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Abstract—The Oak Ridge Leadership Computing Facility
(OLCF) has deployed multiple large-scale parallel file systems
(PFS) to support its operations. During this process, OLCF
acquired significant expertise in large-scale storage system design,
file system software development, technology evaluation, bench-
marking, procurement, deployment, and operational practices.
Based on the lessons learned from each new PFS deployment,
OLCF improved its operating procedures, and strategies. This
paper provides an account of our experience and lessons learned
in acquiring, deploying, and operating large-scale parallel file
systems. We believe that these lessons will be useful to the wider
HPC community.

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF) at
the Oak Ridge National Laboratory (ORNL) has a long history
of deploying and operating some of the world’s fastest super-
computers. OLCF is home to the Titan [3] supercomputer that
is currently ranked No. 2 on the Top500 list [7] of supercom-
puters, with a peak performance of 27 Petaflops (PF). Titan is
a Cray XK7, a hybrid architecture with 18,688 compute nodes,
with each node pairing a 16-core AMD Opteron processor with
an NVIDIA GK110 GPU. Titan contains more than 710TB of
aggregate memory (600 TB DDR3-1600 SDRAM and 110 TB
GDDR5 SDRAM).

The compute power and scale of OLCF systems are key
to achieving the U.S. Department of Energy’s (DOE) mission
for faster scientific discoveries and insights via computational
simulations. Researchers from scientific domains including
climate, combustion, fusion, astrophysics, and material science
run massively parallel scientific simulations on Titan. Many
scientific phenomena are better understood when the corre-
sponding scientific simulation is run at a higher resolution
(e.g. in time or space), or with more representative physics, at
a higher computational complexity. Consequently, these simu-
lations frequently run at very large-scales, concurrently using
tens or hundreds of thousands of cores. The scientific workflow
then contains a series of data analysis and visualization jobs,
run on smaller clusters, to glean insights from the vast amounts
of data produced by the simulation [20].

This coupling and the pipelined process of scientific dis-
covery requires data sharing among the compute resources.
To adequately meet the users’ data-sharing requirements, we

must understand the tradeoffs among available parallel file
systems. A commonly used design paradigm is the machine-
exclusive PFS model, where the PFS is tightly-coupled with
a single compute resource. This approach is easier to de-
ploy, but incurs excessive data movement costs to support
the scientific workflow. Alternatively, a data-centric model is
loosely coupled with multiple systems accessing the PFS. This
eliminates the need for excessive data movement and promotes
efficient data sharing. However, a data-centric PFS design and
deployment is more complex, requiring careful consideration
of the competing workloads.

Recognizing the long-term benefits of a data-centric sys-
tem, the OLCF made a strategic decision in 2005 to move
away from the traditional machine-exclusive PFS model to
a center-wide, data-centric model. The challenge is to retain
the flexibility of data sharing that comes with the data-
centric model, while still delivering the desirable performance
characteristics of a dedicated file system. In the data-centric
model, the PFS is shared by all of the compute resources at
the same time, requiring it to meet the data characteristics
of different workloads. The design, procurement, deployment,
testing, performance tuning, and operating of such a system
is significantly more challenging than the machine-exclusive
PFS systems.

In the past decade, the OLCF has engaged in two large-
scale storage system procurements (Spider I [28] and Spider
II [27]), independent of the computing resource acquisitions
for the Jaguar [2] and Titan [3] supercomputers. Spider I and II
are data-centric, center-wide shared parallel file systems. Both
systems were designed to meet the needs of a wide variety
of OLCF user workloads, incorporating supercomputers, data
analysis clusters, and remote data transfer systems. Spider I
provided 240 GB/s peak I/O bandwidth and 10 PB of data
storage; Spider II provides more than 1 TB/s of peak I/O
bandwidth and 32 PB of storage. Both systems were built
around the Lustre parallel file system [34], [30], an open-
source, community supported file system that is in use on more
than 70% of the Top500 systems [7].

The entire process, from design to operations presents
many challenging opportunities to HPC technology integrators
and administrators, who face numerous decisions in the large-
scale acquisition and deployment process. Storage system
performance and capacity estimations must meet the needs of
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future scientific application workloads, which share the PFS.

This paper summarizes our best practices and lessons
learned during designing, procuring, deploying, and operating
large-scale PFS during the last decade at OLCF. We believe
that our experiences can be applied by the HPC community to
design and operate scalable file systems that meet the needs
of their users.

II. DESIGN PRINCIPLES

The traditional model of designing a PFS centers around
a single computational resource, which is tightly coupled with
the scratch PFS and has exclusive access to it. Frequently,
the scratch PFS is procured through the same contract as the
computational resource. In designing such a machine-exclusive
scratch file system, one needs to only consider the current and
anticipated I/O requirements of a single system. Consequently,
the design is straightforward. However, this model does not fit
well with the I/O requirements of a collection of computing
resources that must operate together and share data in a data-
centric environment.

To accomplish data sharing in a tightly-coupled machine-
exclusive design, one must link together the various machine
specific PFS instances via a data movement cluster, which
would orchestrate data migration jobs upon user requests. This
scenario is not transparent to the user. In the absence of a
smart data staging utility, the user is explicitly responsible
for data migration before performing analysis or visualization.
Further, the multiple namespaces can be confusing to the user
and hinder productivity. Additionally, this scenario can be
very costly, as the PFS can easily exceed 10% of the total
acquisition cost. One must also consider the cost of additional
infrastructure and interconnect hardware for transferring the
data.

In the data-centric approach, data comes first. The data-
centric model focuses on sharing data among multiple com-
putational resources by eliminating unnecessary and expensive
data movements. At the same time, it strives to serve diverse
I/O requirements and workloads generated on disparate com-
puting resources.

In very simple terms, HPC centers are service providers,
where multiple specialized computational resources provide
different services. Some of these resources are designed to run
simulations and generate data. Others provide post-processing
or analysis of the generated data, while some are responsible
for visualization of the raw or reduced data. The common
denominator in all of these scenarios is data. Data must be
shared among these systems in an efficient manner. Moreover,
the users should not face unnecessary challenges in accessing
their data from various systems. Motivated by these principles,
in 2005 the OLCF moved to a data-centric PFS model. Key
design principles in this effort include eliminating data islands,
reducing acquisition and deployment costs, and improving data
availability and system reliability.

