
End-to-End Data Movement Using MPI-IO Over Routed
Terabits Infrastructures

Geoffroy Vallée
Oak Ridge National

Laboratory
P.O. Box 2008

Oak Ridge, TN 37831
valleegr@ornl.gov

Scott Atchley
Oak Ridge National

Laboratory
P.O. Box 2008

Oak Ridge, TN 37831
atchleyes@ornl.gov

Youngjae Kim
Oak Ridge National

Laboratory
P.O. Box 2008

Oak Ridge, TN 37831
kimy1@ornl.gov

Galen Shipman
Oak Ridge National

Laboratory
P.O. Box 2008

Oak Ridge, TN 37831
gshipman@ornl.gov

ABSTRACT
Scientific discovery is nowadays driven by large-scale simu-
lations running on massively parallel high-performance com-
puting (HPC) systems. These applications each generate a
large amount of data, which then needs to be post-processed
for example for data mining or visualization. Unfortunately,
the computing platform used for post processing might be
different from the one on which the data is initially gener-
ated, introducing the challenge of moving large amount of
data between computing platforms. This is especially chal-
lenging when these two platforms are geographically sepa-
rated since the data needs to be moved between computing
facilities. This is even more critical when scientists tightly
couple their domain specific applications with a post pro-
cessing application.

The paper presents a solution for the data transfer between
MPI applications using a dedicated wide area network (WAN)
terabit infrastructure. The proposed solution is based on
parallel access to data files and the Message Passing Inter-
face (MPI) over the Common Communication Infrastructure
(CCI) for the data transfer over a routed infrastructure. In
the context of this research, the Energy Sciences Network
(ESnet) of the U.S. Department of Energy (DOE) is targeted
for the transfer of data between DOE national laboratories.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
NDM’13 November 17, 2013, Denver CO, USA
Copyright 2013 ACM 978-1-4503-2522-6/13/11 ...$15.00.
http://dx.doi.org/10.1145/2534695.2534705

Keywords
performance measurement, networking

1. INTRODUCTION
The U.S. Department of Energy (DOE) high performance
computing (HPC) facilities are spread across the country,
creating many challenges such as bulk data movement and
the coupling of facilities. In fact, facility coupling is be-
coming a critical capability since it enables the coupling of:
simulation and analysis; simulation and experiments, for in-
stance coupling light sources and neutron applications, or
even in the context of high energy physics (HEP) and Fu-
sion Energy Sciences (FES); analysis and fusion of remote
sensors, for instance in the context of climate research or
field campaign sensors; broader data sharing, for instance
in the context of federated data centers or context delivery
networks. In this context, there is a clear need for high-
performance solutions for efficient data movement between
DOE facilities. The goal is to achieve high-performance end-
to-end data transfer between DOE facilities based on dedi-
cated wide area networks (WAN) already deployed by DOE
such as the Energy Sciences Network (ESnet).

This document presents a solution for data transfer between
two MPI [3] applications coupled via a dedicated WAN.
Overall, this project aims to provide an end-to-end solu-
tion for terabit data movement between remote DOE sites.
The project is composed of multiple components: (i) a low-
level communication layer for data movement on the Wide
Area Network (WAN), based on the Common Communi-
cation Interface (CCI) [2] implementation; and (ii) a rout-
ing component for high-performance communications over
the WAN in a dedicated environment. By providing these
components, it is possible to provide an implementation of
the Message Passing Interface (MPI) that allows develop-
ers to extend their MPI applications for the WAN or couple
MPI applications, especially when transfer of large files is
required. The contributions of this paper are the presen-
tation of CCI routing, as well preliminary results using the
TCP implementation of CCI, which is portable and generic.



For instance, the proposed approach can be used to easily
couple MPI applications that needs to exchange data from
files. As a result, the presented results are not optimized,
it is for instance possible to use the same CCI prototype
but RDMA over Converged Ethernet (RoCE) networks and
other technologies in the future, which will provide greater
performance. However, we show in this study shows the fea-
sibility of the approach and shows results using TCP that
are near end-to-end line-rate throughput when using large
files.

