material and technol-
ogy in Section 2 followed by motivation in Section 3. Sec-
tion 4 introduces our proposed improved RAID and SSD
controller designs, as well as the globally synchronized
garbage collection algorithms. In Sections 5 and 6 pres-
ent simulation results of our proposed GC coordination
algorithms and their comparison on I/O performance
and block cleaning efficiency for various workloads.
Then, we conclude in Section 7.

2 BACKGROUND

Flash memory-based storage devices provide quite low
access times relative to magnetic media— on average, a
read operation requires 0.025 ms and a write requires
approximately 0.200 ms. However, these low latencies come
at a substantial cost in terms of access semantics. Whereas
magnetic media and volatile memories are able to overwrite
existing data with a write operation, Flash systems require
an erase operation before new data may be written to a pre-
viously used location [31]. These erase operations are
expensive compared with read and write operations—on
average, each erase takes 1.5 ms to complete, during which
time the affected device is unable to perform other tasks.
Further complicating matters, the granularity of the erase
operation is a significant multiple of the page size used for
reads and writes.

Software called the Flash Translation Layer (FTL)
translates the logical address for each request to the phys-
ical device and address where the data actually resides.
The FTL emulates an HDD by performing out-of-place
updates, allowing the device to avoid incurring the cost
of an erase each time a page needs to be overwritten. The
mapping from logical to physical addresses is often
stored in a small amount of fast SRAM, and the mapping
granularity—the size of each contiguous chunk of data—
can vary for each device. Many different FTL algorithms
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have been proposed and studied [9], [21], [23], as well as
versions that improve write buffering [15] and buffer
management [33]. Recently, demand-based FTL [9] was
proposed to overcome the limitations of page-based FTLs
by using the temporal locality of workloads to reduce the
number of mappings stored in the SRAM.

Although the out-of-place update provided by the FTL
avoids a highly expensive read-erase-modify-write cycle
when writing to a block containing existing data, the num-
ber of free blocks available for updates decreases over time
as they are consumed. To replenish this pool, the SSD will
engage a process known as GC to find blocks that contain a
mix of valid and invalid, or stale, data. The valid data from
these blocks is consolidated into a smaller number of blocks,
and the newly available blocks are erased to make them
ready for future write or update operations.

Current generations of SSDs use a wide variety of algo-
rithms and policies for GC. Examination and analysis of
these algorithms is difficult however as most are vendor-
specific and highly proprietary. Chen et al. [3] empirically
observed that GC activity is directly correlated with the
frequency of write operations, amount of data written,
and free space on the SSD. The increased queue delay
during GC can significantly impede both read and write
performance [9]. Random write workloads often have the
most negative impact on overall performance [22], [25],
although the overhead of GC activity is highly dependent
upon the characteristics of the workload presented. Based
on these properties, Kim and Ahn [15] worked to rear-
range and coalesce requests to present a more sequential
workload. Others have attempted to improve the design
of FTLs to minimize the overhead incurred by GC [9],
[22], [23].

Despite this effort, GC-induced performance variability
remains a significant problem for SSDs. This variability can
be exacerbated by stalled requests targeting Flash devices
with ongoing GC; these requests must be placed into a queue
and scheduled for service once the GC has completed. This
high variability reduces the performance robustness of the sys-
tem, as the I/O bandwidth and system response time cannot
be guaranteed. Providing a robust system that operates
within specified boundaries is as important as achieving a
high-performance environment. Particularly with a bursty
request stream with many write I/Os, stalls due to GC can
significantly degrade the performance of an SSD, and this
degradation can be amplified when multiple SSDs are used
in a single RAID configuration.

In the next section, we show that GC-induced perfor-
mance variability can occur in individual SSDs and their
RAID configurations for various workloads, and per-drive
bandwidth can decrease as the number of SSDs in the RAID
configuration increases.

3 PERFORMANCE DEGRADATION IN SSDS

In this section, we study the pathological behavior of indi-
vidual SSDs and SSD arrays and empirically observe that
individual SSD’s bandwidth can drop sharply due to inter-
nal GC, and the effect of GC can be worse for SSD arrays.
We perform a series of experiments using various configu-
rations of SSDs and RAID controllers.

3.1 Experimental Setup

All experiments are performed on a single server with
24 GB of RAM and an Intel Xeon Quad Core 2.93 GHz CPU
[13] running Linux with Lustre-patched 2.6.18-128 kernel.
The noop I/O scheduler that implements FIFO (first in, first
out) queuing is used. The testbed has seven 8x PCIe slots,
and two are populated with LSI MegaRAID SAS 9260-8i
KIT PCIe RAID adapters [25], each of which can support up
to eight SATA drives.

We examine two types of SSDs, Super Talent 128 GB
FTM28GX25H SSD [40] and Intel 64 GB SSDSA2SH064G101
SSD [14] SSD [40] as the representative devices for multi-
level cell (MLC) and single-level cell (SLC) SSDs respec-
tively. Their specification are detailed in Table 1.

We use an in-house benchmark tool that uses the libaio
asynchronous I/O library on Linux [18]. The libaio provides
an interface that can submit one or more I/O requests using
a system call, iosubmit(), without waiting for I/O comple-
tion. It also can perform reads and writes on raw block devi-
ces. We use O-DIRECT and O-SYNC flags in the file open()
call to directly measure device performance by bypassing
the OS I/O buffer cache.

