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Abstract—Unlike hard disks, flash devices use out-of-place
updates operations and require a garbage collection (GC) process
to reclaim invalid pages to create free blocks. This GC process
is a major cause of performance degradation when running
concurrently with other I/O operations as internal bandwidth
is consumed to reclaim these invalid pages. The invocation of
the GC process is generally governed by a low watermark
on free blocks and other internal device metrics that different
workloads meet at different intervals. This results in an I/O
performance that is highly dependent on workload character-
istics. In this paper, we examine the GC process and propose a
semipreemptible GC (PGC) scheme that allows GC processing
to be preempted while pending I/O requests in the queue are
serviced. Moreover, we further enhance flash performance by
pipelining internal GC operations and merge them with pending
I/O requests whenever possible. Our experimental evaluation
of this semi-PGC scheme with realistic workloads demonstrates
both improved performance and reduced performance variability.
Write-dominant workloads show up to a 66.56% improvement
in average response time with a 83.30% reduced variance in
response time compared to the non-PGC scheme. In addition, we
explore opportunities of a new NAND flash device that supports
suspend/resume commands for read, write, and erase operations
for fully PGC (F-PGC). Our experiments with an F-PGC enabled
flash device show that request response time can be improved by
up to 14.57% compared to semi-PGC.

Index Terms—Flash memory, garbage collection (GC), I/O
scheduling, preemptive I/O, solid-state drives (SSDs), storage
systems.

I. Introduction

HARD disk drives (HDD) are the primary storage
media for large-scale storage systems and have been

for a few decades. Recently, NAND flash memory-based
solid-state drives (SSD) have become more prevalent in the
storage marketplace, due to advancements in semiconductor
technology. Unlike HDDs, SSDs do not have mechanically
moving parts. SSDs offer several advantages over HDDs, such
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as lower access latency, higher resilience to external shock
and vibration, and lower power consumption which results in
lower operating temperatures. Other benefits include lighter
weight and flexible designs in terms of device packaging.
Moreover, recent reductions in cost (in terms of dollar per
GB) have accelerated the adoption of SSDs in a wide range
of application areas from consumer electronic devices to
enterprise-scale storage systems.

One interesting feature of flash technology is the restriction
of write locations. The target address for a write operation
should be empty [1], [15]. When the target address is not
empty, the invalid contents must be erased for the write
operation to succeed. Erase operations in NAND flash are nearly
an order of magnitude slower than write operations. Therefore,
flash-based SSDs use out-of-place writes unlike in-place writes
on HDDs. To reclaim stale pages and to create space for writes,
SSDs use a garbage collection (GC) process. The GC process
is a time-consuming task since it copies nonstale pages in
blocks into the free storage pool and then erases the blocks
that do not store valid data. A block erase operation takes
approximately 1–2 ms [1]. Considering that valid pages in the
victim blocks (to be erased) need to be copied and then erased,
GC overhead can be quite significant.

GC can be executed when there is sufficient idle time
(i.e., no incoming I/O requests to SSDs) with no impact
to device performance. Unfortunately, the prediction of idle
times in I/O workloads is challenging and some workloads
may not have sufficiently long idle times. In a number of
workloads, incoming requests may be bursty and an idle
time can not be effectively predicted. Under this scenario
the queue-waiting time of incoming requests will increase.
Server-centric enterprise data center and high-performance
computing (HPC) environment workloads often have bursts
of requests with low interarrival time [15], [22]. Examples
of enterprise workloads that exhibit this behavior include
online-transaction processing applications, such as OLTP and
OLAP [6], [24]. Furthermore, it has been found that HPC
file systems are stressed with write requests of frequent and
periodic checkpointing and journaling operations [31]. In our
study of HPC I/O workload characterization at Oak Ridge
Leadership Computing Facility (OLCF), we observed that
the bandwidth distributions are heavily long-tailed and write
requests occupy more than 50% of workloads [22].

In this paper, we propose a semipreemptible GC (PGC)
scheme that enables the SSDs to provide sustainable band-
widths in the presence of these heavily bursty and write-
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dominant workloads. We show that the PGC can achieve
higher bandwidth over the non-PGC scheme by allowing
preemption of an ongoing GC process to service incom-
ing requests. While our previous work [26] discusses only
semi-PGC, this paper also demonstrates the feasibility of fully-
PGC (F-PGC) that supports suspend/resume commands for
read, write, and erase operations.

This paper makes the following contributions.
1) We empirically observe the GC related performance

degradation on commercially off-the-shelf (COTS)
SSDs for bursty write-dominant workloads. Based on
our observations, we propose a novel semi-PGC scheme
for SSDs.

2) We identify preemption points that can minimize the
preemption overhead. We use a state diagram to define
each state and state transitions that result in preemption
points. For experimentation, we enhance the existing
Microsoft Research (MSR)’s SSD simulator [1] to
support our PGC algorithm. We show an improvement
of up to 66.56% in average response time for overall
realistic applications.

3) We investigate further I/O optimizations to enhance
the performance of SSDs with PGC by merging
incoming I/O requests with internal GC I/O requests
and pipelining these resulting merged requests. The
idea behind this technique is to merge internal GC I/O
operations with I/O operations pending in the queue.
The pipelining technique inserts the incoming requests
into GC operations to reduce the performance impact of
the GC process. Using these techniques we can further
improve the performance of SSDs with PGC enabled
by up to 13.69% for the Cello benchmark.

4) We conduct a comprehensive study with synthetic traces
by varying I/O patterns (such as request size, interarrival
times, sequentiality of consecutive requests, read and
write ratio, etc.) We present results of a realistic study
with enterprise-scale server and HPC workloads. Our
evaluations with PGC enabled SSD demonstrate up to
a 66.56% improvement in average I/O response time
and an 83.30% reduction in response time variability.

5) We discuss the feasibility of F-PGC. When the
suspend/resume commands are only allowed for the
erase operation, the average response time is improved
by up to 8.00% compared to PGC. When they are
supported or read, write, and erase operations, the
average response time is improved by up to 14.57%.

II. Background and Motivation

Unlike rotating media (HDD) and volatile memories
(DRAM) which only need read and write operations, flash
memory-based storage devices require an erase operation [29].
Erase operations are performed at the granularity of a block
which is composed of multiple pages. A page is the granularity
at which reads and writes are performed. Each page on flash
can be in one of three different states: 1) valid, 2) invalid, and
3) free/erased. When no data have been written to a page, it is
in the erased state. A write can be done only to an erased page,
changing its state to valid. Erase operations (on average 1–2

ms) are significantly slower than reads or writes. Therefore,
out-of-place writes (as opposed to in-place writes in HDDs)
are performed to existing free pages along with marking the
page storing the previous version invalid. Additionally, write
latency can be higher than the read latency by up to a factor
10. The lifetime of flash memory is limited by the number
of erase operations on its cells. Each memory cell typically
has a lifetime of 103–109 erase operations [14]. Wear-leveling
techniques are used to delay the wear-out of the first flash
block by spreading erases evenly across the blocks [8], [19].