• Eliminate data islands. Users working on one re-
source, such as a visualization system, should be able
to directly access data generated from a large-scale
simulation on the supercomputer and must not resort
to transferring data. Maintaining the data consistency

and integrity across multiple file systems is a distrac-
tion for the users.

• Reduce cost. In addition to poor usability, machine-
exclusive file systems can easily exceed 10% of the
total acquisition cost.

• Improve data availability and reliability. A sched-
uled or an unscheduled downtime on a supercomputer
can render all data on a localized file system unavail-
able to the users under the machine-exclusive PFS
model.

The data-centric, center-wide file system design provides
seamless access to data from a variety of computational
resources within our center. Users need not concern themselves
with data transfers between distinct file systems within this
environment, rather their data is directly accessible from
globally accessible namespaces. User feedback describes data-
centric capability as critical to their productivity.

However, there are several challenges in designing a data-
centric PFS. Data consumers and producers on multiple com-
pute platforms compete for the same shared resource. Each
compute resource, based on its primary use case, generates
different I/O workloads at different rates. As an example,
large-scale simulations running on Titan often consume a large
percentage of the available I/O bandwidth and/or IOPs during
application checkpoints. These write-heavy checkpoint/restart
workloads can create tens or even hundreds of thousands
of files and generate many terabytes of data in a single
checkpoint. These workloads are bandwidth constrained. In
contrast, the data analytics I/O workloads, such as visualization
and analysis, are latency constrained and read-heavy.

We note that these different I/O patterns, in isolation, are
harmless and can be serviced more easily by a machine-
exclusive scratch file system. However, in a data-centric model,
they pose a problem as a mixed workload, competing for the
same shared resource. A shared scratch file system experiences
these I/O workloads as a mix, not as independent streams.
Our analysis of the I/O workloads on Spider I PFS [14]
demonstrated a mix of 60% write and 40% read I/O requests.
In some cases, competing workloads can significantly impact
application runtime of simulations or the responsiveness of
interactive analysis workloads. Write and read streams from
different computing systems often interfere because of the dif-
ference in data production/consumption rates. The I/O streams
may not be easily synchronized between different computing
systems because the resources are shared among multiple users
and applications. One must pay attention to overall mixed
workload, not to individual machine specific I/O patterns, when
designing a data-centric PFS. Our analysis [14] showed that
a majority of I/O requests are either small (under 16 KB) or
large (multiples of 1 MB), where the inter-arrival time and
idle time distributions both follow a long-tail distribution that
can be modeled as a Pareto distribution. We utilized these
and other metadata specific characteristics to optimize Spider
metadata servers that are exercised more heavily under varying
I/O workload patterns.

Lesson Learned 1: Data-centric center-wide file systems
provide significant benefit to the users in terms of ease of
access to their datasets across multiple platforms, but at the
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cost of increased contention for a single shared resource.
System architects must weigh the tradeoffs between ease of
data access and the ability to isolate compute platforms from
competing I/O workloads. Weighing these tradeoffs effectively
requires a good understanding of the full breadth of applica-
tion workloads (both simulation and data analytics) and user
requirements for data accessibility.

Lesson Learned 2: While designing a data-centric shared
file system, one must account for detailed I/O workload char-
acteristics. Peak read/write performance cannot be used as a
simple proxy for designing a scratch file system, because it may
result in either over-provisioning the resources or suboptimal
performance due to a mix of I/O patterns. Good random
performance translates to better operational conditions across
a wide variety of application workloads.

III. PROCUREMENT

A. RFP Considerations and Development

The acquisition phase is a critical point in any deployment.
Spider II’s Statement of Work (SOW) was assembled with a
few key principles in mind. It was targeted to elicit a diverse
set of proposals that could be evaluated within a budget range.
It requested multiple file system and storage technologies to be
offered in a best value, total cost of ownership environment.

The primary challenge in structuring the request for pro-
posal (RFP) for a parallel file system is how to accurately
define the system characteristics that a successful PFS must
present. What system(s) will be served by the file system?
What system(s) will be used as storage targets for file system
performance? What is the individual machine-specific I/O
workload? What is the mixed workload? These questions will
define the required system architecture and features, including
network technology and topology, and lower and upper sys-
tem performances. Combining this information with capacity
requirements and budget constraints leads to a target system
size and system architecture.

For the Spider II deployment, the main OLCF compute
platform Titan was used as the reference target for file system
performance. Interconnectivity for other compute platforms
was required through Scalable I/O Network (SION) [27], the
existing OLCF InfiniBand storage area network (SAN).

Given the HPC storage market during the Spider II pro-
curement, OLCF considered two RFP response models for
Spider II: the “block storage” model and the “appliance”
model. In the block storage model, OLCF would procure
block storage devices, file system servers (i.e. Lustre), and
networking equipment separately and integrate them internally.
In the appliance model, OLCF would procure an integrated
solution using vendor-supplied storage, server, and networking
equipment, along with the Lustre software and services in a
single package. OLCF invited vendors to supply proposals
implementing one or both models in order to assess cost,
facility and system administrator impact, and risk.

In crafting the technical requirements, several considera-
tions were identified:

• Hardware landscape: During the period between the
Spider I and Spider II deployments, OLCF conducted
significant technology evaluation efforts in partner-
ship with storage vendors. This equipped OLCF with
information concerning performance targets, desired
features, product quality, and vendor roadmaps. This
activity was extremely beneficial to crafting an RFP
that was realistic both technically and financially given
the knowledge of vendor product roadmaps, features,
and limitations.

• Lustre roadmap: OLCF is heavily involved in Lustre
development and used Lustre’s roadmap projections to
determine feature availability in the project timeline.
Requirements surrounding Lustre were incorporated
using this information.