Table 2 presents three different synthetic workloads that
we use to compare performance and bandwidth variability.
A high queue depth (number of outstanding requests in the
I/O queue) is used to observe the impact of GC in the time
domain. We vary the percentage of writes in workloads
between 20 and 80 percent in increasing steps of 20 percent
and their I/O access patterns are random. I/O bandwidth is
measured at one second intervals. we use different request
sizes for different array configurations so that the I/O
demand on every drive should be the same irregardless of
storage configuration.

Also we use a bigger request size than the full stripe size
(stripe size x Number of SSDs) so that it should make imbal-
anced I/O loads on the arrays of SSDs. For example, for W2
workload, the request size is 1.25 MB whereas, a full stripe
request would requires multiple of 1 MB (¼256 KB � 4) for
the array of four SSDs. Similarly we use a 1.87 MB request
size for the array of six SSDs. The value of 1.87 MB is
obtained by setting a baseline request of 1.25 MB for the
four-SSD array and scaling up the request size based on

TABLE 1
Device Characteristics

TABLE 2
Workload Descriptions

Note that singe SSD experiments uses W1 workloads, and multiple SSD
experiments in RAID settings use W2 (for four SSDs) and W3 (for six
SSDs) workloads.
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the increased number of SSDs in the array. Similarly,
the request size is scaled down for evaluating one SSD.
Note that for the array of four SSDs, one of the four SSDs
will receive two 256 KB striped requests, whereas others
will have one 256 KB striped request.

3.2 Pathological Performance Behavior

Individual SSDs. We first discuss the performance variability
of individual SSDs in Fig. 1. From the figure, we observe
that as we increase the number of writes in the workloads
from 20 to 80 percent, the SSD(M)’s and SSD(S)’s I/O
throughput decreases by 41 and 28 percent, respectively.
We also observe that increasing write percentage of work-
load can increase bandwidth fluctuation. We use coefficient
of variation (CV)1 values to compare the significance of the
bandwidth variability for different workloads. Table 3
shows normalized CV values with respect to the CV value
of the 20 percent write workload. For example, CV values
for the workloads with more than 40 percent writes are

around 6/7 times higher than the CV value for the work-
load with 20 percent writes.

SSD arrays. We extend our experiments to arrays of SSDs.
RAID configuration for the SSD array is shown in Table 5.
RAID(M) and RAID(S) designate the RAID configurations
of SSD(M) and SSD(S), respectively.

Fig. 2 shows the results of our experiments for
RAID(M) and RAID(S) sets using the W3 workloads in
Table 2. In Fig. 2a, we see that for the 80 percent write-
dominant I/O workload, the RAID(M) I/O throughput
can drop below the peak performance (about 700 MBs/)
quite often. The I/O throughput drops below 600 MB/s
at the 3rd second and then drops further to below
450 MB/s in the next several seconds. Overall, RAID(S)
shows higher bandwidth than RAID(M) (referring to
Figs. 2a and 2b), with a similar variance for all workloads
we examine, because RAID(S) is composed of SLC SSDs
and RAID(M) is composed of MLC SSDs.

TABLE 3
Original Values and Variability Analysis for Fig. 1a and 1b

CV values are normalized with respect to the values of the correspond-
ing drives for 20 percent.

TABLE 5
RAID Settings

Fig. 2. Pathological behavior of RAID of SSDs.

TABLE 4
Original Values and Variability Analysis for Fig. 2a and 2b

CV values are normalized with respect to the values of the correspond-
ing drives for 20 percent in Table 3.

Fig. 1. Pathological behavior of individual SSDs.

1. Coefficient of variation (Cv) is a normalized measure of disper-
sion of a probability distribution, that is, Cv=

s
m
.
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We also observe that an increased workload write per-
centage can result in increased bandwidth fluctuation.
Referring to CV values for the workloads with more than
40 percent writes in Table 4, we have similar observations
as we learn from Table 3: CV values are much higher for the
workloads with more than 40 percent writes than for the
workload with 20 percent writes.

In the following sections, we provide more experi-
mental results on performance variability with regard to
both the number of SSDs in the array as well as the
varying RAID levels.

3.2.1 Performance Variability with the Number of SSDs

In this experiment, we measure I/O bandwidths of SSD
arrays by increasing the number of drives in the array
for a given workload. Fig. 3 presents performance vari-
ability for a single SSD and SSD arrays with RAID-0 of
four and six SSDs for 60 percent write workloads as
specified in Table 2.