The flash translation layer (FTL) is a software layer that
translates logical addresses from the file system into physical
addresses on a flash device. The FTL helps in emulating
flash as a normal block device by performing out-of-place
updates thereby hiding the erase operations in flash. The FTL
mapping table is stored in a small, fast working memory.
FTLs can be implemented at different granularities in terms
of the size of a single entry capturing and address space in the
mapping table. Many FTL schemes [11], [20], [27], [28] and
their improvement by write-buffering [21] have been studied.
A recent page-based FTL scheme called DFTL [15] utilizes
temporal locality in workloads to overcome the shortcomings
of the regular page-based scheme by storing only a subset of
mappings (those likely to be accessed) on the limited working
memory and storing the remainder on the flash device itself.

Due to out-of-place updates, flash devices must clean stale
data for providing free space (similar to a log-structured file
system [35]). This cleaning process is known as GC. During an
ongoing GC process incoming requests are delayed until the
completion of the GC when their target is the same flash chip
that is busy with GC. Current generation SSDs use a variety
of different algorithms and policies for GC that are vendor
specific. It has been empirically observed that GC activity
is directly correlated with the frequency of write operations,
amount of data written, and/or the free space on the SSD [9].
The GC process can significantly impede both read and write
performance, increasing queuing delay.

A. Motivation

In order to empirically observe the effect of GC on the
service times of incoming I/O requests, we conducted block-
level I/O performance tests with various SSDs. Table I shows
their detail specifications. We selected the Super Talent 128
GB SSD [38] as a representative of multilevel cell (MLC)
SSDs and the Intel 64 GB SSD [18] as a representative
of single-level cell (SLC) SSDs. We denote the SuperTalent
MLC, and Intel SLC devices as SSD(A) and SSD(B) in the
remainder of this paper, respectively. All experiments were
performed on a single server with 24 GB of RAM and an
Intel Xeon Quad Core 2.93 GHz CPU [17], running Linux
(Lustre-patched 2.6.18-128 kernel). The noop I/O scheduler
with FIFO queuing was used [33].

To measure the I/O performance, we use a benchmark
that exploits the libaio asynchronous I/O library on Linux.
Libaio provides an interface that can submit one or more I/O
requests in one system call iosubmit() without waiting for I/O
completion. It can also perform reads and writes on raw block
devices. We used the direct I/O interface to bypass the I/O
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Fig. 1. Bandwidth variability comparison for MLC and SSD SSDs for different write percentages of workloads. (a) Write-dominant (80% write).
(b) Read-dominant (20% write).

TABLE I

Characteristics of SSDs Used in Our Experiments

Label SSD (A) SSD (B)
Company Super-Talent Intel
Model FTM28GX25H SSDSA2SH064G101
Type MLC SLC
Interface SATA-II SATA-II
Capacity (GB) 120 64
Erase (#) 10–100K 100K-1M

TABLE II

Average, Standard Deviation, and CV Values

for Fig. 1(a) and (b)

Type Metric
Write (%) in Workload

80 40
SSD(A) (avg, stddev) CV (176.4, 6.37) 0.03599 (207.4, 6.73) 0.03249
SSB(B) (avg, stddev) CV (223.5, 7.96) 0.03561 (257.1, 5.86) 0.02279

buffer cache of the OS by setting the O-DIRECT and O-SYNC
flags in the file open() call.

We experimented with two workloads of 40% and 80%
writes. The I/O request size was fixed at 512 kB, and re-
quest access patterns were completely random. We measured
bandwidth every second. Fig. 1(a) and (b) shows time-series
plots of our bandwidth measurements for SSD(A)and (B). We
observe that: 1) several bandwidth drops occur over time for all
experiments, and 2) the bandwidth drops are more frequent for
the workloads with a higher amount of writes. In order to fairly
compare the bandwidth variability for different workloads,
we calculated coefficient of variation (CV)1 values for each
experiment.

Table II compares the CV values for the experiments. We
see that a higher write percentage in the workload shows
higher CV values, which means higher bandwidth variability.
We suspect that this performance variability is attributable to
the GC process. This insight led to our design and development
of a PGC. The basic idea of the proposed technique is to
service an incoming request even while GC is running.

III. PGC

A. Semi-PGC

Fig. 2 shows a typical GC process. Once a victim block is
selected during GC, all the valid pages in that block are moved
into an empty block and the victim block is erased. A moving
operation of a valid page can be broken down to page read,
data transfer, page write, and metadata update operations. If

1Coefficient of variation (Cv) is a normalized measure of dispersion of a
probability distribution, that is, Cv= σ

μ
.

Fig. 2. Description of operation sequence during GC.

Fig. 3. Semipreemption. R, W, and E denote read, write, and erase opera-
tions, respectively. The subscripts indicate the page number accessed.

both the victim and the empty block are in the same plane, the
data transfer operation can be omitted by using a copy-back
operation [1] if the flash device support this operation.

We identify two possible preemption points in the GC
sequence marked as “A” and “B” in Fig. 2. Preemption point
“A” is within a page movement and “B” is in-between page
movement. Preemption point “A” is just before a page is
written and “B” is just before a new page movement begins.
We may also allow preemption at the point marked with a
(*), but the resulting operations are the same as those of “A”
as long as the preemption during data transfer stage is not
allowed. At preemption point “A,” only a write request can
be serviced if the NAND flash memory supports pipelining
commands of the same type because the page buffers are
already occupied by the previous read page operation. The
pipelining will be described in more detail in Section III-C.
If the NAND flash does not support pipelining, no request can
be serviced at preemption point “A.” In contrast, preemption
point “B” can service any kind of incoming request.

Fig. 3 illustrates our proposed semipreemption scheme. The
subscripts of R and W indicate the page number accessed.
Suppose that a write request on page z arrives while writing
page x during GC. With a conventional non-PGC, the request
should be serviced after GC is finished, as illustrated in
the upper diagram of Fig. 3. If GC is fully preemptible,
the incoming request may be serviced immediately. To do
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Fig. 4. Internal structure of NAND Flash device.

so, the ongoing writing process on x should be canceled or
suspended first. However, there is no NAND flash memory so
far that allows ongoing read/write operations to be canceled
or suspended, to our best knowledge. The F-PGC is discussed
in more detail in Section IV. In PGC, the preemption occurs
only at preemption points. As shown in the bottom of Fig.
3, the incoming request on page z is inserted at preemption
point “B.” As a result, the response time of writing page z is
substantially reduced.