• Business considerations: Total project budget, budget
uncertainty and variability, and market conditions can
impact the procurement schedule and vendor response.
The OLCF designed options in the RFP to increase
budget flexibility. Market conditions can have unin-
tended consequences. For example, OLCF was forced
to delay the release of the Spider II RFP due to
the flooding in Thailand in 2011 that significantly
impacted the disk availability and cost [31]. Given that
over 20,000 disks were required to meet the expected
capacity and performance targets, such factors must
be accounted for.

• Performance: OLCF had specific requirements and
limitations on total system performance based on
its system architecture, network architecture, and
program-specific requirements. Based on these param-
eters, OLCF set specific performance targets in the
RFP. As stated, Titan has 600 TB of main memory.
One key design principle was to checkpoint 75% of Ti-
tan’s memory in 6 minutes. This drove the requirement
for 1 TB/s as the peak sequential I/O bandwidth at the
file system level. Our earlier tests showed that a single
SATA or near line SAS hard disk drive can achieve
20-25% of its peak performance under random I/O
workloads (with 1 MB I/O block sizes). This drove the
requirement for random I/O workloads of 240 GB/s at
the file system level.

• Scale: To accommodate the anticipated budget range,
offered responses must demonstrate scalable units at
specific performance and price points. This structure
provides the flexibility to grow the PFS in the future
as needed.

To accommodate issues of performance and scale, the
procurement focused on the Scalable System Unit (SSU),
a storage building block composed of a vendor-defined set
of storage devices suitable for integration as an independent
storage system. The SOW defined the SSU as the unit of con-
figuration, pricing, benchmarking, and integration. Flexibility
in SSU configuration provided for price and performance to
be specifically tuned for the full solution.

Because the RFP allowed for separate procurement of
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storage hardware, servers, and the networking equipment,
specific performance requirements were engineered to guar-
antee that the installed system could meet overall performance
goals. This was necessary because multiple vendors could be
responsible for overall system performance.

Lesson Learned 3: Actively evaluate emerging file system
and storage technologies. Consider vendor hardware and
software roadmaps. Consider acquisition/budget strategy as
applicable to your organization. Identify technical, financial,
and supply chain risks. Align RFP release with favorable
product development cycles.

B. Benchmark Suite

To define the performance targets in the SOW, OLCF de-
veloped and released a benchmark suite based on its experience
evaluating storage systems and earlier workload characteri-
zation efforts [14]. The benchmark suite tests several key
low-level performance metrics indicative of overall system
performance. The benchmark tool is synthetic, performing a
parameter space exploration over several variables, including
I/O request size, queue depth, read to write ratio, I/O duration,
and I/O mode (i.e. sequential or random). It includes block-
level and file system-level benchmark components. The block-
level performance represents the raw performance of the
storage systems. The file-system performance also accounts for
the software overhead on top of the block level performance.
By comparing these two benchmark results, we can measure
the file system overhead. Specific parameters mimic real I/O
workload patterns.

The block-level benchmark tool, fair-lio [6], was developed
by OLCF and uses the Linux AIO library (libaio). It can
generate multiple in-flight I/O requests on disks at specific
locations, bypassing the file system cache. The file system
benchmark tool is based on obdfilter-survey [25], a widely-
used Lustre benchmark tool, benchmarking the obdfilter layer
in the Lustre I/O stack to measure object read, write, and re-
write performance. Vendors were provided both the bench-
marks and instructions for executing them [23]. Results pro-
vided significant insight into the offered hardware for selection
purposes.

Lesson Learned 4: Identify the I/O workloads expected
for the PFS. Include sequential and random I/O characteriza-
tion that mimics real workload patterns. Use benchmarks that
can comprehensively describe the performance of this mixed
workload.

C. Evaluation

Offerors were encouraged to propose multiple configu-
ration options to maximize flexibility in the design of the
full system. This significantly increased the complexity in
evaluating the responses, but was widely viewed as worth the
additional effort.

The OLCF evaluated proposal responses based on their
technical elements (including performance, capacity, relia-
bility, power, footprint, maintenance, and service), delivery
schedule, past performance, corporate capability, and total

cost of ownership for the lifetime of the offered solution.
During the evaluation process, each option provided by each
vendor was considered. Ultimately, OLCF chose to purchase
a block storage model. This decision resulted in significant
design flexibility and cost savings while delivering a sys-
tem that provided adequate delivered performance for users.
However, this decision placed the integration and file system
performance risk on the OLCF. The OLCF accepted this risk
since the team possesses substantial experience deploying,
managing, operating, and optimizing large scale file systems.
The resulting contract for the Spider II file system included 32
PB capacity and more than 1 TB/s performance in 36 SSUs.

Lesson Learned 5: The evaluation criteria must structure
the evaluation of all SOW requirements in a weighted manner
such that every element of the vendor proposal is correctly con-
sidered in the context of the entire solution. Technical elements,
performance, schedule, and cost each play an integrated role in
choosing the correct solution. The decision to pursue different
technologies must adequately address the inherent risk of each
solution meeting the overall center objectives.

IV. INTEGRATION

A center-wide PFS requires significant integration effort
with sustained reliance on operational infrastructure and ex-
pertise. Figure 1 shows the Spider II architecture and its
integration into the OLCF infrastructure. In this section we
discuss the key lessons learned from our integration efforts.
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Fig. 1. Integration of Spider PFS and OLCF infrastructure.

A. Infrastructure integration

Many HPC centers deploy standard services for managing
infrastructure; sufficient attention must be paid to the integra-
tion of the storage resources into the operational infrastructure.
In the last decade OLCF has worked to deeply integrate their
storage resources into the operational infrastructure of the
center and has worked with the vendor community to push
new features (e.g. parity de-clustering for faster disk rebuilds
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and improved reliability characteristics) into their products that
support these functions.

In 2008, the OLCF initially built out the infrastructure
required for the Spider I file system as a separate instance
to provide greater control and isolation from the rest of
the operational infrastructure. The replication of services and
efforts was resource intensive, managed separately, and failed
to leverage the expertise built within the teams that provided
services for the rest of the OLCF.

