
Feedback Computing in Leadership Compute Systems

Raghul Gunasekaran

Oak Ridge National Laboratory

gunasekaranr@ornl.gov

Youngjae Kim

Oak Ridge National Laboratory

kimy1@ornl.gov

Abstract

Leadership class systems are heavily shared resource

environments with users contending for shared system

resources. This results in users experiencing huge per-

formance variations, and also affects the overall through-

put of the system. To alleviate the problem, system soft-

ware tools must be built taking into consideration user

requirements and resource availability, a feedback driven

approach. Realizing a feedback-based compute environ-

ment for peta-scale systems have two challenging tasks.

First, collecting discreet, coarse-grained system statis-

tics from multiple systems using minimum system re-

sources and without affecting the user jobs is a hard

problem. Second, with discreet data collected from dis-

parate sources the challenge is in associating the data

for meaningful interpretations to drive feedback-based

decision systems in real-time. In this paper, we elabo-

rate on a feedback-based computing framework with re-

spect to the peta-scale compute and storage system at the

Oak Ridge Leadership Computing Facility. We describe

our feedback-based approach for dynamic resource allo-

cation, context-aware scheduling and application check-

pointing.

1 Introduction

The Oak Ridge Leadership Computing Facility (OLCF)

has been housing some of the world’s fastest supercom-

puters in the past decade. Most recently the Jaguar sys-

tem (2009-2013) [3], with a peak performance of 2.3

petaflops and was the world’s fastest supercomputer in

2009 [6]. Currently, OLCF hosts the Titan [4] system,

the second fastest supercomputer with a peak perfor-

mance of 27 petaflops. The massive compute power

is used to solve problems in multiple science domains

such as climate, chemistry, astrophysics, materials, nu-

clear physics, quantum mechanics, and alternative en-

ergy sources. With over 400 scientific users across sci-

ence domains, OLCF has one of the largest and fastest

parallel file system, Spider [13], operating at a through-

put of 1TB/s and storage capacity of 32 petabytes, sup-

porting the massive compute infrastructure.

OLCF’s infrastructure built for capability computing,

maximum computing power to solve a single large prob-

lem in the shortest time. The workload is also domi-

nated by capacity computing, where a number of users

share the compute infrastructure to solve reasonably

large problems. User’s running concurrently on the com-

pute infrastructure contend for shared resources, which

impacts both individual users job performance and the

overall system throughout. Also, the workflow and re-

source utilization characteristics of individual scientific

applications and users are very different, creating bursts

of active and idle periods of resource usage. Such mixed

workloads pose unique operational challenges for OLCF

and the scientific users to operate at scale. Individual

scientific applications are well studied and documented

during the development phase in a controlled environ-

ment. However, the behavior of the same application on

a shared resource environment running at-scale concur-

rently with other applications is very different and can

be only captured in production runtimes. Observing ap-

plications runtime behavior in conjunction with resource

utilization and availability can provide useful feedback

to provision system resources and better scheduling of

jobs.

Computing facilities have extensively developed effi-

cient tools and techniques to monitor extreme scale sys-

tems, and capturing system logs and metrics with min-

imum overhead. Developers and system administrators

extensively rely on these tools for debugging software,

fixing hardware failures and identifying anomalous user

activities. However, currently most of these tools are be-

ing used only for monitoring the health of the system

or capturing abnormal activities. In the paper, we rec-

ommend on how the data being collected can be used

to design smarter tools. Analyzing and correlating data

from all system components, we recommend a feedback-

based approach to make resource-aware system deci-

sions, specifically for scheduling and storage resource

consumption.