1) Space Overhead Discussion: Our proposed
semipreemption does not require an additional buffer to
service incoming requests while GC is running because it
exploits the page buffer that already exists in the flash device.
Fig. 4 shows the internal structure of a typical NAND flash
device. One device consists of multiple dies, each of which
contains multiple planes. Each plane has a page buffer and
number of blocks. The pages in the block cannot be directly
accessed. To read data from a page, the data should be copied
to the page buffer and read from that page buffer. Data should
be written through the page buffer in a similar manner.

To move page x in GC, the data on page x should be copied
to the page buffer in the plane where page x is located. Then,
the data should be moved to a page buffer where a free block
is located, and then written onto a page in the free block. At
preemption point “B” the page buffers are available in both
planes. Therefore, to service read and write requests on any
page, the service can be launched through the page buffer. In
contrast, at preemption point “A” the page buffer is already
occupied by the data of page x. If the incoming request is
on the same plane as x, it cannot be serviced because the
page buffer is not available. Only if the flash device supports
pipelining, and the incoming request is a write request, can
the request be serviced. For example, data of the incoming
write request can be written to the page buffer while data in
the page buffers are being written to a page in the free block.

2) Computation Overhead Discussion: Our proposed
semipreemption does not require an interrupt. Due to the small
number of preemption points, it can be implemented by a
polling mechanism. At every preemption point, the GC process
looks up the request queue. This may involve a function call,
a small number of memory accesses to look up the queue,
and a small number of conditional branches. Assuming 20
instructions and 5 memory access per looking up, 10 ns per
instruction (100 MHz), 80 ns per memory access, the look-up
operation takes 600 ns. One page move involves at least one
page read which takes 25 μs and one page write which takes
200 μs [1]. Since there are two preemption points per one
page move, the overhead of looking up the queue per one
page move can be estimated as 1.2 μs/225 μs = 0.53%.

Fig. 5. Merging an incoming request to GC.

To resume GC after servicing the incoming request, the
context of GC needs to be stored. The context to be stored
at preemption points “A” and “B” is very small because it
does not require an additional buffer to service the incoming
requests. At preemption point “A,” the block number of the
victim block and the page number of the page stored in the
page buffer need to be stored in the working memory. At pre-
emption point “B,” only the block number of the victim block
needs to be stored. Because the metadata are already updated,
the incoming request can be serviced based on the mapping in-
formation. Thus, the memory overhead for PGC is negligible.

B. Merging Incoming Requests Into GC

While servicing incoming requests during GC, we can
optimize the performance even further. If the incoming request
happens to access the same page in which the GC process is
attending, it can be merged.

Fig. 5 illustrates a situation where the incoming request of
a read or write on page x arrives while page x is being read
by the read stage of GC. The read request can be directly
serviced from the page buffers and the write request can be
merged by updating data in the page buffers. In case of copy-
back operations, the data transfer is omitted, but to exploit
merging, it cannot be omitted. As for the read request, data
in the page buffer should be transferred to service the read
request. For the write request, the requested data should be
written to the page buffer. We can increase changes of I/O
merging operations by reordering the sequence of pages to be
moved from the victim block. Suppose page x moves and y
and z then, move. During GC, the order of pages to be moved
does not matter. Thus, when a request on page z arrives, it can
be reordered as z, x, and y.

C. Pipelining Incoming Requests With GC

The response time can be further reduced even if the
incoming request is on a different page from valid pages
in the victim block to be moved. To achieve this, we take
advantage of the internal parallelism of the flash device.
Depending on the type of the flash device, internal parallelism
and its associated operations can be different. In this paper,
we consider pipelining [32] as an example. Pipelining allows
overlapping the data transfer and the write operations as
illustrated at the bottom of Fig. 6. If two consecutive requests
are of the same type, i.e., read after read, or write after write,
these two requests can be pipelined.

Fig. 6 illustrates a case where an incoming request is
pipelined with GC. As an example, lets assume that there is a
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Fig. 6. Pipelining an incoming request with GC.

pending read operation on page z at the preemption point “B”
where a page read on page y is about to begin. Since both
operations are read, they can be pipelined. However, if the
incoming request is a write operation, they cannot be pipelined
at preemption point “B” as two operations need to be issued
at “B” and they are not of the same type. In this case, the in-
coming request should be inserted serially as shown in Fig. 3.

It should be noted that pipelining is only an example of
exploiting the parallelism of an SSD. An SSD has multiple
packages, where each package has multiple dies, and each die
has multiple planes. Thus, there are various opportunities to
insert an incoming requests into GC as means of exploiting
parallelism at different levels. We may interleave servicing
requests and moving pages of GC in multiple packages or issue
a multiplane command on multiple planes [32]. According to
the GC scheme and the type of operations the flash device
supports, there are many instances of exploiting parallelism.

D. Level of Allowed Preemption

The drawback of preempting GC is that the completion time
can be delayed which may incur a lack of free blocks. If
the incoming request does not consume free blocks, it can be
serviced without depleting the free block pool. However, there
may be a case where the incoming request is a write request
whose priority is high but there are not enough free blocks.
The incoming requests may be prioritized by the upper layer
file system. In such a case, GC should be finished as soon as
possible.

Based on these observations, we identify four states of GC.

1) State 0 (S0): GC execution is not allowed.
2) State 1 (S1): GC can be executed but all incoming

requests are allowed.
3) State 2 (S2): GC can be executed but all free block

consuming incoming requests are prohibited.
4) State 3 (S3): GC can be executed but all incoming

requests are prohibited.

Conventional non-PGC has only two states: 0 and 3. Gener-
ally, switching from S0 to S3 is triggered by threshold or idle
time detection. Once the number of free blocks falls below
a predefined threshold the state is changed from S0 to S1

and from S1 to S2. We call the conventional nonpreemptible
threshold as soft but in our proposed design the system allows
for the number of free blocks to fall below the soft threshold.
We define a new threshold, called hard, which prevents a
system crash by running out of free blocks. Switching from
S2 to S3 is triggered by the type of incoming requests. If the
incoming request is write whose priority is high, it switches to
S3. The priority should depend on requirements of the system.

Fig. 7. State diagram of semi-PGC.

Fig. 7 illustrates the state diagram. If the number of free
blocks (Nfree) becomes less than the soft threshold (Tsoft), the
state is changed from 0 to 1. If the free block pool is recovered
and Nfree is larger than Tsoft, then the system switches back
to state 0. If Nfree is less than the hard threshold (Thard), the
system switches to S2 or remains in S1. In state 2, the system
will move to S1 if Nfree is larger than Thard. If there is an
incoming request whose priority is high, the system switches
to S3. While in S3, after completing current GC and servicing
the high priority request, the system will switch to S1 or S2

according to Nfree.

IV. Fully-PGC

In Section III, we have presented a novel semi-PGC with
several I/O scheduling algorithms. In this section, we present
an F-PGC mechanism by allowing preemption on any ongoing
I/O operations.