The remainder of this paper is organized as follows, Sec-
tion 2 provides a brief overview of related work; Section 3
describes CCI; Section 4 presents routed CCI; Section 6
presents a model for data transfer between MPI applications
using MPI-IO and CCI; finally Section 7 concludes.

2. RELATED WORK
The transfer of files over the WAN has been an active topic
of research for the past decades. Many tools, including
GridFTP, BaBar Copy Program (BBCP), and bbFTP has
been developed for the copy of large files over long distances.
In the context of application coupling, these tools can be
used to transfer output files to a remote site where the file
can be fed to another application as input. GridFTP [1] is
an extension to the File Transfer Protocol initially developed
in the context of the Globus project [4], aiming at provid-
ing a general-purpose mechanism for secure, reliable, high-
performance data movement. GridFTP has been designed
to provide a framework that can be used for the construc-
tion of data-intensive tools and applications. GridFTP aims
at achieving high throughput, low latency and support the
connection of thousands of clients. Because GridFTP is an
extension of FTP, which is not usually used for parallel com-
puting, scientists may face challenges when extending their
HPC applications. Furthermore, GridFTP is implemented
using TCP and therefore can not take full benefit of part of
the infrastructure that could be based on high-performance
networks such as Infiniband. BBCP [5] provides a peer-to-
peer secure fast copy tool and is an alternative to GridFTP.
BBCP aims at supporting the transfer of large amounts of
data. The data is typically fragmenting into smaller pieces
that are then transfered via simultaneous streams (tradi-
tional tools such as FTP typically use a single stream). Fi-
nally, bbFTP [8] is another tool for the efficient transfer of
large files. bbFTP, in contrast with GridFTP, is based on its
own transfer protocol that is specialized for very large files.
All these solutions have proven to be efficient for the transfer
of large files over the WAN. Unfortunately, these tools are
not integrated into programming languages for HPC such as
MPI. This document investigates if MPI could replace these
tools for the transfer of large files, providing the benefit of
offering the same capability using a language scientists are
already familiar with.

Another way to couple parallel applications is to use specific
languages such as CORBA [7]. These solutions require the
developers to learn a new language and is not necessarily
available on all platforms.

The proposed work aims at providing a solution that relies
on MPI to prevent developers from learning a new language
and high performance like dedicated tools such as GridFTP.

3. INTRODUCTION TO CCI
The goal of the CCI project is to provide a communication
interface for high-performance computing (HPC) and data
centers. CCI is composed of simple and portable application
programming interface (API), and is designed to be highly
scalable, to enable high performance, and to be robust even
in the context of faults. The CCI API can be used as a com-
mon network abstraction layer (NAL) for persistent services
as well as for inter-process communication.

In the context of HPC, applications mainly rely on the Mes-
sage Passing Interface (MPI) (which is a de-facto standard),
and persistent services such as distributed file systems, code
coupling, health monitoring, debugging, and performance
monitoring. Most MPI implementations include their own
NAL, whereas persistent services are mostly implemented
using BSD Sockets for portability concerns. The CCI API
implementation addressed these two constraints by provid-
ing an integration with an implementation of the MPI stan-
dard (i.e., Open MPI), and provides a set of implementations
for different networking technologies, from Sockets (UDP),
to hardware-accelerated solutions for InfiniBand and Cray’s
Gemini and Aries.

3.1 Key CCI Design Concepts
Events. For simplicity, CCI uses events to represent com-
munication (e.g., send completion) as well as connection
handling (e.g., incoming client connection requests). The
usage of events avoids more complex programming such as
the traditional Berkeley’s Active Messages designed with
which application developers need to use callbacks. By us-
ing events, the programming of applications is closer from
the usage of Sockets, but still enables asynchronous seman-
tics and implementations that enable high performance (zero
copies implementations and so on). Finally, the event based
design allows the application to perform either polling or
wait; and since all events are managed via a single com-
pletion queue, CCI scalability in time is better than other
solution such as BSD sockets.