We use normalized Z score to visually compare the dis-
tribution trend. For this, we measure I/O bandwidths every
second while running the workloads, and collect bandwidth
data every second for each run of each configuration. Then,
each bandwidth data is normalized with a Z score (X�m

d
) and

each density function is drawn with curve fitting.
In Fig. 3 we can see that the lines for RAIDs of four SSDs

and six SSDs both show more spread then the single SSDs.
Note that the wider the curve is shaped, the higher its per-
formance variability is. Or, in other words, the tighter the
distribution (e.g., minimal spread at the tails with a single
spike at the center), the less variability it exhibits in terms of
throughput. Also we observe that the average bandwidth of
SSD array does not scale linearly as we increase the number
of SSDs in the RAID-0 array. For example, for the experi-
ments of Fig. 3, a single SSD shows 184.8 MB/s whereas
four SSDs show 689.7 MB/s and six SSDs shows 847.4 MB/
s. In theory, and if it can be scaled linearly with the number
of SSDs, four SSDs and six SSDs are expected to offer about
740 MB/s and 1108 MB/s. Our conjecture is that imbal-
anced I/O workloads on the SSD array followed by

uncoordinated GC operations on individual SSDs are
increasing performance variability and contributing to the
large drop in bandwidth throughput.

Moreover, we observe that the performance variability of
RAID sets comprising MLC SSDs does not scale as well as
that of sets of SLC SSDs. As seen in Fig. 3b, there is not a sig-
nificant difference between four and six SLC SSDs in the
RAID set, unlike the MLC RAID sets shown in Fig. 3a. We
believe this variation to be a result of the inherent higher
variability in response times of MLC SSDs.

Per-drive bandwidth. We calculate a per-drive bandwidth
for a RAID ofN SSDs (N � 1) by dividing the average band-
width observed by N under the assumption that the I/O
loads to storage are balanced across the SSDs in a RAID. We
observe that the bandwidth can drop by up to 24 and 20 per-
cent, respectively, for six RAIDs of SSD(M)s and SSD(S)
compared with the bandwidths of their single SSDs.

3.2.2 Performance Variability for various RAID Levels

In this section, we investigate the correlation between vari-
ous RAID levels and performance variability. In particular,
we evaluate RAID-5 and six configurations of SSDs against
a RAID-0 SSD configuration.

For these experiments, we use six SSDs for all RAID lev-
els. We note that the number of data disks changes as dic-
tated by each specific RAID configuration.

Table 6 details our results in terms of average band-
width (MB/s) and standard deviation of the observed
throughput. As can be seen in Table 6, RAID-5 has a
lower standard deviation than RAID-0; similarly, RAID-6
has a lower standard deviation than RAID-5. However,

Fig. 3. Throughput variability comparison for SSD RAIDs with increasing number of drives in the array for a workload of 60 percent writes. Y-axis rep-
resents normalized frequency.

TABLE 6
Performance Variability of Various SSD RAID Configuration

in Terms of Average Bandwidth (MB/s) and Standard
Deviation of Observed Bandwidth (in Parentheses)
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standard deviation alone is not a meaningful metric for
assessing performance variability. An appropriate metric
for comparing bandwidth variability should take into
account both mean and standard deviation values. We
calculate the CV values with the values presented in
Table 6 and plot them in Fig. 4.

Fig. 4 illustrates the normalized coefficient of variation in
bandwidth for RAID-0, RAID-5, and RAID-6 configurations.
Results in Fig. 4 are normalized with respect to the coeffi-
cient of variation for RAID-0 results. The terms ‘x’ and ‘y’
(x, y) in the legend represent the number of data drives and
the number of parity drives, respectively. As illustrated in
Fig. 4, RAID-5 and RAID-6 configurations demonstrate
higher performance variability relative to the RAID-0 con-
figuration. The RAID-6 configuration for both cases presents
the highest performance variability in our experiments.

RAID-5 configuration has one parity drive and RAID-6
has two parity drives. The extra parity drives in these RAID
configurations compared to the RAID-0 setup provide extra
reliability with additional associated parity calculation
overheads and additional write operations (to the parity
drives for the parity update blocks). Our conjecture is that
these extra parity calculations and the associated parity
update write operations (one extra write operation for
RAID-5 and two extra write operations for the RAID-6 con-
figurations, respectively) could increase the observed band-
width variability.

As we have seen from benchmark results with real SSD
and RAID components, there are limitations for current SSD
and RAID controller technologies; GC processes per indi-
vidual SSD are local and they are not coordinated. RAID

controllers are not aware of any ongoing GC processes at
SSDs; therefore, there is no coordination at the RAID con-
troller level. This lack of coordination causes individual GC
processes per SSD to execute independently, resulting in
aggregate performance degradation and response time vari-
ability at the RAID level. In the next section, we present our
design for the SSD-based RAID storage system incorporat-
ing the GC coordination mechanism, and our proposed
GGC algorithms. We also discuss our implementation for
GGC algorithms.

4 GC COORDINATION FOR SSD ARRAYS

In a RAID set of SSDs, the aggregate RAID performance is
limited by the slowest component of the array. Our empiri-
cal results show that uncoordinated GC can be the major
culprit behind these temporary slowdowns on individual
SSDs. In this section, we present a solution to this problem
to mitigate the performance degradation of SSD RAID sets.

4.1 Coordinated Garbage Collection

Fig. 5 depicts conceptual timings of GC processes for a
given SSD array, with time on the horizontal dimension.
The time line is divided into windows (A through G) as the
array transitions from peak to degraded performance as a
result of local GC processes. Peak performance at the RAID
level is achieved when there is no active GC process on any
SSD. Degraded performance occurs when an I/O operation
spans even a single device with an active GC process.
Assuming full stripe operations, the RAID in Fig. 5a
achieves its peak performance only in time windows B, D,
and F. The array is limited to degraded performance in win-
dows A and G because of multiple devices performing GC,
and in windows C and E because of a single device with
active GC.