A. Fully-PGC

A typical NAND flash accesses the NAND flash cells through
a page buffer. If a read command is issued, the requested page
is copied from the NAND flash cell to the page buffer and the
requester reads data from the page buffer. Similarly, to write
data to the NAND flash memory, the requester writes data to
the page buffer and issues a write command. These commands
are used as atomic operations, i.e., if the commands are
issued, they cannot be suspended or canceled until they finish.
However, the physical operations on NAND flash cells are not
atomic. Current implementation of flash operations, such as
page read, page write and block erase, has been implemented
atomic because the NAND flash interface [30] does not support
preemption, however, they can be implemented preemptible.
We add a suspend command and a resume command to the
interface to implement F-PGC. AMD’s NAND flash memo-
ries [37] used to support suspend/resume commands for the
erase operation. The suspend and resume commands should
be operable with read and write operations in addition to the
erase operation to support F-PGC.

B. Design for Suspend and Resume Commands

The flash operations can be broken-down into multiple
phases. Just like the semipreemption of the GC process,
the flash operations can be preempted in-between phases.
For example, the NAND flash memory usually employs the
incremental step pulse programming (ISPP) as its write and
erase method because it offers fast write/erase performance
coping with process variations [3]. It tries to write/erase by a
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Fig. 8. Example of preempting an ongoing flash operation with the suspend
command.

pulse with an initial voltage, e.g., 15 V and then verifies if it is
successful. If not, it keeps increasing the voltage by a step, e.g.,
0.5 V until it succeeds. Therefore, the write/erase operation
consists of repeated pulse and verify phases. In-between
phases, it is possible for the operation to be suspended. The
suspend command forces the ongoing command to stop its
operation until the resume command restarts its operation.
While a previously issued command is suspended, a new
command may be issued unless the new command is on the
same page or block that is occupied by the suspend command.

Fig. 8 gives an example of using suspend/resume com-
mands. For implementing the states of suspension and re-
sumption, an extra page buffer is required. Suppose that a
read command is issued on page x. The data in page x are
copied to page buffer A. Before the read command finishes,
we may issue a suspend command. While the read command
is suspended, one can issue a write command on page y.
The page y should be different from page x but it can be
in the same block of page x. However, if the suspended
command is the erase operation, the new command cannot
be on any page in that block. The data to be written to page y

should be stored in page buffer B. Once the write command
finishes, the previous read command that was suspended can
resume. Two commands can never suspend at the same time.
In this example, write operation can never suspend while read
command is suspended. At the cost of additional page buffers,
we can allow more commands to be suspended at the same
time. However, in order to implement F-PGC, suspending only
one command at a time is enough.

If the flash device supports suspend and resume commands
but has only one page buffer per plane, servicing incoming
requests could be limited according to the availability of the
page buffer. For the aforementioned example, when the on-
going read command is suspended, its page buffer is partially
occupied. If the incoming write request is on a different plane,
it can be serviced immediately, but if it is on the same plane, it
should wait until the ongoing read command finishes because
the page buffer is not available for servicing the request.

After issuing a command, FTL should check if the com-
mand is completed either by polling the status register or
by receiving an interrupt. Servicing an interrupt incurs non-
negligible overhead because of mode switching. For example,
ARM1176 needs 200 cycles per switch and Cortex-A8 needs
1200 cycles per switch [2]. Since checking by an interrupt
incurs nonnegligible mode switching overhead to implement
F-PGC, a polling mechanism has been implemented.

Fig. 9. Operation sequence of F-PGC.

TABLE III

Handling Requests on the Same Logical Page

of the Ongoing Command

Active Incoming
ActionOperation Operation

Read
Read Request is serviced by the ongoing command.
Write Active read operation is discarded.

Read
The request is serviced from the buffer

Write
used by the ongoing command.

Write
Data written by the ongoing command
are invalidated.

Erase
Read Not happen
Write Not happen

C. Operation Sequence

A typical GC process consists of a series of page read, data
transfer, page write, and metadata update and erase operations
as described in Fig. 2. As illustrated in Fig. 9, suppose that
a write request arrives during a page read. As discussed in
the previous section, FTL checks if the read command is
completed by polling the status register. While polling the
status register FTL also looks up the incoming request queue
to check if any request comes during the ongoing operation.
If a request arrives, FTL issues a suspend command to stop
the current read command and services the write command.
Looking up the request queue does not incur an additional
overhead because it occurs while polling the status register and
time spent on polling never contributes to the performance.

The incoming request may happen to be on the same logical
page of the ongoing command. Table III summarizes cases
of conflicts. If the incoming request is a read on the same
logical page of the ongoing read command, the ongoing read
command does not need to be suspended. Once the current
read command finishes, data in the page buffer can be used
for servicing the incoming request as well as for the following
page write.

The incoming write request may be on the same logical
page of the ongoing read command. Then, the data should
be written to a different physical page. In this situation, the
data read by the ongoing read command are discarded because
moving this page is not necessary any more.

Referring to Fig. 8, suppose that the ongoing read command
and the incoming write request are on the same logical page
and the logical page is mapped to physical page x before the
read command is suspended. The ongoing read command on
page x is copying data from the NAND cell to page buffer A.
When a write request comes on the same logical page, the
ongoing read command is suspended. The data to be written
are stored in page buffer B and then a write command is
issued to physical page y. After the write command finishes
the metadata of page x and y should be updated as valid (V)
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to invalid (I) and empty (E) to valid (V), respectively, as the
mapping of the logical page is changed from physical page x

to y. The data in page buffer A were supposed to be written by
the following page write in the GC process. However, in this
situation, data in page buffer A do not need to be written. The
purpose of moving pages by GC is to move and invalidate all
the valid pages in the victim block. In the case of page x, it is
already invalidated by the incoming request and the up-to-date
data are written to a different physical page. Therefore, page
x does not need to be written by GC any more.

A request may come during the data transfer. Here, we
also assume the data transfer is issued by the CPU. While
moving data, the CPU also needs to look up the request queue
because we assume an interrupt is not used. If the CPU looks
up the queue frequently, it may shorten the response time of
the incoming request, but it delays the completion time of the
data transfer due to the overhead of the look-up.

When a request arrives during a page write, it can be ser-
viced immediately by suspending the ongoing write command.
If the incoming request is a read request on the same logical
page, it can be serviced directly from the page buffer without
issuing a read command because the up-to-date data are stored
in the page buffer which are being written to the NAND cell.

The incoming write may be on the same logical page of
the ongoing write command. Then, the page written by the
ongoing write command is invalidated immediately after the
command is completed. This situation is very similar to the
example of Fig. 9. Suppose that GC issues a write command
to physical page x for moving a logical page. Before the
write command is completed, a write request arrives on the
same logical page. The incoming write request writes data to
physical page y, which is the latest data. When resuming, the
ongoing page write to physical page x is completed but data
in page x are stale. Therefore, physical page x is marked as
invalid right after the ongoing write finishes.