Recognizing that the benefits to a separate instance were
outweighed by the additional effort, OLCF revisited its ap-
proach in 2010, and integrated the services that provide
centralized authentication and authorization, log aggregation,
configuration management, and other services for the PFS.
The new structure does not relax any control mechanisms or
security requirements.

This approach has yielded simple, robust infrastructure
and has allowed the automation of some routine tasks that
previously required system administrator attention. Further
automation efforts continue.

Lesson Learned 6: The benefits of a single, integrated
instance for the infrastructure of the center-wide systems
outweigh the tighter control mechanisms offered by a disparate
or separate file system instance. Where practical, centralize
infrastructure services among disparate systems, center-wide,
to defray expenses, harden those services, reduce administra-
tive burden, share best practices, reduce inconsistencies, while
retaining coordinated security and control.

Below is a description of key features that were integral to
the Spider I and Spider II deployments.

Cluster Management and Deployment

The OLCF has deployed cluster resources (both file system
and compute) using the open-source Generic Diskless Installer
(GeDI) [19] since 2007. This mechanism allows the nodes
to boot over the control network, tftp an initial initrd,
and then mount the root file system in a read-only fashion.
Using diskless servers for the Lustre Object Storage Servers
(OSS) and Metadata Servers (MDS) reduces the overall cost of
the storage system because these nodes do not require RAID
controllers, disk backplanes, cabling, disk carriers, or the
physical hard drives. This materially reduces the acquisition
and maintenance costs.

Custom scripts have been developed to create host-specific
configuration files for boot services and the Lustre file system
for the boot process so that the services can be started appropri-
ately by the Linux init process. OLCF added a new feature
to GeDI to support Spider II deployment where configuration
files are built as the node boots, but before the service that
needs the configuration file is started by the OS. This feature
mimics the Linux model of rc.local.d for scripts that
need to be part of the runtime. Scripts in /etc/gedi.d are
run in integer order to build configuration files for network
configuration, the InfiniBand srp daemon configuration, and
the InfiniBand Subnet Manager. These scripts also create RAM
disks for the node-specific files in /etc, /var, and /opt.

This robust and repeatable image build process allows for
rapid changes to both the operating system and the Lustre
software base. The process is integrated with the center’s
change and configuration management system, BCFG2 [22],
so that the effects of specific changes are easily determined.
The change management process is consistent with the site
cyber security policies. OLCF modifications to BCFG2 support
diskless clients allowing for fast convergence to a node’s
configuration. This structure can positively impact mean time
to repair (MTTR).

Lesson Learned 7: Build PFS clusters using diskless
nodes to increase reliability and reduce complexity and cost.
Build repeatable, reliable processes that rely on configuration
and change management.

Monitoring

A center-wide file system resource must be continuously
available to its clients. OLCF has developed mechanisms for
providing better reporting about the health of the file system
[29] through the OLCF’s monitoring framework provided by
Nagios [21]. Vendor tools frequently exhibit limited capabil-
ities, high overheads, and inability to scale. To address these
weaknesses, we developed light-weight bandwidth monitoring
and performance quality assurance tools. Where possible, these
tools are open-sourced to the community to support their
efforts.

During the Spider I operational period, OLCF developed
a utility called Lustre Health Checker that provided visibility
into internal Lustre health events, giving system administrators
a coherent collection of associated errors from a Lustre failure
condition. Additional utilities were extended to coalesce phys-
ical hardware events on the Lustre servers to help identify and
debug failure conditions. These two features allowed system
administrators to discriminate between hardware events and
Lustre software issues [12].

To monitor the InfiniBand adapter and network, custom
checks were written around the standard OFED [32] tools
for HCA errors and network errors. These alerts provide
detection of problems between the server and the InfiniBand
connected storage or problems in the network between the
Lustre server and clients. Single cable failures can cause
performance degradation in accessing the file system. OLCF
has developed procedures for diagnosing a cable in-place and
provided these procedures to the manufacturer.

DDN Tool [18] was developed to monitor the DDN S2A
and SFA storage system RAID controllers. This tool polls each
controller for various pieces of information (e.g. I/O request
sizes, write and read bandwidths) at regular rates and stores
this information in a MySQL database. Standardized queries
and reports support the efforts of the system administrators.

Lesson Learned 8: A robust monitoring/alerting platform
coupled with analysis tools reduces cluster and file system
administration complexity for large parallel file systems. Lever-
age open-source and vendor supported tools and utilities to
overcome inherent weaknesses of basic tools.

221



B. Compute-side integration

The Lustre client and server software stacks must remain
compatible with each other over the life of the file and storage
system. Titan is a unique resource that supports testing at
extreme scale. To benefit the OLCF and the community at
large, the OLCF allocates the Titan and the Spider PFS for
full scale tests of candidate Lustre releases. These tests identify
edge cases and problems that would not manifest themselves
otherwise.

Lesson Learned 9: Develop a center roadmap for fea-
tures that are important; align it with vendor and developer
roadmaps and rigorously test against production workloads.
Leverage the benefit of external test resources that can reveal
problems at scale.

C. Capacity Planning, Provisioning, and Management

The OLCF examined two strategies for deploying a parallel
file system: a single large capacity namespace and multiple
smaller namespaces.

A single namespace has several benefits. It is easier for
users, provides the most bandwidth to applications, and pro-
vides the most flexibility in managing the capacity allotted
to each project. While providing a single namespace to users
is a straightforward way to deploy a data-centric resource,
it introduces key disadvantages that can make it impractical
to large-scale centers, such as the OLCF. Lustre supports a
single metadata server per namespace. This limitation cannot
sustain the necessary rate of concurrent file system metadata
operations for the OLCF user workloads. With a single names-
pace, any problem has the potential to propagate to all other
OLCF resources. These technical challenges are significant
enough to divide the capacity space into smaller file system
namespaces. The authors acknowledge that the Lustre 2.4
version introduced the Distributed Namespace (DNE) feature.
Currently, some legacy Lustre clients block implementation of
this feature at OLCF. We recommend using both DNE and
multiple namespaces, concurrently.