2 OLCF Overview

2.1 Infrastructure

Titan, OLCF’s primary compute platform, has 18,688

compute nodes, each compute node has a 16-core AMD

Opteron processor and a K20X Kepler GPU. The total

system memory is 710TB, with 32GB for each Opteron

and 6GB for the GPU per compute node. Apart from Ti-

tan, OLCF’s hosts other high performance clusters(HPC)

for development, data analytics and visualization pur-

poses. Supporting this massive compute infrastructure,

over 26,000 clients, is the Spider II filesystem. Spider

II is a Lustre [14] based center-wide parallel file sys-

tem, accessed by the compute infrastructure via the In-

finiBand Scalable I/O Network (SION), as shown in Fig-

ure 1. Spider has 20,160 SATA drives managed by 36

DDN SFA10K couplets. Access to the Spider file system

is via the 288 Lustre object storage servers(OSS). The

filesystem is available as two namespaces, atlas1 and at-

las2, for load-balancing and capacity management pur-

poses.

OSS

Titan Cray XK7

!"#$%

&'(%)*+#

,#-#.*/0#)1%

2.341#5

6*4

788%)*+#

25$9%:2;<%

2.341#5

=>$.$?.#%@AB%C#1D*5E%F=@BCG%H%@)I)JK$)+

OSS
OSS

OSS
OSS

OSS

144 OSS servers

Atlas 1

18 DDN
SFA10K

10080
Disks

OSS
OSS

OSS
OSS

OSS
OSS

144 OSS servers

Atlas 2

18 DDN
SFA10K

10080
Disks

The Spider File System

Figure 1: OLCF compute infrastructure.

2.2 Monitoring

The health of the compute platform is monitored via the

RAS (Reliability, Availability and Serviceability) logs.

The RAS logs provide a wealth of information on the

status of the system, but in systems like Titan to manage

the sheer volume of log generated only high level debug

messages are generated. Similarly, the OSS’s provide

Lustre server-side error logs. To monitor the file system

usage, a custom tool [11] developed in house, queries the

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B
an

dw
id

th
 (

M
B

/s
)

Controller no.

2012-01-01-00:51:23

2012-03-10-11:56:49

Figure 2: Snapshot of individual controller’s bandwidth

for two different times [7]. We show the statistics of per-

formance data for each day above with (Min, Max, Avg,

STD, Date). (0.0, 2449.0, 373.2, 724.6, 2012-01-01),

(0.0, 2713.0, 465.5, 822.6, 2012-03-10).

RAID controller for the read/write bandwidth and IOPS

data, along with the request size distribution at frequent

intervals. This data is collected and stored in a Mysql

database for offline analytics.

2.3 Challenges for Shared Resources

OLCF’s compute platforms are shared resources, where

a number of users run their simulations concurrently,

causing a resource contention problem on network and

storage subsystems. Lustre uses a native API called

LNET (Lustre Networking) on top of the Lustre Net-

working Device (LND) layer, which enables routing be-

tween compute nodes and storage servers. A routing

strategy with no link congestion awareness could inject

increased traffic into the InfiniBand network, causing un-

balanced network traffic loads [5]. Also, Lustre uses a

locking mechanism for synchronized accesses to a file

from multiple clients, in which all write operations can

slow down for shared write access [15]. Similarly, stor-

age servers can be overloaded by bursty I/O requests

from multiple clients, causing uneven load distribution

and contention on isolated servers [8]. Figure 2 shows

the I/O loads imbalance observed across controllers over

a period of time. We observe that a few controllers

are overloaded whereas most are not, and they show

very high bandwidth utilizations compared to others with

much lower bandwidth utilization. Aware of the chal-

lenges on the shared compute platform because of re-

source contention, in this paper, we specifically discuss

the opportunities for a feedback-based computing frame-

work and how they can help in the development of inte-

grated software stacks including parallel file system, I/O

middleware, application-level schedulers, and system re-

source provisioning.

3 Feedback computing for HPC

In high-end computing systems, individual application’s

throughput is highly dependent on the resource availabil-

ity. Also, the overall system performance is dependent

2

on the efficient usage of system resources. System soft-

ware tools need to build on feedback-based scheme for

provisioning resources based on availability and applica-

tion requirements. However, the challenge and limitation

towards building a feedback-based compute system for

large-scale systems is in collecting system and log data.

First, exhaustive logging will affect the system perfor-

mance and consume resource, thus limiting the amount

of data we log. Second, with minimum logging it is chal-

lenging to interpret useful information. Third, with over

26,000 active clients, array of switches and router, and

tiers of storage devices we have a deluge of data to be

monitored. Finally, user’s resource utilization changes

over time and it is a continuous learning process towards

understanding user demands.