Connections. Connections are used to represent the state
of communication channels. By using connections, it is pos-
sible to minimize the time and space used by CCI when
scaling up (in contrast to BSD sockets for instance) – no re-
sources is allocated per connection (and therefore per peer).
Connections also avoid to maintain a distributed process
space such as a communicator in MPI, which greatly im-
prove the robustness of the solution. Connections also al-
low applications to choose the level of service that best
fits its needs and to provide fault isolation. For instance,
CCI offers choices of reliability and ordering: Unreliable-
Unordered (UU), Reliable-Unordered (RU), and Reliable-
Ordered (RO).

Endpoints. An endpoint is a virtual instance of a device,
i.e., a logical source or destination. Because of this, one
endpoint can use one or more connections. For instance,
if the host machine has multiple Network Interface Cards
(NIC), all the available cards can be used using a connection
associated with each of them to reach the same destination
endpoint. Resources are allocated on a per endpoint basis
(e.g., receive and send queues), which does not compromise



scalability and robustness.

3.2 Communication Modes
Based on these cores concepts, two modes of communica-
tions are provided by CCI: messages (MSG) and remote
memory access (RMA). As said before, the usage of events
greatly simplify the usage of the API for messages (e.g., no
callbacks). For instance, an incoming message generates a
receive event, which includes a pointer to the data within the
CCI library’s buffers. The application may access the data,
copy it out if necessary, or even use the pointer to call an-
other CCI function (e.g., the send function). Furthermore,
since CCI is not using handlers, the application does not
block further communication progress.

CCI also provides RMA semantics, which enables the trans-
fer of bulk data at the application level: the application
explicitly registers memory and receives a handle. The han-
dle can then be sent to a remote peer using a message and be
used to perform a RMA Read or Write operation with the
remote peer. CCI RMA also supports a Fence, which can be
used to ensure all preceding RMAs have completed before
issuing new RMAs to that peer. RMA operations may also
optionally include a remote completion message, which will
be delivered to the peer after the RMA operation completes.
All RMA operations require a reliable connection (ordered
or unordered).

3.3 Implementation details
The CCI implementation is based on a modular architec-
ture that enables the support of different transports under a
single implementation of the API. In fact, a CCI transport
targets a given technology such as Myrinet, InfiniBand, and
BSD Sockets (UDP). The CCI implementation may provide
several transports; the selection of the appropriate transport
being made during the initialization of CCI. This also means
that multiple transports may run side-by-side at one given
type so it is possible to fully benefit from all available hard-
ware on a given platform. In other terms, a transport is the
software that enables the usage of a given NIC. In fact, CCI
has the concept of device that represents a network interface
card or host channel adapter (HCA). A device connects the
host and network. Furthermore, an endpoint is the process’
virtual instance of a device. The endpoint is the container
of all the communication resources needed by the process in-
cluding queues and buffers, shared send and receive buffers,
etc. A single endpoint may communicate with any number
of peers and provides a single completion queue regardless
of the number of peers. CCI achieves better scalability on
very large HPC and data center deployments since the end-
point manages buffers independent of how many peers it is
communicating with.

4. CCI ROUTING
The primary goal for CCI routing is to provide end-to-end
communication over heterogeneous networks across both local-
area networks and wide-area networks. One usage scenario is
moving data from a simulation on a leadership class system
across the local-area network, over the wide-area network to
another DOE facility, across its local-area network, and fi-
nally into a cluster for analysis and/or visualization. Such a
scenario could transit five or more heterogeneous networks:

a high-performance interconnect within the leadership class
system, the local-area network, the wide-area network, the
second facility’s local-area network, and the cluster’s high-
performance interconnect. The secondary goal for CCI rout-
ing is to take advantage of the highest performing network-
ing stack on each network. We could simply use Sockets and
take advantage of the routing capabilities of the IP stack.
Because of the design of Sockets precludes OS-bypass and
zero-copy techniques, we need to use the non-Sockets APIs
for the networks that provide those capabilities. CCI pro-
vides the ability to exploit each network’s capabilities, but
CCI does not provide by itself a common address space for
routing. Our last goal is to provide that common address
space to enable routing with minimal impact on the current
CCI API and implementations. Ideally, current CCI im-
plementations would not need any modifications to support
routing.