During metadata update the CPU needs to look up the
request queue occasionally to service the incoming requests.
How frequently the CPU should look up the queue also needs
to be determined based on the tradeoff between the response
time of incoming requests and the overhead of the look-up.

If a request comes during an erase operation, it can be also
serviced immediately by suspending the erase command. In
this case, the incoming request cannot be on a page in the
victim block that is being processed by the erase command.
Before issuing the erase command, FTL should have moved
all the valid pages, and the victim block contains only invalid
pages. Therefore, there is no reason to read a page from the
victim block. A page in that block cannot be written because
the block is not erased yet.

D. Worst-Case Execution Time Analysis

While SSDs offer better average response time than HDDs,
they often suffer from performance variability. From the
view point of the file system, it looks nondeterministic when
the request experiences long latency because it has no idea
when GC delays the request. As will be demonstrated by
the experiments, the proposed PGC schemes attenuate the
performance variability by reducing the worst-case response

TABLE IV

Terminology for WCET Analysis

Symbol Definition
Ter Time to erase a block
Tsuspend Time to suspend an ongoing command
U(er) Upper bound of time to read a page
U(ew) Upper bound of time to write a page

TABLE V

WCET Comparison

Technique Wrost-Case Execution (Response) Time
GFTL [10] Ter + max{U(er), U(ew)}
RFTL [36] max{Ter + U(ew), U(er)}
PGC Ter + max{U(er), U(ew)}
FPGC Tsuspend + max{U(er), U(ew)}

time. This section provides analysis on the worst-case response
time to understand how the proposed GC schemes reduce the
worst-case response time and performance variability.

To keep consistent with the previous literature [10], [34],
we use the same terminology. The worst-case execution time
(WCET) refers to the worst-case response time of incoming re-
quests. Table IV summarizes the terminology used for WCET
analysis.

Ter denotes the time to erase a block. It corresponds to the
time taken to complete an erase command on the NAND flash
chip. Tsuspend means the time to suspend an ongoing command.
Since suspending an erase command takes 20 μs [37], we
assume suspending all the commands takes 20 μs. U(er) and
U(ew) denote the upper bound of time to read or write a page.
These values vary with how the FTL manages the metadata.

Table V compares WCET of various techniques. It should
be noted that WCET of PGC and FPGC is of state 1 where
all incoming requests are allowed to preempt GC. If the state
is changed from 1 to 2 or 3 due to lack of free blocks, WCET
would be increased. Since previous works [10], [34] do not
take this pathological behavior into consideration, we only
present WCET of state 1 in our comparison. WCET of PGC
is the same with that of GFTL [10]. In PGC, ongoing flash
commands cannot be preempted. The longest command is the
erase command. In the worst case, the request should wait for
the erase command to finish, which takes Ter. After it finishes,
can the request be serviced which takes U(er) or U(ew). Since
the erase command cannot be merged with the request nor
pipelined, the merging and pipelining cannot help to reduce
WCET.

When FPGC is employed, any ongoing command can
be preempted, which takes Tsuspend. Since Tsuspend is much
smaller than Ter, WCET of FPGC is substantially shorter than
PGC and other related techniques. PGC also offers WCET
comparable to existing real-time FTLs [10], [34].

V. Experimental Results

A. Experimental Setup

We evaluate the performance of the PGC scheme using
MSR SSD simulator [1]. MSR SSD simulator is event-driven
and based on the Disksim 4.0 [4] simulator. MSR SSD
simulator has been used in several SSD related researches [32],
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TABLE VI

Parameters of SSD Model

Parameter Value Parameter Value
Reserved free blocks 15% Blocks per plane 2048
Minimum free blocks 5% Pages per block 64
Cleaning policy Greedy Page size 4 kB
Flash chip elements 8 Page read latency 0.025 ms
Number of channels 8 Page write latency 0.200 ms
Planes per element 8 Block erase latency 1.5 ms

[36]. In this paper, we simulated a NAND flash-based SSD. SSD
specific parameter values used in the simulator are given in
Table VI.

To conduct a fair performance evaluation of our proposed
PGC algorithm, we fill the entire SSD with valid data prior
to collecting performance information. Filling the entire SSD
ensures that GC is triggered as new write requests arrive
during our experiments. Specifically, for GC, we use a greedy
algorithm that is designed to minimize the overhead of GC.
The greedy algorithm selects a victim block to be erased whose
number of valid pages is minimal. The more valid pages there
are in the victim block, the longer it takes for GC to complete
as the GC process needs to move more pages.

Our PGC algorithm can be applied to any existing GC
schemes, such as idle-time or reactive. In the idle-time GC
scheme, the GC process is triggered when there are no
new incoming requests and all queued requests are already
serviced. In the reactive scheme, GC is invoked based on
the number of available free blocks, without regard to the
incoming request status. If the number of available free blocks
is less than the set threshold, then the GC process is triggered;
otherwise, it continues servicing requests. The reactive GC
scheme is the default in the MSR SSD simulator, and we use it
as our baseline (non-PGC) GC scheme. The lower bound of the
threshold in our simulations is set as the 5% of available free
blocks. Ongoing GC is never preempted in the baseline GC
scheme in our simulations. MSR SSD simulator implements a
multichannel SSD, and GC operates per channel basis. In our
experiments, even if one channel is busy for GC, any incoming
requests to other channels can be serviced. The preemption
occurs only if the incoming request is on the same channel
where GC is running.

We use a mixture of real-world and synthetic traces to
study the efficiency of our semi-PGC scheme. We use syn-
thetic workloads with varying parameters such as request
size, interarrival time of requests, read access probability,
and sequentiality probability in access.2 The default values
of the parameters that we use in our experiments are shown
in Table VII.

An exponential distribution and a Poisson distribution are
used for varying request sizes and interarrival times of re-
quests. Those distributions are well used to cover a variety of
scenarios of workload cases in particular for the distribution of
request arrivals. We vary one parameter while other parameters
are fixed.

2If a request starts at the logical address immediately following the last
address accessed by the previously generated request, we consider it a
sequential request; otherwise, we classify it as a random request.

TABLE VII

Default Parameters of Synthetic Workloads

Parameter Value
Request size 32 kB
Interarrival time 3 ms
Probability of sequential access 0.4
Probability of read access 0.4

TABLE VIII

Characteristics of Realistic Workloads

Workload
Average Req. Read Arrival Rate Bursty

Size (kB) (%) (IOP/s) Write (%)
Financial [41] 7.09 18.92 47.19 0.14
Cello [38] 7.06 19.63 74.24 31.32
TPC-H [44] 31.62 91.83 172.73 11.29
OpenMail [17] 9.49 63.30 846.62 0.01

Note that bursty write percentage denotes the amount of write requests with
less than 1.5 ms of interarrival times.