At OLCF, we have been collecting logs and aggregate

statistics from Titan and Spider; and the data is being

by pushed out by the management node and archived

in a database for analysis purposes only, a permanent

archive is stored elsewhere. Similarly, schedulers log

are also dumped into the database. In Figure 3, we

show a feedback-based compute system. A decision

support system queries the database for relevant data,

and supports both pull and push services feeding infor-

mation back to the users and the scheduler. From the

data collected, we have made useful interpretation, as de-

tailed below, which in turn is driving the development of

feedback-based computing tools, elaborated in the next

section.

User Login
Node

Job
Scheduler

Decision System

Database
I/O stats

System Logs

Scheduler
Logs

Titan

Spider

Feed-back

Figure 3: Feedback computing at OLCF

Characterizing I/O workloads provides useful in-

sight on storage system utilization. An understanding of

the workload helps define best practices for users, iden-

tifying bottlenecks, develop tools that can enable better

utilization of resources, and also help plan for future stor-

age systems. Aggregating the I/O trace data collected

across RAID controllers, we were able to understand

I/O usage patterns and synthesize workloads. A few in-

teresting observations from our study [8]; first, the I/O

workload tends to be write dominant with 60% writes

and 40% reads. Second, a majority of our I/O requests

are small (16KB) or large (multiples of 1MB) requests.

Third, inter-arrival and ideal-time of I/O request follow

a long tailed distribution. Finally, I/O activity tends to

be burst, with period of high and low activity, and not all

controllers operate at their peak at the same time.

I/O Signature Identification (IOSI) [9], captures the

I/O access pattern of users by observing the throughput

stats at RAID controller and correlating them with the

scheduler’s log. Using standard data mining techniques,

IOSI identifies the access pattern common across a user’s

runtime obtained from the schedulers log. The process

unlike client-side tracing tools, has zero-overhead and no

user intervention. IOSI provides an estimate of user’s

I/O, which indeed can help in storage provisioning and

I/O aware scheduling.

Mining RAS logs provides an insight on the current

state of the system and to detect hardware, software and

silent errors. System administrators monitor the logs for

known software and hardware errors using Simple Event

Correlator [12], an event processing tool that observes

the log for predefined events, triggers notification and

also launches external scripts. While silent errors are a

sequence of log events that do not result in a system or

application failure, but causes a significant performance

degradation. Example errors such as network conges-

tion and timeout messages appear periodically but only

impact the system beyond a threshold. In a shared re-

source environment, though only few applications cause

the problem other concurrently running applications are

also impacted. Detecting silent errors is critical to distin-

guish between applications that are the source, and other

applications that are the victim of such errors. Applica-

tions causing such errors are not at fault but are simply

resource intensive, and identifying such applications can

help make smarter systems decisions.

4 Feedback-based HPC paradigms

In this section we describe feedback-based system

paradigms driven by data from monitoring tools, that al-

leviates resource contention and provisions for uniform

resource utilization.

4.1 Dynamic Resource Allocation

4.1.1 Job placement

The choice and availability of compute and I/O resources

play a significant role in system and application perfor-

mance. Titan with over 18,000 nodes, jobs are sched-

uled ensuring that all compute nodes are used, maximiz-

ing the overall system utilization. Also TITAN’s Gemini

3D interconnect network is anisotropic, meaning the x, y

3

and z axis of the torus interconnect have different trans-

fer rates. The performance of applications is very much

dependent on the allocation of compute nodes. Primarily

jobs are assigned nodes by the scheduler based on the job

request FIFO queue, and a more sophisticated approach

has been topology aware job scheduling [2], [1]. While

FIFO queue simply ensures fairness of allocation, topol-

ogy aware scheduling considers the physical infrastruc-

ture in node placement. In [2], topology awareness for

MPI jobs is enforced by assigning node ranks based on

the nodes locations in the 3D torus interconnect, max-

imizing bisection bandwidth and minimizing intra-job

communication.