Figure 1 shows four hypothetical organizations with one or
more subnets each and all organizations are connected to
the WAN. Two of the organizations, labeled AS3 and AS4,
have a dedicated link separate from the public WAN. For the
purposes of routing, each organization determines its routing
topology and policy. We use the term Autonomous System
(AS) to describe such an organization. Each AS is assigned
a unique 32-bit ID. The limited number of anticipated par-
ticipating organizations should allow manual assignment of
AS IDs. Within an AS, each subnet is also assigned a 32-bit
ID. This ID is only unique within the AS. Different organi-
zations may use the same subnet IDs. Therefore, a specific
subnet will have a globally unique combination of AS ID
and subnet ID. In Figure 1, AS1 might represent a campus-
wide IP network and thus it has a single subnet (SN1). It
only requires a router at the border between the SN1 and
the WAN. AS2 depicts multiple Ethernet broadcast domains
and this organization prefers the Ethernet transport. Since
the Ethernet transport requires a common Ethernet broad-
cast domain (EBD), this organization has to provide routers
between each EBD. AS3 has three subnets: a campus wide
Ethernet network (SN1), a storage-area InfiniBand network
(SN2), and a leadership class compute system with a high-
performance interconnect (SN3). Each subnet in AS3 has
one or more routers providing connectivity to other subnets.
For example, the compute system’s subnet 3 is connected to
subnets 1 and 2 via router 4 (R4). In addition to its WAN
connectivity via router 1 (R1), AS3 also has a dedicated
WAN link to AS4. This link is only valid for traffic originat-
ing or terminating at AS4 and cannot be used for forwarding
to other organizations. AS4 has a campus-wide network, a
storage-area network, and a couple of HPC systems.

Local Routing. Local routing is within an organization (or
intra-AS). All subnets share the same AS ID. If the AS ID
and the subnet ID for two endpoints are the same, the com-
munication does not require routing at all. If the subnets
have different subnet IDs, then routing is required over one
or more routers within the organization, but not over the
WAN.

WAN Routing. If the AS IDs differ between two endpoints,
routing over the WAN is required. The routers in one orga-



Figure 1: Multiple Organizations Each With Multiple Subnets

nization do not need, however, the complete (global) routing
information for the entire path.

4.1 Route Determination
In this section, we look closer at the details of routing. Each
router within an organization will need to have the same
route map. The map indicates to which subnets each router
connects directly as well as the path from any subnet to
every other subnet within the organization. For example,
a router that connects to three subnets will have three (or
more) network adapters and it will have at least one CCI
endpoint per subnet. Clients of the routing service will never
have the map and will not be involved in the building of the
routing map. Each client will have a static list of routers
available within the device description in its CCI configura-
tion file. The client will randomly choose a router.

4.1.1 Building the Complete Route Map
For this organization, we want to build routes from every
subnet to every other subnet. A route will be an ordered
list of one or more subnet IDs. For connections between
endpoints on the same subnet, no routing is required and the
route list is empty. The routing table can then be thought of
as a NxN table where N is the number of subnets. The left
column will be the array of originator subnets of connections
and the top row will be the array of destination subnets for
connections. The intersection of the row N and column M
will contain the ordered list of subnet IDs from subnet N to
subnet M. Altogether, AS3 has five subnets (SN1-3, WAN,
and WAN to AS4). Its routing table will have five rows by
five columns. We will label the rows and columns 1, 2, 3,
W*, and W4 for the five subnets.

As mentioned previously, if the AS ID and subnet ID match,
then we do not need to use routing. Since all routing maps

are specific to an AS, the AS ID is the same for all subnets
in the map. Therefore, we can identify which entries in the
table that will not have any routes. In our example, the
first cell is at row 1 and column 1 for subnet 1 in both cases,
which does not require routing and is empty (as are 2:2, 3:3,
W*:W*, and W4:W4). Also, since AS3 has two WAN links
and since we do not forward through organizations, entries
for W*:W4 and W4:W* are empty as well.