We use four commercial I/O traces, whose characteristics
are given in Table VIII. We use write dominant I/O traces from
an OLTP application running at a financial institution made
available by the Storage Performance Council (SPC), referred
to as the financial trace, and from Cello99, which is a disk
access trace collected from a time-sharing server exhibiting
significant writes which was running the HP-UX operating
system at the Hewlett-Packard Laboratories. We also examine
two read-dominant workloads. Of these two, TPC-H is a disk
I/O trace collected from an OLAP application examining large
volumes of data to execute complex database queries. Finally,
a mail server I/O trace referred as OpenMail is evaluated.

While the device service time captures the overhead of GC,
it does not include queuing delays for pending requests. Ad-
ditionally, using an average service time does not capture re-
sponse time variances. In this paper, we utilize the system ser-
vice response time measured at the block device queue and the
variance in response times. Our measurement captures the sum
of the device service time and the additional time spent waiting
for the device (queuing delay) to begin to service the request.

B. Performance Analysis of Semi-PGC

The following garbage collection schemes are evaluated in
this section.

1) NPGC: A non-PGC scheme.
2) PGC: A semi-PGC scheme with both merging and

pipelining enabled.

1) Performance Analysis for Synthetic Workloads: To
evaluate the performance of PGC with various characteristics
of input workloads, we start evaluating PGC with various
synthetic workloads. GC may have to be performed while
requests are arriving. Recall that GC is not preemptible in the
baseline GC scheme and incoming requests during GC are
delayed until the ongoing GC process is complete. Fig. 10
shows the performance improvements when enabling GC
preemption.

a) Request size: Fig. 10(a) shows the improvements of
performance and variance by PGC for different request sizes
In this experiment, we vary the request size as 8, 16, 32, and
64 kB. These values are chosen because the average request
size of realistic workloads is between 7 and 31 kB, as given
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Fig. 10. Performance improvements of PGC for synthetic workloads. Average response times and standard deviations are shown with different parameters
of synthetic workloads. (a) Request size. (b) Interarrival time. (c) Sequentiality. (d) Read ratio.

Fig. 11. Performance improvements of PGC and PGC+pipelining for realistic server workloads. (a) Average response time. (b) Variance of response time.
(c) Maximum response time.

in Table VIII. For a small request size (8 kB), we see the
improvement in response time by 29.44%. Furthermore, the
variance of average response times decreases by 87.31%. As
the request size increases, we see further improvements. For
a large request (64 kB), the response time decreases by up to
69.21% while its variance decreases by 83.03%.

b) I/O arrival rate: Similar to the improvement with
respect to varying request sizes, we also see an improvement
with respect to varying the arrival rate of I/O requests. Typical
response time of a request on a page is less than 1 ms without
GC while it can be as high as 3–4 ms when the page request is
queued up due to GC. Based on this observation, we vary the
interarrival time between 1 and 10 ms in our experiments. In
Fig. 10(b), it can be seen that PGC is minimally impacted by
intense arrival rate. In contrast, the system response times and
their variances for the baseline (NPGC) increase with respect
to the request arrival rate.

c) Sequential access: Random workloads (where con-
secutive requests are not next to each other in terms of
their access address) are known to be likely to increase the
fragmentation of SSD, causing a GC overhead increase [21],
[15]. We experiment with PGC and NPGC by varying the
sequentiality of requests. Fig. 10(c) illustrates the results. As
can be seen, NPGC exhibits a substantial increase in system
response time and its variance for a 60% sequential workload
while PGC performance levels remain constant for all levels
of sequentiality.

d) Write percentage: Writes are slower than reads
in SSDs because flash page writes are slower than reads
(recall unit access latency for reads and writes, 25 μs and
200 μs, respectively) and GC can incur further delays. In
Fig. 10(d), we see the improvement of PGC as the percentage

of writes within the workload increases. Overall, we observe
that PGC exhibits a marginal increase in response time and
variance compared to the NPGC scheme. For example, PGC
performance slows down by only 1.77 times for an increase of
writes in workloads (from 80% to 20% of reads) while NPGC
slows down by 3.46 times.

From the performance analysis with synthetic workloads,
we can observe a firm trend that PGC improves the per-
formance, regardless of workload characteristics, and has a
beneficial impact on the performance when the workload is
heavier (e.g., larger request size, shorter interarrival time, less
sequentially, and more write access).

2) Performance Analysis for Realistic Server Workloads:
This section evaluates the performance of PGC with realistic
server workloads. Merging and pipelining techniques and
the safeguard are evaluated individually. The following GC
schemes are added for the evaluation in this section.

1) PGC+None: A semi-PGC scheme without any optimiza-
tion techniques.

2) PGC+Merge: Only merging technique enabled PGC.
3) PGC+Pipeline: Only pipelining technique enabled PGC.
Fig. 11 presents the improvement of system response time

and variance over time for realistic workloads. For write-
dominant workloads, we see an improvement in average
response time by 6.05% and 66.56% for Financial and Cello,
respectively [refer to Fig. 11(a)]. Fig. 11(b) shows a substantial
improvement in the variance of response times. PGC reduces
the performance variability by 49.82% and 83.30% for each
of the workloads. In addition to the improvement in perfor-
mance variance, we observe that PGC can further reduce the
maximum response time of NPGC by 77.59% and 84.09% for
Financial and Cello traces as illustrated in Fig. 11(c).
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Fig. 12. Scalability tests by increasing the arrival rate of I/O requests. (a) Average response time. (b) Variance of response time. (c) Improvement in average
response time of PGC and pipelining over PGC.

Fig. 13. Impact of hard threshold. The benchmark is Cello. (a) No hard threshold. (b) Thard = 80% of Tsoft. (c) Thard = 20% of Tsoft.

TABLE IX

Percentage of nand Flash Commands Affected by

Merging and Pipelining

Benchmark
Merging Pipelining

Read (%) Write (%) Read (%) Write (%)
Financial 0.10 0.13 7.29 36.71
Cello 0.01 0.14 10.46 44.23
TPC-H 0.01 0.01 8.82 0.79
OpenMail 0.00 0.00 0.00 0.00

For the OpenMail trace PGC does not show a significant
improvement for performance and variance, as we expected for
read-dominant traces. However, PGC reduces the maximum
response time by 60.26%. Interestingly for TPC-H, although it
is a read dominant trace, we observe a substantial improvement
for performance and variance. TPC-H is a database applica-
tion. The disk trace includes a phase of application run that
inserts tables into a database, which is shown as a series
of large write requests (around 128 kB) for database insert
operations.

Moreover, we observe further improvement by the pipelin-
ing technique on PGC in the Fig. 11.

Table IX shows how much the merging and pipelining
contribute to the performance enhancement. The numbers
shown in this table are the percentage of NAND flash commands
affected by merging or pipelining among all flash commands
issued by the incoming requests. Let Nw be the number of
total write requests and Nr, the number of total read requests.
The number of actual flash commands may not be the same
because a request may span to multiple commands to multiple
packages. Let us denote the number of write commands by Cw

and that of read commands by Cr. Out of Cw commands, Mw

commands are merged into commands issued by the ongoing
GC. Similarly, Pw commands are pipelined with commands
of GC. Then, the percentage of write commands affected
by merging is computed by Mw/(Cw + Cr). The percentage
of write commands affected by pipelining is Pw/(Cw + Cr).
Those of read commands are computed in the same way.