Fig. 5b shows the desired benefits of our proposed mech-
anism to coordinate and synchronize the local GC processes
of each SSD. We call this proposed mechanism Global Gar-
bage Collection (GGC). In this mechanism, GC processes
are shifted in time to allow longer windows of peak perfor-
mance from the RAID. By advancing the GC process in
Fig. 5a window C to occur simultaneously with the other
processes in window A, we can eliminate one source of
degraded performance. Similarly, delaying the GC in win-
dow E to window G allows more opportunity for the RAID
controller to issue operations that do not span devices with
active GC processes.

Fig. 5. Effect of GGC: (a) presents locally coordinated GC processes for an unoptimized RAID array; (b) presents globally coordinated GC processes
for a GGC optimized RAID array.

Fig. 4. Performance variability and RAID levels.
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4.2 Architectural Design

We argue that the aggregate performance degradation
induced by uncoordinated GC processes can be resolved by
providing the following:

1. A RAID controller designed to enable global coordi-
nation of garbage collection when used with SSDs
supporting that capability. This optimized RAID
controller will be referred to as an SSD optimized
RAID controller (O-RAID).

2. An SSD designed for participating in a globally coor-
dinated garbage collection process in a O-RAID. This
new SSD will be referred to as GGC optimized SSD
(O-SSD).

3. A set of algorithms to perform a globally coordi-
nated GC process on a givenSSD array comprising
an O-RAID and multiple O-SSD devices.

4. Extension of storage protocols such as SATA and
SCSI for controlling the additional capabilities of
O-SSD devices.

Furthermore, we observe the following conventions
and constraints in this architecture: the O-RAID operates
at the global level with global knowledge obtained from
all O-SSDs, whereas an O-SSD has only local knowledge
in the form of internal fragmentation level, number of
available free blocks, and other similar information used
to determine when to start its GC process.

While the GGC process can provide maximum effective-
ness only when all SSD devices in a given RAID set support
the GGC capability, reduced benefits may still be obtained
if only a subset of devices offers support.

4.3 Coordinated Garbage Collection Algorithms

Coordination is essential to achieving the performance bene-
fits of GGC. Among multiple ways of GGC implementation,
we discuss two possible GGC algorithms and our imple-
mentations of each algorithm in this section.

4.3.1 Reactive GGC Algorithms

In reactive GGC a specialized O-RAID reacts to notification
by the O-SSD that garbage collection is imminent, attempt-
ing to coordinate other O-SSD’s garbage collection pro-
cesses. Reactive GGC is fairly simple to implement,
requiring minimal information from O-SSDs and simple
decision-making mechanisms based on thresholds. In this
GGC algorithm, an O-SSD notifies the O-RAID when it has
reached an internal threshold indicating that it will soon
need to initiate a GC process. This communication may also
provide additional information to the O-RAID, such as an
estimate of how much data can be written before a hard
threshold is reached and an uncoordinated GC process
must be initiated.

Once the O-RAID has been notified, it will direct each
O-SSD to initiate a GC process. The O-RAID can optionally
delay this initiation in order to allow more O-SSDs to reg-
ister their need of GC, or to potentially find a more optimal
point in the request stream for the GC cycle to begin. If the
O-RAID chooses to delay the GC cycle, it can use the addi-
tional information from the notification to avoid triggering
uncoordinated GC. With this scheme, the O-SSD will delay

its GC cycle until it reaches a hard threshold at which it
must begin a GC cycle. The O-SSD’s communication to the
O-RAID of the need for GC is advisory in nature, and
a lack of response from the O-RAID will not prevent the
O-SSD from locally performing needed GC. The reactive
soft-limit algorithm can be implemented in different ways.
In this paper, we present and evaluate two possible imple-
mentations, which are Reactiveinclusive and Reactiveselective.
Reactiveinclusive. In reactive GGC algorithms, an SSD in

the array that reaches an internal GC threshold issues a
GGC request message to the O-RAID. Upon receipt of this
message, the O-RAID schedules a GGC event by iterating
over all connected devices and issue a FORCE GC event to
each. Upon receipt of the FORCE GC event, a local GC pro-
cess is triggered to clean the stale/invalid elements until the
number of free blocks exceeds an internal threshold. In our
Reactiveinclusive implementation, all SSDs in the array have
to participate in GC coordination irrespective of their inter-
nal status (e.g., the number of free blocks). As every SSD is
agnostic of other SSDs’ internal status this implementation
could aggressively trigger GGCs on SSDS and could shorten
the lifespan of SSDs.
Reactiveselective. In order to improve the lifetime concern

of Reactiveinclusive, we developed Reactiveselective. This
implementation reduces the number of GC operations on
individual SSDs. Unlike Reactiveinclusive, in Reactiveselective,
not all of the SSDs in the array have to participate in GGC
events. Thus, this algorithm improves SSD lifespans com-
pared to Reactiveinclusive. However, Reactiveselective requires
more complicated protocol design and implementation
than Reactiveinclusive.