Splitting the namespace across the storage hardware will
reduce the delivered bandwidth to any one specific application.
However, our experience has shown that other factors will
limit the users’ observed performance before the reduction in
hardware will. Users are not confined to a single namespace
at the OLCF. They may request access to all namespaces and
use them as they see fit. This strategy can provide improved
performance for their application workloads.

Next, OLCF developed a model that classifies projects
based on their capacity and bandwidth requirements. The
projects were then distributed among the namespaces. This
model allowed the OLCF to manage the capacity and band-
width more evenly across the namespaces for Spider I (four
namespaces) and Spider II (two namespaces) file systems.

The Spider file systems are scratch. To maintain these
volumes, the OLCF employs an automatic purging mechanism.
Files that are not created, modified, or accessed within a
contiguous 14 day range are deleted by an automated process.

This mechanism allows for automatic capacity trimming. The
OLCF as well as many other HPC centers that use Lustre note
a severe performance degradation after the resource is 70% or
more full.

Lesson Learned 10: Create multiple namespaces and use
the operational expertise to segregate intense workloads and
manage overall capacity; use an automatic purging mecha-
nism to control capacity. Ensure that the acquisition strategy
provides sufficient total storage such that performance is
maintained up to typical performance degradation points. This
may require capacity targets 30% or more above aggregate
user workload estimates.

D. Product Extensions to Satisfy Operational Needs

Commercial product offerings may not fully meet the re-
quirements of the HPC centers. OLCF identified functionality,
reliability, and performance gaps in Lustre. To close these gaps,
OLCF direct-funded developments efforts through multiple
providers to produce features including asymmetric router no-
tification, high-performance Lustre journaling, and imperative
recovery, all benefiting the Lustre community at large. OLCF
continues to contribute to Lustre development efforts through
direct funding and community consortium participation (i.e.,
OpenSFS).

E. Human Errors

Despite precautions and prescriptive policy, human error
may affect the operation of HPC centers in a significant and
undesirable manner. An incident in 2010 demonstrates the
need to anticipate mistakes, planning for their occurrence, but
limiting their effect through careful design, effective policy.

A disk was replaced in a storage enclosure. In the Spider
I file system design, 10 disks in a RAID 6 set were evenly
distributed across five disk enclosures. During the disk rebuild,
the connection between the storage controller to the disk
enclosure was interrupted due to a hardware failure and failed
over to the other storage controller as designed. This unit was
returned to production while still in a rebuild state, which
meets the design specification. However, eighteen hours later,
the affected storage array was taken offline, while still in the
rebuild mode, losing journal data for more than a million files
managed by that controller pair. Recovery of the lost files took
more than two weeks, with 95% successful recovery rate. This
was a drawback in the design of Spider I; architected design
used 5 disk enclosures per storage controller pair instead of
10. A design using 10 enclosures per storage controller pair
would have tolerated this failure scenario.

Lesson Learned 11: Failures due to human error will
occur. To the greatest extent possible, the design, process,
procedures, and policy should be structured to minimize the
impact of these errors. Recognize that individual failures of
hardware or software can be compounded by human error to
produce unanticipated error conditions with significant impact.
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V. END-TO-END PERFORMANCE TUNING

Large-scale supercomputing storage infrastructure is a
complex distributed system that needs to be tuned at several
levels to achieve good end-to-end I/O performance. Several
factors should be considered while tuning the performance
including the storage hardware subsystem, the file system,
user workloads, the clients, and the routing infrastructure.
Vendor advertised peak sequential I/O performance numbers
will realistically not be achievable on systems under real-life
workloads.

While there will be some differences between different
deployments, the multiple layers of any large-scale storage
system will generally comprise block devices, the interconnect
between the block devices and the file system servers, file
system servers and the file system itself, and the interconnect
between the file system servers and file system clients. Some
configurations will include I/O routers between the file system
servers and the clients (Figure 1). Each layer must be sep-
arately benchmarked to ensure proper operation and optimal
performance. Our testing methodology is bottom up. We start
our evaluation from the block-level to establish a baseline
performance and work our way up the stack. We establish
an expected theoretical performance of a given layer and
then compare that with the observed results. Each additional
layer introduces new bottlenecks and re-defines the expected
performance.

Our deployment-specific subsystems include the 36 block
storage system units (SSUs), the Lustre file system, the
scalable I/O network (SION), the Lustre router nodes, and
the Lustre clients on the Titan compute nodes themselves.
Other OLCF resources are connected to Spider over the same
SION and each resource has its own set of Lustre routers.
Each one of these layers is a large system with its own
idiosyncrasies. For example, Spider’s block storage subsystem
comprises 20,160 2 TB near-line SAS disks that are organized
into 2,016 object storage targets (OSTs). 288 storage nodes are
configured as Lustre object storage servers (OSS). 440 Lustre
I/O router nodes are integrated into the Titan interconnect
fabric. Titan provides 18,688 clients, all performing I/O. Each
of these layers must be tuned and optimized to derive optimal
performance from the end-to-end I/O stack. The Spider storage
system delivers a peak throughput of 1 TB/s by optimizing
each of these subsystems and how they interact with each other.

Lesson Learned 12: Build the performance profile for
each layer in the PFS, from the bottom up. Quantify and
minimize the lost performance in traversing from one layer
to the next along the I/O path. Systematically calibrate the
performance baselines for each layer correctly and fix the
bottlenecks at each point.