With topology awareness, schedulers must also con-

sider application requirements in the allocation of nodes.

Applications with heavy inter-process communication

are directly impacted by the choice of nodes. In a 3D

torus setup an ideal node placement would be to select

nodes uniformly across all dimensions. However, such a

placement is practically not feasible for all jobs and not

all applications are sensitive to placement. Further more

challenging with an anisotropic interconnect, where job

placement should factor in the dimensions with transfer

bandwidth. For a feedback-based setup, the objective is

to learn how an application’s performance varies based

on the job placement. We build a feedback-driven sched-

uler by identifying those applications that are sensitive

to node location, feeding this information to the sched-

uler, and developing placement strategies that satisfy ap-

plication requirements and also ensure 100% utilization

of resources.

4.1.2 File system selection

As described earlier, the Spider filesystem is available

as two namespaces, and user and application domains

by default are statically allocated one namespace. The

static assignment is based on known application charac-

teristics, I/O and storage usage. However, users within

a domain can run concurrent jobs causing heavy load

on a particular namespace. Nevertheless, users can re-

quest for allocation on either namespace and can pick

either of the namespace for I/O. Given an option to

choose either namespace; users have no workload infor-

mation to pick the right namespace. Also, the choice

of namespace is a run time decision, at the time the

job is launched. This motivates the need for feedback-

based service, which monitors the filesystem workload

and help the user choose the namespace dynamically at

runtime. The filesystem namespace selection utility is a

service the user can query at runtime, and the utility pro-

vides the user with the lighty loaded namespace. In case

both the namespaces are busy serving I/O requests, the

decision is in identifying the namespace that best suites

the user’s I/O workload. The user’s I/O access pattern

can be mined using IOSI from past runs.

4.2 I/O-aware Scheduling

In general, jobs are scheduled based on their priority, cre-

ate time, node count and other factors that ensure that the

compute platform is fully utilized and the job is queued

only for a reasonable amount of time. Common practice

has been to schedule based on known application behav-

ior and with system administrator intervention schedule

for a dedicated run. However, to incorporate I/O smarts

into the scheduler we have to factor in several factors:

the current filesystem workload, estimated I/O workload

based on jobs currently scheduled and in the case of a

center wide filesystem I/O by external users. An I/O

aware scheduler needs to factor in all these parameters

for scheduling the next job from the queue, and also en-

sure utilization of all the compute resources.

4.3 I/O-Server Selection

Most parallel filesystems such as Lustre, GPFS, and

PVFS balance I/O loads in terms of disk space, and en-

sure disk volumes grow at the same rate. Specifically,

OLCF’s Lustre filesystem, which stripes files into four

units of 1MB on the OSS servers in a round robin fash-

ion. However, I/O utilization varies across the servers

over time, which we have empirically observed that some

of the disk volumes are overloaded by a large number of

read and write requests, referred to as the I/O load im-

balance problem in the PFS [10]. The data usage stats

collected at the controllers will help identify the over-

loaded server in real time, and this data can be relayed

to the file system user by suggesting those servers which

are lightly loaded; avoiding congestion and provisioning

for improved performance.

4.4 Smart Checkpointing

Failures are a more serious concern in exa-scale sys-

tems, as the failure rate increase non-linearly as the sys-

tems scale. Checkpoint/restart is a dominant fault toler-

ant mechanism, and the overhead associated with check-

point is significant. The checkpointed data needs to be

stored in the persistent storage, and they will be read for

restart, resulting in heavy bursts of read and write I/O’s

on the PFS. As described earlier, the shared PFS will

need to be carefully managed for accessing the servers,

otherwise, the expected I/O bandwidth will not be guar-

anteed. Thus, a feed-back mechanism between resource

utilization data and checkpoint decision service, can help

determine when to checkpoint and volume of data to

checkpoint. Such smarts will results in a co-ordinated

4

checkpoint strategy between users, minimizing the per-

formance degradation due to unexpected congested I/O

servers.