The implementation of the Reactiveselective is composed
of two phases: 1) a phase for GC registration, in which O-
SSDs are registered to participate in the GC coordination
process, and 2) the second phase for GC coordination by
participating O-SSDs. For implementing the Reactiveselective,
soft (Tsoft) and hard (Thard) thresholds are defined. Thard is
the minimum number of free blocks required to sustain the
system operation. Tsoft (where Tsoft >Thard) is the number of
free blocks that indicates GC is needed shortly but not
urgently. A new event of PARTICIPATE GGC needs to be
defined in addition to the FORCE GC event. PARTICIPATE
GGC is an event by which O-SSDs request their enrollment
for GC coordination to O-RAID. If any O-SSD reaches Tsoft,
it is registered in an O-RAID maintained list by issuing
an event of PARTICIPATE GGC to the O-RAID. The first
O-SSD that reaches Thard becomes a GC coordinator and
notifies O-RAID for GC coordination. Then O-RAID issues
FORCE GC events to all registered O-SSDs.

4.3.2 Proactive GGC Algorithms

In proactive GGC, O-RAID actively monitors O-SSDs and
attempts to optimize scheduling of GC processing to mini-
mize the impact on I/O workloads. In particular, O-SSD’s
internal information and idle times in workloads can be
used to develop proactive GGC. Below, we discuss two pos-
sible ways of realizing a proactive GGC mechanism, which
we call proactive idle and proactive soft-limit.

In the proactive idle scheme, the O-RAID identifies
points in the I/O stream that are expected to have
extended idle periods and initiates a GGC cycle during

894 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 01,2025 at 06:50:22 UTC from IEEE Xplore.  Restrictions apply. 



those lulls in activity. Idle time is defined as the status in
which there is no SSD in the array that is servicing
requests or has pending requests. The challenge of this
approach is to identify idle times in workloads. Much
research has been done to develop techniques to detect the
idle times. In the following section we describe the use of
one of the popular idle time detection heuristics in our idle
time based algorithms.

Another implementable scheme is proactive soft-limit. In
this scheme, the O-RAID periodically collects GC state
information from each O-SSD. This information collection
can be initiated by the O-RAID via a pull mechanism,
or each O-SSD can periodically push the information to the
O-RAID. A combination of both reactive and proactive
GGC may also be used. The O-RAID uses the collected
information to determine when each O-SSD has reached a
state in which a GGC cycle would be beneficial, and
attempts to find an optimal point in the I/O stream to initi-
ate it. State information useful for determining the need
for a GC cycle includes, but is not limited to i) Internal frag-
mentation level (ratio of free to used erase blocks), ii) Num-
ber of free erase blocks available, iii) ECC correctable error
rate on reads, and so on.

In this paper, we have only implemented and evaluated
the idle time based proactive scheme, which we call
Proactiveidle. However, it is important to note that proactive
soft-limit and proactive idle are not mutually exclusive; both
may be used concurrently.
Proactiveidle. I/O workloads are known to exhibit peri-

ods of idleness between bursts of requests [27], providing
opportunities for GC coordination. Much research has gone
into developing techniques to identify and utilize these idle
periods [28], [4], [27]. Specifically, Mi et al. categorized
workloads based on idle periods into tail-based, body-
based, and body-tail-based [27]. We use idle times to trigger
global coordination of GC events.

We extend the dual threshold scheme, Reactiveselective
to trigger GC coordinations during idle times. When idle
time is detected, a FORCE GC event is sent to all the reg-
istered O-SSDs in the array for GC coordination. Receiv-
ing the FORCE GC event, an O-SSD starts generating
free blocks until the number of free blocks reaches the
total reserved free blocks (i.e., maximum number of free
blocks) or until there is an incoming I/O request in the
queue. To implement the idle time detection algorithm,
we use a heuristic on-line algorithm presented in [4]. In
this method the O-RAID checks the status periodically.
If an idle time is detected longer than a pre-defined
threshold, then it starts a coordinated GC event by issu-
ing FORCE GC commands to O-SSDs.

5 PERFORMANCE STUDY OF SSD RAID

5.1 GGC Simulator Design

To explore our proposed GGC design and GGC algorithms,
we extend the SSD simulator developed by Microsoft
Research [1] and evaluate our proposed GGC-optimized
RAID. In GGC algorithms, the initiator SSD in the array is
set as the GC global coordinator. Unless individual SSDs
receive an event of FORCE GC, they operate as normal
(without GGC coordination). Otherwise they are forced to
start the GGC process. Note that in our reactive algorithm,
the first SSD that reaches the hard threshold is set as a GGC
coordinator and a FORCE GC event can be issued from it.
The O-RAID receives a GGC request message from the initi-
ator SSD. Upon receiving this message, O-RAID prepares to
schedule a GGC event. It iterates over all connected devices
and for each device issues a FORCED GC event. Upon
receipt of the FORCED GC event a local GC process will be
triggered to clean the stale/invalid elements until the num-
ber of free blocks exceeds an internal threshold. We imple-
ment both reactive and proactive GGC algorithms (their
implementations are described in Section 4). In this section,
we present the results for Reactiveinclusive and in the follow-
ing Section 6, we present the results of comparing reactive
and proactive GGC schemes.