A. Tuning the Block Storage Layer

The underlying block storage layer must be well-tuned and
working as expected within a tight performance envelope to
obtain consistent parallel I/O performance. Spider II disks are
organized as RAID level 6 arrays (8 data and 2 parity disks).
Each RAID group is then used as a Lustre Object Storage

Target (OST). When a file is stripped over multiple OSTs
to achieve higher performance, all underlying OSTs must
perform as expected. During deployment, it was discovered
that identifying and eliminating slow disks, even if they were
functional with no errors, helps to significantly reduce the
variance and tighten the performance envelope across the
RAID groups. Block-level benchmarks were run to ensure that
the slowest RAID group performance over a single SSU was
within the 5% of the fastest and across the 2,016 RAID groups
the performance varied no more than the 5% of the average.
We conducted multiple rounds of these tests, eliminating the
slowest performing disks at each round. We derived the 5%
threshold empirically based on our experience with the Spider
I deployment and operations. For all tests, the RAID groups
were organized into performance bins and disk level statistics
were gathered from the lowest performing set of groups.
Disks accumulating higher I/O request service latencies were
identified and replaced. Overall, during the deployment process
we replaced around 1,500 of 20,160 fully functioning, but
slower, disks. After deployment, the same process was repeated
at the file system level and we eliminated approximately
another 500 disks. This is a continuous effort for the lifetime of
the PFS, but the initial effort helped in improving the per OST
and aggregate I/O performance immensely. In production, the
initial requirement for 5% variability among RAID groups was
determined to be prohibitive and was contractually adjusted to
7.5%.

Lesson Learned 13: Variance caused by slow disks in a
data-centric PFS will negatively impact overall performance. It
is critical to identify and replace them. It is essential to repeat
this process periodically for the lifetime of the PFS to ensure
consistent sustainable performance. Seek disk performance
gains through manufacturer software and firmware updates.

B. Tuning the I/O Routing Layer

Large-scale distributed systems must take advantage of
data locality to avoid the performance penalty of excessive
data movement. Titan’s network is based on the Cray Gemini
interconnect that is configured as a 3D torus. I/O routers must
be used to bridge Titan’s Gemini interconnect to Spider’s
InfiniBand fabric. Spider II was designed with a decentralized
InfiniBand fabric that consists of 36 leaf switches and multiple
core switches. The I/O from Titan’s compute clients are
funneled through the I/O routers to the Spider storage system.

Considerable effort was directed towards calculating the
router placement on Titan’s 3D torus. This required significant
understanding of the network topology. Several factors were
taken into consideration such as network congestion (both on
the Gemini and I/O InfiniBand networks), physical and logical
dimensions of the Titan layout, number of clients and routers,
and Gemini interconnect injection rates and link speeds [9].
Additional information about Gemini’s performance character-
istics and routing algorithm relevant to the placement decisions
are available elsewhere [8]. The final I/O router placement in
Titan’s 3D torus network topology is shown in Figure 2. Each
box in the figure represents a cabinet, where X and Y denotes
the dimensions in Titan’s 3D torus topology. Colored boxes
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represent cabinets containing at least one I/O module. Similar
colors correspond to identical “router groups.” Router groups
roughly correspond to SSU indices, with each group being
assigned to four InfiniBand switches that provide connectivity
between routers and the Lustre file servers. Each I/O module
contains 4 I/O routers, with each router on the module con-
necting to a different InfiniBand switch.
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Fig. 2. Topological XY representation of Titan’s Lustre
routers.

For our mixed workloads, it was vital to physically dis-
tribute the routers in a way that ensures fair sharing for all of
the compute clients. The average distance between any client
and its closest I/O router should be optimized. OLCF devised a
fine-grained routing (FGR) technique [5] to optimize the path
that I/O must traverse to minimize congestion and latency. At
the most basic level, FGR uses multiple Lustre LNET Network
Interfaces (NIs) to expose physical or topological locality. Each
router has an InfiniBand-side NI that corresponds to the leaf
switch it is plugged into. Clients choose to use a topologically
close router that uses the NI of the desired destination. Clients
have a Gemini-side NI that corresponds to a topological “zone”
in the torus. The Lustre servers will choose a router connected
to the same InfiniBand leaf switch that is in the destination
topological zone.

Lesson Learned 14: Network congestion will lead to sub-
optimal I/O performance. Identifying hot spots and eliminating
them is key to realizing better performance. Careful placements
of I/O processes and routers and better routing algorithms,
such as FGR, are necessary for mitigating congestion.

C. Scaling Tests

Part of end-to-end performance tuning is scaling studies.
While hero runs provide a good indicator of the peak through-
put, scaling tests provide a more realistic picture of the I/O
performance.

We used IOR, a common synthetic I/O benchmark
tool [26]. Our custom benchmark suite discussed in Sec-
tion III-B was primarily designed for small-scale block-level

performance testing of a storage system, suitable for vendor
responses to an acquisition activity. IOR, on the other hand,
provides a readily available mechanism for testing the file
system-level performance at-scale.

The parameter space for the scaling tests for a file system-
level performance study is huge. Tests require a systematic ap-
proach of conducting controlled experiments. As an example,
Figures 3 and 4 show a sample scaling study conducted on
a single Spider II file system namespace. Since each Spider
II namespace spans half of the available storage hardware
resources, the expected the top-level performance is also
halved.

As an experiment, we first sought the optimal transfer size
per I/O process. To do this, we fixed the client size, the total
amount of data per I/O process and the test duration and varied
the I/O transfer size per I/O process. We used IOR in the file-
per-process mode. Figure 3 shows the results. We identified
that the best performance for writes can be obtained by using a
1 MB transfer size. We then fixed the transfer size to 1 MB and
scaled the number of clients (I/O writer processes). Figure 4
presents the results. While these two tests are not indicative of
the best possible performance that a single Spider II namespace
can provide (as further optimizations are underway), they
showcase how large-scale file systems can be systematically
probed for performance. As can be seen from Figure 4, given
its current configuration, a single namespace can scale almost
linearly up to 6,000 clients and then provide relatively steady
performance with respect to increasing number of clients. For
both tests, we used a quiet system (Titan and Spider II were
idle) and we let the scheduler place test clients on Titan
compute nodes (i.e. random placement). This placement is
optimized for nearest-neighbor communication, not for I/O.
Each test ran for multiple iterations and each iteration ran for
30 seconds (stone wall option) to eliminate stragglers.

It is also worth mentioning that, as of this writing, the
Spider II storage controllers were recently upgraded with
faster CPU and memory. This upgrade improved the overall
performance characteristics of the Spider II system. As a
result of this upgrade, we observed 510 GB/s of aggregate
sequential write performance out of a single Spider II file
system namespace, versus 320 GB/s before the upgrade. IOR
was used for this test in the file-per-process mode with 1
MB I/O transfer sizes. The peak performance was obtained
using only 1,008 clients against 1,008 OSTs. The clients were
optimally placed on Titan’s 3D torus such that it minimized
network contention for I/O. Further testing is scheduled to
obtain scaling performance numbers from each namespace.