It is shown in Table IX that the chance of merging is
very low. Especially, the chance of merging and pipelining for
OpenMail is less than 0.001%. However, we can still see that
a high reduction of maximum response time can be achieved
for OpenMail by I/O merge technique in Fig. 11, although the
average performance is not improved significantly.

The chance of pipelining is higher than that of merging. For
Cello, an improvement is observed in the average response
time of PGC by 13.69% and its performance variance by
33.53%. Note that pipelining one command may not contribute
to improving the performance because a request may span to
multiple read or write commands.

Continuous GC preemption can cause starvation of free
blocks. Thus, we develop a mechanism that can avoid a situa-
tion where an entire system becomes completely unserviceable
because no free blocks are available. For this, we implement
our PGC algorithm with a hard limit of available free blocks.
Our algorithm now has two thresholds, one is for triggering
the GC process and the other is for stopping preemption.
Once the number of free blocks reaches Thard, SSD stops GC
preemption. A hard limit (Thard) is set for a lower bound of
the number of free blocks available in SSD.

To illustrate the effect of our extra threshold, we use an
amplified Cello trace where the arrival rate of I/O requests
are 16 times higher and the average request size of our test
workload is about 300 kB. Cello is chosen because Cello is
the most write-intensive workload among the four benchmarks,
but with the original traces, we did not observe the shortage
of free blocks incurred by preemption. To evaluate the impact
of the safe guard, we had to amplify the trace artificially. In
Fig. 13(a), we see the situation where there are no free blocks
left due to continuous GC preemption and the SSD is not
available to service the I/O requests. It captures a zoomed-
in view of a region for 7 seconds of entire simulation run.
The remaining free blocks indicate the ratio of the number of
available free blocks over the minimum number of free blocks.
The minimum number of free blocks corresponds to the soft
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Fig. 14. Tradeoff between response time and hard limit. The benchmark is
Cello.

threshold (Tsoft) which is 5% of the total number of blocks
as shown in Table VI. On the contrary, in Fig. 13(b) and (c),
we see that the SSD handles the starvation of free blocks in
the SSD by adjusting Thard. We see that the lower Thard shows
better response time while it exhausts more free blocks.

Since there exists a tradeoff between the number of free
blocks and response times, we evaluate the impact of perfor-
mance in terms of response time according to Thard. Fig. 14
shows the cumulative distribution function of response time for
different Thard. The average response times (in ms) are shown
below each graph in the order of increasing the percentage of
hard limit (Thard). As we lower Thard, we see overall response
time improve. For example, we observe 18% improvement in
average I/O response times when we lower Thard from 80% to
20% of Tsoft.

3) Performance Sensitivity Analysis: As shown in
Fig. 12(a) and (b), with respect to increasing arrival rate,
average response time and variance also improve. In par-
ticular, improvements in response times can be seen for
write-dominant workloads (Financial and Cello) compared
to read-dominant workloads in Fig. 12(a). For TPC-H, we
see a gradual improvement for the performance variability.
Overall, we observe that PGC can increase the performance
and improve the variance up to 90% for a 16 times more bursty
workload (i.e., the I/O arrival rate is increased by 16 times).
Fig. 12(c) shows further improvements of the GC pipelining
technique. In this figure, improvements in average response
time for Cello can be clearly observed. Note that the scale for
Cello is the right y-axis. For the other workloads, the benefit
of the pipelining is not evident until the trace is accelerated
significantly. The Financial and TPC-H exhibit a similar trend,
but the OpenMail does not benefit from the pipelining because
its chance is very low. However, we can still observe that
the gaps of performance and variance are widened as the
arrival rate of I/O requests increases. In other words, the GC
pipelining technique makes PGC enabled SSDs robust enough
to provide a sustained level of performance.

In addition to the greedy GC algorithm, we implemented
two more GC algorithms to evaluate the performance of our
proposed PGC for various real workloads. We implemented
an Idle-based proactive GC algorithm where GC is triggered
when an idle time is detected. For implementing idle time
detection algorithm in workloads, we used a well-regarded
heuristic online algorithm as in [13]. A wear-level aware GC

algorithm has also been implemented [19]. Unlike the greedy
GC algorithm, wear-level aware GC algorithm considers the
wear-levels of blocks to avoid selecting a block that has
experienced more erase operations than the average wear-out.
The wear-level aware GC algorithm aims to distribute erase
operations evenly across blocks.

Fig. 15 shows the improvement of PGC against NPGC for
various GC algorithms and various real workloads. We see
that GC preemption works well regardless of GC algorithms.
However, we see that the performance improvement of the
idle-based algorithm is smaller than Fig. 11. It is because
idle-based GC algorithm can run GC in background, which
does not hurt the I/O service time. We also observe that
Greedy-PGC outperforms idle-NPGC for all the traces except
for OpenMail. Even though GC runs during idle times, GC
still has to run upon write requests when they come in a
bursty manner. In case of OpenMail, the average response
time and standard deviation of the idle-based GC algorithm is
slightly higher than those of the baseline greedy GC algorithm.
We speculate that running GC during idle times could make
the operation sequence different, which affects the results;
however, this can be attributed to simulation artifact. Wear-
aware GC algorithm does not show significant difference from
the baseline of greedy GC algorithm

From these experiments, we can observe that PGC reduces
the response time and the variation regardless of GC algo-
rithms. More importantly, it is shown that the PGC with
a greedy GC algorithm (Greedy-PGC) that is triggered on
demand will outperform the NPGC with a GC running during
idle time (idle-NPGC) in the background.

All the preceding experiments in this section were done
without write buffer. In this experiment, we study the impact
of write buffer on SSD. We considered STT-RAM-based write
buffer. The read and write latency of STT-RAM is 20 ns for
both operations. STT-RAM has 1015 times of program/erase
operation cycles, which is much higher than in NAND flash.
Write-regulation technique that is a sort of selective write-
buffering [23] can be employed if the lifetime of the STT-
RAM buffer is seriously concerned. In our write-buffer im-
plementation, data blocks are flushed into SSD whenever idle
times in workloads are detected by flush operation.

Fig. 16 shows the improvement of the average response
time by using PGC compared against NPGC when an 1
MB write buffer is employed. Compared with Fig. 11(a),
the performance improvement by using PGC is decreased,
but PGC still improves the performance by 0.47%, 27.74%,
11.97%, and 0.04% for Financial, Cello, TPC-H, and Open-
Mail, respectively. This experiments demonstrates that the
proposed PGC improves the performance of write-intensive
workloads even if a write buffer is employed.