5.2 Experimental Setup and Workloads

For the baseline RAID environment, we configure an SSD
RAID simulator to analyze a RAID-0 array. The SSD simula-
tor is configured to simulate eight SSDs in RAID-0 using
4 KB stripe. In the baseline configuration, there is no GC
coordination among SSDs in the array. Each SSD in the sim-
ulator is configured as the specifications shown in Table 7.

Simulation “Warm-up”. Prior to collecting performance
data from the simulator, we fill the entire space on each SSD
in the simulator with valid data by marking the flag that
presents the status of the page on every OOB (out-of-band)
in the simulator as 1s. This ensures that GC is required on
the SSD devices as new write requests arrive during the
experimental run.

We use a wide spectrum of workloads from industry and
research sources to evaluate the performance of our GGC
schemes. We use a mixture of HPC-like workloads and real-
istic enterprise-scale workloads. This broad spectrum is
chosen to obtain a more realistic view of the benefits of coor-
dinated garbage collection. As described in Table 8, these
workloads include both read and write-dominated traces.

For HPC-like workloads, we choose read and write and
bursty workloads whose characteristics are described in
Table 8. HPC(W) is a write-dominated (80 percent) workload
that represents I/O patterns in HPC systems as they

TABLE 7
SSD Model Parameters

TABLE 8
Descriptions of HPC-Like and Enterprise Workloads
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periodically write checkpoint states and large result files
during their calculations [7], [30], [37]. HPC(R) is a read-
dominated (80 percent) workload that represents heavy read
patterns of HPC environments [43]. For enterprise-scale real-
istic workloads, five commercial I/O traces are used. We use
write-dominant I/O traces from an online transaction proc-
essing application known as Financial trace [39] and TPC-C
[42] made available by the Storage Performance Council
(running at a financial institution) and from Cello99 [38], a
disk access trace collected from a time-sharing server exhibit-
ing significant writes (running the HP-UX operating system
at Hewlett-Packard Laboratories). We also examine two
read-dominant workloads. TPC-H [44] is a disk I/O trace
collected from an online analytical processing application
examining large volumes of data to execute complex data-
base queries. Also, we consider e-mail server workloads
referred to as Openmail [12]. TPC-C [42] is also used.

Although the device service time captures the overhead
of GC and the device’s internal bus contention, it does not
include queuing delays for requests pending in the I/O
driver queues. Additionally, using an average service time
loses information about the variance of the individual
response times. In this study, we use 1) the response time
measured at the block device queue (I/O service time) and
2) the variance of the measured response times. The I/O ser-
vice time captures the sum of the device service time and
the additional time spent waiting for the device to begin ser-
vicing the request.

5.3 Results

Fig. 6 shows the average response time of the GGC-
enhanced RAID compared with the baseline SSD RAID

without GC coordination for HPC-like workloads. We note
a 60 percent reduction in response time for the HPC(R)
read-dominated load and a 71 percent reduction for the
HPC(W) write-dominated load. Also, we observe that GGC
improves the variance of response times of the storage sys-
tem for both HPC(W) and HPC(R) workloads.

In order to exploit a wide range of workloads, we vary
the request arrival rates of the HPC workloads. Fig. 7a
shows that the baseline configuration has high response
times when the workload is write-intensive (80 percent
writes). In addition, there is a very large gradient in the
response time and variability as the arrive rate increases.
This behavior does not provide a robust system response. In
contrast, our GGC scheme exhibits lower average response
times than the baseline and a more gradual increase in vari-
ability. This confirms that GGC can help deliver robust and
stable system performance. For read-dominated workloads
such as those in Fig. 7b, GGC continues to deliver improved
performance and system robustness.

While experiments presented in previous paragraphs
are performed with eight SSDs in the RAID set, we also
investigate how the number of devices in the array
affects the performance.

Fig. 8 compares the average response time under the
HPC(W) workload as the number of SSDs configured in
the RAID set is varied. As expected, both configurations
improve their performance as the number of SSDs
increases. However, GGC maintains a performance edge
over the baseline throughout the experiment. At two
SSDs, the baseline response time is 2.7 times longer than

Fig. 6. Results with HPC workloads. Average response time (ms) for
baseline¼ f1:57; 0:29g.

Fig. 7. Results with changing write percentage of workloads.

Fig. 8. Results with varying the number of drives in the array.
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GGC, and the margin grows to 3.2 times as we expand
the RAID set to 18 SSDs. Interestingly the baseline
requires eight SSDs to provide a response time equiva-
lent to that delivered by two devices using GGC. Even
with 18 devices, the baseline performs 184 percent worse
than GGC using only four devices.

We further analyze GGC for enterprise-scale workloads.
Fig. Fig. 9 presents the results for enterprise-scale work-
loads. We can observe GGC not only improves average
response times by 10 percent but also enhances the robust-
ness and predictability of the RAID set of SSDs. However
the improvement by GC coordination for the enterprise-
scale workloads is smaller compared with HPC-like

workloads. It is mainly because i) HPC workloads have
much higher I/O demands than Enterprise workloads (refer
to Table 8), and ii) large requests in the HPC workloads are
more frequently conflict with GC invocation of drives,
increasing the I/O response times.