Lesson Learned 15: Running scaling I/O performance
tests for large number of variables at extreme-levels can
consume significant operational time, but yields very important
scaling data. It is critical to carefully reduce the parameter
space to shorten the test window and minimize the cost and
program impact. In the end, the data obtained should be used
to further configure and optimize the end-to-end I/O stack.
Same scaling data should be used to guide the expectations
for operational performance.
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Fig. 3. Performance analysis as a function of I/O transfer
size on a single Spider II namespace.
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Fig. 4. Performance analysis as a function of number of
clients on a single Spider II namespace.

D. Sustainable Lifetime Performance

Sustaining storage system performance through the lifetime
of the system requires a performance quality assurance (QA)
approach. Just as one would perform periodic QA of a data
repository to ensure that the contents are valid, one needs to
conduct performance QA to ensure that the storage system can
continually deliver the desired performance metrics. During
the initial deployment, the storage system is fresh, without
any user data. This allows destructive tests that build and tear
down file systems, while tuning and measuring performance.
Performance testing will require writing and reading large
volumes of data, which is not feasible on a live storage system.
To this end, the Spider file systems were provisioned with
a small part of each RAID volume reserved for long-term
testing. While it only represents a small percentage of the
total hardware capacity, it can be used to stress the entire
system. This “thin” file system, which contains no user data,
can be used to run destructive benchmarks even after Spider
has been put into production. It also allows for performance
comparisons between full file systems and those that are
freshly formatted.

Lesson Learned 16: Plan and design for test resources for
the lifetime of the PFS. Mechanisms such as a thin file system
can accommodate the destructive nature of some of these
tests. The capacity for these thin file systems are minimal, but

should be accounted for in the acquisition process. Additional
resources for testing and validating hardware and software
upgrades before being deployed on production systems, is
extremely beneficial over the life time of the PFS. A small-
scale replica of the PFS building blocks can suffice for this
testing and validation purposes.

VI. HIGHER-LEVEL SERVICES

As part of the ongoing operation and maintenance of the
center-wide file systems at OLCF, a number of custom tools
and utilities were written to assist both the users and the system
administrators. These tools provide a mechanism for exposing
the underlying capabilities and performance of the PFS to
users. They also address scalability shortcomings of standard
Linux file system utilities.

A. Balanced Data Placement

We have outlined the reasons for designing and operating
a data-centric center-wide file system. While a data-centric
file system has its merits, it has its own challenges. Due to
the shared nature of file system, the underlying system is
continuously under contention. Consequently, it becomes more
difficult to expose the underlying raw capability directly to
the scientific applications. Complex system architecture of the
storage system and non-deterministic end-to-end I/O routing
paths exacerbate this problem further, making it harder to
deliver high performance at the client-side.

Therefore, to bridge the gap between the low-level file sys-
tem capabilities and applications, we have designed an easy-
to-use, portable runtime library [33]. Our placement library
(libPIO) distributes the load on different storage components
based on their utilization and reduces the load imbalance.
In particular, it takes into account the load on clients, I/O
routers, OSSes, and OSTs and encapsulates these low-level
infrastructure details to provide I/O placement suggestions for
user applications via a simple interface. Experimental results
at-scale on Titan demonstrate that the I/O performance can be
improved by more than 70% on a per-job basis using synthetic
benchmarks.

We have integrated libPIO with a large-scale scientific
application, S3D, which is widely run on OLCF resources.
S3D is a large-scale parallel direct numerical solver (DNS)
that performs the direct numerical simulation of turbulent
combustion [11]. S3D is I/O intensive and periodically outputs
the state of the simulation to the scratch file system. This
output is later used for both checkpoint and analysis purposes.
The S3D I/O pattern and performance have been analyzed
in [35]. We note that only 30 lines of code were needed
to be added/modified in the application for integration with
our placement library. To evaluate the effectiveness of our
approach, we conducted tests in a production (noisy) environ-
ment. We observed substantial gains in S3D I/O performance,
up to 24% improvement in POSIX file I/O bandwidth. Also,
the ease of implementation with minimal code changes en-
courages us to believe that libPIO can be widely adopted by
scientific users.
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Lesson Learned 17: The real performance of a data-
centric PFS is what users observe. A file system with a high
theoretical peak bandwidth may not deliver that performance
to users under contention. It is a good practice to expose
low-level infrastructure details to users in an easy-to-use
programmable fashion to achieve higher performance for
advanced users.

B. Dynamic Resource Allocator

As stated in Section IV, scientific applications are statically
distributed over two Spider II namespaces for load balancing
and capacity planning. However, our static distribution does
not fully take into consideration the dynamic nature of I/O
workloads. To address this issue, we developed a tool called
I/O Signature Identifier (IOSI) [16]. IOSI characterizes per-
application I/O behavior from the server-side I/O throughput
logs. We determined application I/O signatures by observing
multiple runs and identifying the common I/O pattern across
those runs. Note that most scientific applications have a bursty
and periodic I/O pattern with a repetitive behavior across runs.
Unlike client side tracing which provides detailed I/O trace
data, our approach provides an estimate of observed I/O access
patterns at no cost to the user and without taxing the storage
subsystem. IOSI can be used to dynamically detect I/O patterns
and aid users and administrators to allocate resources in an
efficient manner.

Lesson Learned 18: Smart I/O-aware tools can be built
for load balancing, resource allocation, and scheduling.

C. Scalable Linux Tools

Standard Linux tools do not work well at scale [17]. A
good example is the standard Unix du command. du imposes
a heavy load on the Lustre MDS when run at this scale.
Therefore we developed the LustreDU tool, which gathers disk
usage metadata from the Lustre servers once per day. This tool
is one of the keys to maintaining our policies for file system
usage. We have seen direct performance degradation when the
utilization of the filesystem is greater than 50%.