5 Concluding Remarks

In this paper, we have discussed on a feedback-based

computing framework that can alleviate system bottle-

necks for better utilization of system resources. Though

a few of the ideas elaborated in this paper have been dis-

cussed in the HPC community, practical realization has

been minimal and challenging. One of the biggest ob-

stacle is in monitoring and collecting the system data

for enabling feedback based computing. We at OLCF

have built custom tools to collect such useful statis-

tics and working towards building such feedback-based

smart tools.

Acknowledgment

This work was supported by the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Labora-

tory, which is managed by UT Battelle, LLC for the U.S.

DOE (under the contract No. DE-AC05-00OR22725).

References

[1] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-aware

task mapping for reducing communication contention on

large parallel machines. In Proceedings of the 20th Inter-

national Conference on Parallel and Distributed Process-

ing, 2006.

[2] C. Albing, N. Troullier, S. Whalen, R. Olson, J. Glenski,

H. Pritchard, and H. Mills. Scalable node allocation for

improved performance in regular and anisotropic 3d torus

supercomputers. In Proceedings of the 18th European

MPI Users’ Group Conference on Recent Advances in the

Message Passing Interface, 2011.

[3] A. Bland, R. Kendall, D. Kothe, J. Rogers, and G. Ship-

man. Jaguar: The worlds most powerful computer. In

Proceedings of the Cray User Group Conference, 2009.

[4] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez,

and J. H. Rogers. Titan: Early experience with the Cray

XK6 at Oak Ridge National Laboratory. In Proceedings

of Cray User Group Conference (CUG 2012), May 2012.

[5] D. A. Dillow, G. M. Shipman, S. Oral, Z. Zhang, and

Y. Kim. Enhancing i/o throughput via efficient routing

and placement for large-scale parallel file systems. In

Proceedings of the 30th IEEE International Performance

Computing and Communications Conference, PCCC ’11,

pages 1–9, Washington, DC, USA, 2011. IEEE Computer

Society.

[6] J. Dongarra, H. Meuer, and E. Strohmaier. Top500 super-

computing sites. http://www.top500.org, 2009.

[7] Y. Kim, S. Atchley, G. Vallée, and G. M. Shipman.

Layout-aware i/o scheduling for terabits data movement.

In BigData Conference, pages 44–51, 2013.

[8] Y. Kim, R. Gunasekaran, G. M. Shipman, D. Dillow,

Z. Zhang, and B. W. Settlemyer. Workload characteri-

zation of a leadership class storage. In Proceedings of the

5th Petascale Data Storage Workshop Supercomputing

’10 (PDSW’10) held in conjunction with SC’10, Novem-

ber 2010.

[9] Y. Liu, R. Gunasekaran, X. Ma, and S. Vazhkudai. Au-

tomatic identification of application i/o signatures from

noisy server-side traces. In Proceedings of the 12th

USENIX conference on File and Storage Technologies

(FAST), 2014.

[10] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,

T. Kordenbrock, K. Schwan, and M. Wolf. Managing

Variability in the IO Performance of Petascale Storage

Systems. In SC, 2010.

[11] R. Miller, J. Hill, D. A. Dillow, R. Gunasekaran, G. M.

Shipman, and D. Maxwell. Monitoring tools for large

scale systems. In Proceedings of Cray User Group Con-

ference (CUG 2010), May 2010.

[12] Risto Vaarandi. A data clustering algorithm for mining

patterns from event logs. In IEEE IPOM03 Proceedings,

2003.

[13] G. M. Shipman, D. A. Dillow, D. Fuller, R. Gunasekaran,

J. Hill, Y. Kim, S. Oral, D. Reitz, J. Simmons, and

F. Wang. A Next-Generation Parallel File System En-

vironment for the OLCF. In Proceedings of Cray User

Group Conference (CUG 2012), May 2012.

[14] Sun Microsystems Inc. Luste Wiki. http://wiki.

lustre.org, 2009.

[15] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral,

and N. Podhorszki. Characterizing output bottlenecks

in a supercomputer. In Proceedings of the Interna-

tional Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’12, pages 8:1–8:11,

Los Alamitos, CA, USA, 2012. IEEE Computer Society

Press.

5