It could be thought that large requests are more evenly
striped over the drives than small requests and every drive
could trigger GC at the same time, however, this is only
true for an ideal situation where all drives start empty and
do writes with full stripes on entire drives in the array over
and over. However, in real production systems, the ideal sit-
uation is not likely to occur because of meta data operations
that are mostly small writes, and I/O operations not being
fully striped across the drives in the RAID set. Our experi-
ments are configured to closely mimic this behavior. Before
running an experiment, SSDs are filled with random small
block size data. This way, every drive has a different inter-
nal status before our benchmark runs. This ensures that we
have a closer representation of a real life scenario and every
flash drive in the RAID set could trigger GC at different
times, even if we perfectly stripe the requests over the
drives in the array.

We conduct a detailed analysis of the impact of GGC on
device response times and GC invocations of individual
SSDs in the RAID set. Fig. 10 illustrates a set of consecutive
requests serviced by two of the eight SSD devices in our
simulated RAID.

Fig. 10. Microscopic analysis of non-GGC versus. GGC. The first two rows show system response times of overall RAID for read and write requests.
Rows 3-5 show device service times for read and write and GC duration for SSD-0. Rows 6-8, similar to rows 3-5, show device service times and GC
duration for SSD-1. We present just the time series analysis plots of two SSDs out of eight SSDs used for RAID-0 in our evaluation.

Fig. 9. Results with various enterprise-scale workloads. Note that
response times and standard deviations are normalized with respect to
a baseline. Average response times (ms) for baseline ¼ f0:16; 0:20; 0:17;
0:27; 0:30g.
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The response time for each request is captured during a
300 ms interval in the HPC(W) workload by both the base-
line and our GGC scheme. As clearly indicated by Fig. 10,
the baseline incurs more frequent overhead from GC, which
results in larger latencies than GGC. The overall RAID
response latency is a function of the convolution of the
response time of each SSD in the array and is determined by
the slowest device. In Fig. 10b, we clearly see fewer spikes
than in the baseline without GGC. The total number of GC
processes invoked is the same between the two approaches,
however, many GC operations are synchronized in GGC
compared with the baseline where GC operations are not
synchronized. Also of note is that each SSD is composed of
multiple packages. When GC is not coordinated inside
SSDs, each package can trigger GC independently. By fur-
ther forcing GC coordination across the packages, we could
achieve significantly less aggregate GC overhead in GGC-
enabled SSD RAID sets.

6 PERFORMANCE STUDY OF VARIOUS GGC
ALGORITHMS AT SSD RAID

In this section, we compare various GGC algorithms
(Reactiveselective, Proactiveidle, and Reactiveinclusive) for their
performance and block erase efficiency against the baseline
with no GC coordination.

Besides the workloads in Tables 8, three more synthetic
workloads are used to cover wider range of workload char-
acteristics. The details are described in Table 9. HPC(W,
Skew) is a workload in which 50 percent of I/O requests go
to a particular SSD and others are evenly requested over the
SSDs in the array. HPC(W, Burst, M) and HPC(W, Burst, H)
are bursty workloads with I/O inter-arrival rates higher
than those of HPC(W) by 10 and 100 times, respectively.

Fig. 11a shows the normalized response time for various
GGC schemes with respect to the baseline. The baseline is a
RAID of SSDs without GC coordination. To find the lower
bound of the response time, we measure the response time
of an ideal configuration in which the overhead of GC is
eliminated (denoted as Ideal in the following plots).

For the real workloads, we see the improvement with the
three methods is very similar except for the financial work-
load; in the financial workload, it can be observed that the
response time is reduced by Reactiveselective compared with
Reactiveinclusive and reduced even more by Proactiveidle,
which implies that the financial workload is both skewed
and bursty. Also we can observe Proactiveidle improves the
lifetime compared with Reactiveinclusive by reducing the
number of erase operations. As a result, Proactiveidle
improves the performance by 9 percent and reduces the
number of erase by 79 percent, respectively for the financial
workload. Overall, Proactiveidle improves the response time
by 5.74 to 14.93 percent (9.59 percent on average) compared

with the baseline. Compared with the ideal, the overhead is
as small as 0.0006 to 0.1566 percent (0.0597 percent on aver-
age). This means that the proposed coordinated GC elimi-
nates most of the GC impact on the response times.

For the workload HPC(W, Skew), we observe that the
number of erase operations of Reactiveinclusive is about three
to four times that of Reactiveselective. That is because in
Reactiveinclusive, whenever the coordinator needs GC, all
SSDs must run their GCs at the same time regardless of their
status. Reactiveinclusive may incur unnecessary GC for other
SSDs. In contrast, in Reactiveselective, only participants that
have met an internal threshold are forced to run GC simul-
taneously. Thus Reactiveselective can reduce the number of
erase operations compared with Reactiveinclusive. However,
again note that their response times are not found to be sig-
nificantly different in Fig. 11a.

In the bursty workloads, we can see an improvement in
response time by exploiting idle times for GGC with
Proactiveidle. The more bursty the workload is, the greater
the improvement. Proactiveidle improves the response time
compared with Reactiveselective by 0.77, 5.83, and 9.47 per-
cent for HPC(W), HPC(W, Bursty, M), and HPC(W, Bursty,
H), respectively. However, the proactive scheme could
incur a few additional erase operations. When the workload
is bursty, there can be more chances to prepare free blocks
in advance during the idle time. Therefore, the number of
erase operations can be increased compared with the others.