There are other Linux tools inefficient at scale, such as
copy (cp), archive (tar), and query (find). These are single
threaded commands, designed to run on a single file system
client. Despite several efforts made to address this issue in
an effective way [13], [1], [17], [15], there is not a complete
solution yet, accepted and adopted by the HPC community.
A collaborative effort between OLCF, Lawrence Livermore
National Laboratory (LLNL), Los Alamos National Laboratory
(LANL), and DataDirect Networks (DDN) has been estab-
lished to research and develop efficient, scalable common
tools [10]. As a product of this collaboration several tools have
already been developed, such as parallel copy (dcp), parallel
tar (dtar), and parallel find (dfind). These tools and future
developments are expected to merge upstream to benefit both
our users and the community at large.

Lesson Learned 19: Standard Linux tools do not work
efficiently on large-scale systems. Develop or tune some of
the basic Linux utilities, such that they can perform well at
scale.

VII. DISCUSSION

Our intent in writing this paper is to share a compilation
of comprehensive lessons learned from deploying file systems
at the largest scale. The community of practitioners that are
stressing the technical boundaries of performance and capacity
remains small. To our knowledge, no other paper attempts to
share this information in a comprehensive manner.

Many of our lessons are outcomes of deploying new solu-
tions to unique technical challenges at scale. These challenges
include designing cost effective, complex large-scale systems,
methods for careful placement of I/O routers, developing new
techniques for load balancing among storage sub-components,
and developing a benchmark suite that supports the acquisition
process. In many cases, these lessons were learned the hard
way, at the expense of longer integration periods, greater
engineering effort, and delayed deployment.

Revisiting Tradeoffs Between Traditional and Data-Centric
PFS: Understanding the tradeoffs in designing, deploying,
and operating data-centric center-wide parallel file systems
is important. These file systems must balance competing I/O
workloads from multiple computer systems. While resource-
exclusive file systems can be more easily optimized for specific
workloads, it is at the expense of more complicated data
movement.

Another tradeoff metric for the PFS models is the cost
of adding an additional compute resource (e.g., another data
analysis cluster) to an HPC center. We typically express a
capacity target for a parallel file system of no less than 30x
the aggregate system memory of all connected systems. This
capacity target was recently used in the DOE/NNSA CORAL
acquisition [4]. For the current OLCF systems, total memory
of all connected systems—Titan plus other data analysis and
visualization clusters—is approximately 770 TB. With more
than 30 PB (formatted), the Spider II capacity not only exceeds
this target, but provides some margin for accommodating
new systems with minimal cost. Conversely, resource-specific
dedicated file systems will require us to incur not only the
acquisition cost, but the integration and deployment effort as
well. The original Spider I filesystem met a similar capacity
target and supported all compute systems in the facility without
the need for an upgrade.

Lustre Best Practices: In order to maximize the scalability,
efficiency, and performance of user codes running on OLCF
systems, we provide guidelines and best practices to our
users [24]. These best practices are not exhaustive but they
cover many common I/O patterns and use cases. They are
generically applicable to any large-scale Lustre file system.
Some of these focus on user behavior. Examples include
warning the users not to edit or build user codes on the
Lustre scratch file systems and point them to the NFS mounted
home file area whenever possible and to use ls -l only
where absolutely necessary on the Lustre scratch file system,
since both use cases could impose a heavy load on the
Lustre metadata server, hurting the whole user population.
These kinds of problems can be avoided easily by changing
the user behavior. Other best practices focus on application
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I/O patterns. Examples include reading small, shared files
from a single process, and placing small files or directories
containing many small files on a single OST by setting the
striping count to 1. In both cases, localization on a single OST
improves the stat performance since every stat operation
must communicate with every OST which contains file or
directory data. Other examples include employing large and
stripe-aligned I/O requests whenever possible to improve the
I/O performance and scalability.

VIII. CONCLUSIONS

The OLCF began reevaluating its parallel file system (PFS)
architectures in 2005 to remove data islands, promote data
sharing, limit file system deployment costs, and improve the
user experience. A data-centric, center-wide PFS design was
found to best satisfy these criteria. While it was viewed as
risky back then, through two large-scale deployments, the data-
centric PFS model is the current preferred architecture for
the OLCF. OLCF has gained extensive expertise in designing,
acquiring, deploying, performance tuning, and operating these
large-scale and complex PFS resources. This paper is an
attempt to organize and elucidate the valuable lessons learned
during this process, so that it can benefit the HPC community.

We started out with the motivating factors that drove us
to design a center-wide, data-centric PFS. The ease of data
sharing was well-received by our user community. Yet the
benefits are not without cost: the sharing nature puts more
demands on file and storage system availability, stability,
and performance under mixed workloads. Peak sequential I/O
bandwidth advertised by vendors are often unattainable under
mixed workloads and a data-centric file system should be
designed around the peak random I/O performance.

Our acquisition process balances the desirable features
and user needs, pushing the technology limits within reason
and budget. A comprehensive benchmark suite was developed
to provide for both conforming references and consistency,
employed by both bidding vendors and our technology evalu-
ation team. Special attention has been paid to integrating such
a complex array of storage hardware and software into the
compute infrastructure seamlessly, with a robust operational
monitoring infrastructure.

The real performance of a PFS is what users observe. End-
to-end performance tuning is a critical issue. Performance of
every layer in the I/O path should be carefully profiled, from
bottom to top. It is advisable to systematically establish an
expected performance characteristic of a given layer and then
compare that with the observed experimental data. Every added
layer introduces new bottlenecks and redefines the overall
system performance.

Another key point is reducing the performance variance
across similar components of a subsystem, such as disks. When
exercised in parallel, variance caused by slower components
hurts the overall performance. Identifying and replacing slower
components is key to improving the aggregate performance.
This is an ongoing process and should be repeated periodically
for the lifetime of the PFS, to ensure a sustainable perfor-
mance.

In summary, the lessons learned through nearly a decade
of production at a leading HPC center are important for the
community. Platform specific data resources may no longer
remain the norm in HPC centers and our experiences can help
the community design better PFS.
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