C. F-PGC Evaluation

After extensive evaluation of the semi-PGC, we evaluate
F-PGC and compare it with PGC. F-PGC has been eval-
uated with the same simulation environment described in
Section V-A. We applied PGC and F-PGC to four realistic
server workloads. We also implemented PGC+SE where sus-
pend/resume commands are supported only for the erase op-
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Fig. 15. Performance improvement of PGC for different GC algorithms. (a) Average response time. (b) Variance of response times.

Fig. 16. Performance improvement of PGC over NPGC when an 1 MB write
buffer is employed.

eration. Note that suspend/resume commands can be operable
with read, write, and erase operations to implement F-PGC.
The following GC schemes are evaluated in this section.

1) PGC: A semi-PGC scheme.
2) PGC+SE: PGC with suspend/resume commands being

supported only for the erase command.
3) F-PGC: An F-PGC where suspend/resume commands

are supported for read, write, and erase commands.

The suspend command takes up to 20 μs [37] since a phase
can last up to 20 μs. Therefore, we assume the overhead of
suspending all the operations as 20 μs.

Fig. 17 shows the normalized average response time and
the normalized variance of response times. As shown in
Fig. 17(a) and (b), PGC+SE improves the average response
time by up to 8.21% and the standard deviation by up to
29.63% compared to PGC. In case of F-PGC, it improves
them by up to 68.13% and 83.59%, respectively. F-PGC shows
significant improvements for Cello and TPC-H. Our conjecture
is that Cello and TPC-H contain large amounts of bursty write
requests, and F-PGC allows preemption on erase operations.
Table VIII presents the percentages of write requests with
less than 1.5 ms of interarrival time for workloads. Note that
1.5 ms is the block erase time on flash. Cello and TPCH
have significantly higher percentages of bursty write requests
than Financial and OpenMail. If an erase operation is not
preemptible (which does in F-PGC), request during the erase
operation will be delayed. Though Financial and Cello are
write dominant, Cello is bursty, while Financial is not bursty.
Thus, F-PGC is not very effective for Financial. TPCH is
a read-dominant workload; however, most of bursty write
requests are gathered in the first part of the workload (less

than 10% of total simulated time), and the remaining portion
is mostly read requests, thus, F-PGC could significantly benefit
from the first bursty write-dominant phase. OpenMail is read
dominant, which has minimal impact on F-PGC.

The performance gain came mostly from preempting the
erase and write operations. In our experiment, we allowed to
preempt the read operation, but preempting the read operation
did not have much impact on the performance because its
chance for preemption was low and the latency of read was
very short. Depending on the implementation, preempting the
read operation may not be required.

VI. Related Work

To offer predictable performance, real-time FTLs [10], [34]
adopt a similar GC scheme where incoming requests are
serviced while GC is running. They will need additional free
blocks in order to buffer incoming write requests to avoid
interruptions. When a block is full, it is queued to be cleaned
later by the GC process. If any write requests come to that
block, they will be directed to a temporary buffer until the
block is cleaned, then the pages in the buffer are moved to
the original block, or their role is switched. The proposed
PGC and FPGC do not need an additional buffer because they
exploit the page buffer that already exists in the flash memory
device (as explained in Section III-A).

PGC is discussed in [7] as a possible method to meet
the constraints of a real-time system equipped with NAND

flash. They proposed creation of a GC task for each real-time
task so that the corresponding GC task can prepare enough
free blocks in advance. In a real-time environment both GC
tasks and real-time tasks need to be preemptible. However,
since NAND flash operations cannot be interrupted, these are
defined as atomic operations. In contrast, our work provides a
comprehensive study on the impact of the PGC in an SSD
environment (compared to real-time environment) and we
emphasize optimizing performance by exploiting the internal
parallelism of the NAND flash device (e.g., the multiplane
command and pipelining [32]).

Since it is well known that GC has significant adverse
impact on the performance of SSD [10], [16], [25], [34], GC
has attracted researchers’ interest. Han [16] proposes using
prediction to reduce the overhead of GC. An analytical model
of the performance of GC [5] is developed to analyze the
impact of GC on the performance. Recently, Wu [39] reported
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Fig. 17. Performance improvements of PGC+SE and F-PGC for realistic server workloads. (a) Average response time. (b) Variance of response times.

that suspending the write and erase operations help to improve
the performance. Although GC is not considered in his paper,
his observation is in full agreement with ours. Kim [25]
proposes a coordinated GC mechanism for an array of SSDs
to improve performance degradation due to GC incoordination
of individual SSDs.

In the HDD domain, semipreemptible I/O has been eval-
uated [12] and its extension to RAID arrays also has been
studied [12] by allowing preemption of ongoing I/O operations
to service a higher priority request. To enable preemption, each
HDD access operation (seek, rotation, and data transfer) is split
into distinct operations. In-between these operations, a higher
priority I/O operation can be inserted. In the case of PGC,
we allow preemption of GC to service any incoming request.
We split GC operations into distinct operations and insert
incoming requests in between them. In addition, we provide
further optimization techniques while inserting requests.

VII. Concluding Remarks

SSDs offer several advantages over HDDs: lower access
latencies for random requests, lower power consumption, lack
of noise, and higher robustness to vibrations and temperature.
Although SSDs can offer better performance on average than
HDDs in terms of I/O throughput (MB/s) or access latency,
it often suffers from performance variability because of GC.
From our empirical study, we observed that there are sudden
throughput drops in COTS SSDs when increasing the percent-
age of writes in workloads. While GC is triggered to clean
invalid pages to produce free space, incoming requests can
be pending in the I/O queue, delaying their services until the
GC finishes. This problem can become even more severe for
bursty write-dominant workloads which can be observed in
server-centric enterprise or HPC workloads.

To address this problem, we propose a semi-PGC that allows
incoming requests to be serviced even before GC finishes by
preempting ongoing GC. We identified preemption points that
incur negligible overhead during GC and found four states that
prevent GC from starvation of I/O service that can occur due
to excessive preemption. We enhanced the performance even
further by merging I/O requests with internal GC I/O requests
and pipelining requests of the same type. We performed
comprehensive experiments with synthetic and realistic traces.
It is demonstrated by experiments that the proposed PGC can
improves the average I/O response time by to up 66.56% and

variance of response times by to up 83.30%. We applied PGC
for accelerated workloads where interarrival time is shortened
and evaluated with different GC schemes including idle-based
proactive GC scheme and wear-aware selection algorithm.
PGC exhibits significant performance improvement regardless
of GC schemes for those workloads.

This paper also explored the feasibility of F-PGC. As-
suming that there is an NAND flash memory that supports
suspend/resume commands for read, write, and erase opera-
tions, we can implement F-PGC without incurring excessive
overhead. Our evaluation result shows that F-PGC can fur-
ther improve the average response time and the variation of
response times by up to 14.57% and 52.48%, respectively,
compared to PGC.
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