Fig. 12 shows the cumulative distribution of response
times for the financial and bursty workloads (HPC(W,
Burst, H)). We see that Proactiveidle is able to reach almost
the upper limit of performance improvement that can be
achieved. We can see that the lines for Proactiveidle and
Ideal are almost overlapped.

Fig. 13 shows the detailed analysis for the HPC(W, Burst,
H) workload. It compares Reactiveselective and Proactiveidle.

Fig. 11. Comparing various GGC algorithms with synthetic and real
workloads. All values are normalized with respect to a baseline (no GC
coordination).

TABLE 9
Exploring a Wider Range of Workload Characteristics
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The first row shows the system response time of the overall
RAID. The second row indicates whether GC is running. In
Reactiveselective, GC can be triggered only by incoming
requests (never triggered in the idle times of workloads).
GC thus affects the foreground operations. The high peak
synchronized with GC reflects this situation. In contrast, GC
is executed during idle time in Proactiveidle. As shown in
Fig.s 11a and 11b, GC running during idle time does not
affect the foreground operations.

Table 10 summarizes our observations from the evalua-
tion of various GGC algorithms. For evenly distributed
workloads, Reactiveinclusive scheme exhibits comparable per-
formance and lifetime to others. Since it is easy to imple-
ment, which means shorter development cycles and costs,
Reactiveinclusive might be the best option for evenly distrib-
uted workloads. However, if the workloads are not likely to
be evenly distributed, then Reactiveselective might be a better
choice since it improves the SSD lifetime. If the system
requires high performance and the lifetime is not of the
utmost importance, Proactiveidle could be selected.

7 CONCLUSIONS

In evaluating the existing NAND Flash memory-based SSD
technology to employ SSDs for our large-scale HPC storage
systems in RAID configurations, we empirically observed

significant performance degradations and variations in
terms of aggregate I/O throughput and I/O response times.
Based on our findings, we believe that when current NAND
Flash memory-based SSDs and RAID controllers are used in
RAID-set configurations, lack of coordination of the local
GC processes amplifies these performance degradations
and variations. Furthermore, our work reveals that these
performance degradations and variations are more pro-
nounced and directly correlated with the number of SSDs
configured in a RAID. We observed that these performance
degradations and variations can be worse in RAID configu-
rations than in individual SSDs, as GCs are scheduled inde-
pendently by each SSD in an array. From our point of view,
although employing SSDs in large-scale HPC storage sys-
tems has potential benefits, performance degradations and
variation as a result of GC negates some of these benefits.

Our paper presents a solution to the performance degra-
dation and variability problem due to GC in NAND Flash
memory-based SSDs configured in a RAID. Our proposed
architecture, called Harmonia, aims to orchestrate a globally
coordinated GC process among SSDs in a RAID for
improved performance characteristics in terms of aggregate
I/O throughput and I/O response times. Our solution
includes designs of SSD-aware RAID controllers and RAID-
aware SSDs. Connected to an SSD-aware RAID controller,
RAID-aware SSDs can participate in the GGC process. We
also propose synchronized GGC algorithms in which the
RAID-aware SSD controllers can communicate with the
SSD-aware RAID controller to coordinate GC tasks. To
implement the GGC mechanism, we designed and imple-
mented reactive and proactive GGC coordination algorithms.
For reactive GGC schemes, we propose Reactiveinclusive and
Reactiveselective mechanisms. Reactiveinclusive forces all SSDs
in the RAID array to participate in the GGC task regardless

Fig. 12. Comparing the response times of various GGC algorithms using
cumulative distribution function for bursty synthetic workload and finan-
cial workload.

Fig. 13. Microscopic analysis of Reactive selective and Proactive idle
GGC algorithms.

TABLE 10
Summary of Comparing GGC Coordination Methods

“Poor” means longer response time or more erase operations. Reactiveincl: and Reactivesel: denote Reactiveinclusive and Reactiveselective, respectively.
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of the internal status of individual SSDs. Reactiveselective pro-
vides a refinement to this approach allowing SSDs in the
array to participate in GC coordination based individual
need. A proactive scheme (Proactiveidle) invokes GC coordi-
nation during idle times, exploiting idle times in common
in many I/O workloads.

Our experiments with realistic workloads reveal that the
reactive GGC algorithm (Reactiveinclusive) can improve over-
all response time by up to 15 percent (for financial work-
load) and significantly reduce the variability of
performance, compared with a non-synchronized GC mech-
anism. Reactiveselective could reduce the number of block
erases compared with the Reactiveinclusive. Response time
and performance variability were improved for all work-
loads in our study. In particular, for bursty workloads dom-
inated by large writes (HPC(W) workload), we observed a
69 percent improvement in response time and a 71 percent
reduction in performance variability compared with unco-
ordinated GC. We also showed that our proactive GGC
algorithm (Proactiveidle) can further improve the I/O per-
formance by up to 9 percent while increasing the lifetimes
of SSDs by reducing the number of block erase counts by up
to 79 percent compared with a reactive algorithm (in partic-
ular for the Financial workload).
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