When subnets are directly connected via a router, the route
uses a single hop. We use them to initialize the routing
table. For example, router 2 connects subnet 1 and subnet
2. For the entry at row 1 and column 2 (1:2), we enter 1, 2
and at row 2 and column 1 (2:1), we enter 2,1. We continue
with each router’s direct connections.

Once all the single-hop routes are entered, we need to build
routes between non-directly connected subnets. We will
build these routes starting with the single-hop routes and
combining them until we find all of the possible routes from
one subnet to another. To avoid loops when computing
routes, if we encounter a subnet ID a second time, we dis-
card the route. Looking at our previous example, routing
from subnet 3 to the WAN could use the following routes:
3,1,W*; 3,2,1,W*

Routing from WAN to subnet could use the reverse of these
two routes. No other routes exist from subnet 3 to the WAN
without incurring a loop. In addition to loop detection, we
will discard routes that contain a shorter route. In the above
example, the route 3,1,W* is contained within 3,2,1,W*.
Since no edge (i.e. subnet) can have a zero cost to tra-
verse, the longer route that contains a valid shorter route
can never cost less than (or even equal to) the shorter route.



Note that there are no loops since all subnets 1, 2, and 3 are
all directly connected to each other. And since we discard
longer routes that contain valid shorter routes, the table for
AS3 only has one route in each cell.

4.1.2 Choosing between multiple routes
If we encounter any loops when building the complete rout-
ing table, multiple routes will exist between some of the
subnets. Likewise, if an organization has private WAN links
in addition to the public WAN link, multiple routes will
exist between some subnets and other organizations. The
administrator will be able to choose between multiple met-
rics to determine which route should be used. Initially, we
intend to provide bandwidth (based on link-rate, not dynam-
ically available throughput), network capabilities (e.g. na-
tive RMA support), latency, and hop count. When choosing
routes, we will use Dijkstra’s Algorithm to find the short-
est path in a graph.For our usage, each vertex in the graph
represents one or more routers that connect two or more sub-
nets. The edges are the subnets. For subnets that cannot
be transited (i.e. the subnet can only be at the beginning
or end of a route), they are represented by an edge with a
vertex only at one end. When dealing with non-transiting
subnets, the other vertex will represent the end node. The
algorithm is a minimizing function. The goal is to find the
least cost path between any two nodes. At least one of our
metrics, bandwidth, needs to be converted. Ideally, the rout-
ing algorithm would choose the highest bandwidth network
available. In CCI, the device information includes link-rate
expressed in bits per second. To convert link-rate to a usable
metric, first convert this rate to gigabits per second (Gb/s)
and, second, divide a fixed, larger value by the Gb/s. For
example, if the fixed value is 1 terabit per second (1 Tb/s
or 1,000 Gb/s) and if the device has a link-rate of 10 Gb/s,
then the metric for subnet connected to this device would
be 100 (1,000/10). For a device capable of 100 Gb/s, the
metric would be 10. Given a choice between a subnet with
a metric of 100 (10 Gb/s) versus 10 (100 Gb/s), the al-
gorithm will choose the lower value and pick the faster 100
Gb/s subnet. Back to our example, if the application wishes
to communicate between on node on AS3’s subnet 3 and a
node at AS 4, it could use either the public WAN connected
to router 1 or the private WAN link connected to router
2. Both routes transit subnet 3 followed by subnet 1. In
our example, subnet 3 has a fast HPC interconnect with a
link-rate of 64 Gb/s, subnet 2 is 10 Gb/s Ethernet as is the
public WAN, and the private WAN to AS4 is 100 Gb/s. If
we convert these, the bandwidth metric value for subnet 3 is
15 (rounding down), subnet 1 and the public WAN are 100
each, and the private WAN is 10. The two routes are then
scored. The route through the public WAN traverses subnet
3, subnet 1, and the public WAN for a score of 215 (15 +
100 + 100). The route through the private WAN traverses
subnet 3, subnet 1, and then the private WAN for a score of
125 (15 + 100 + 10). The traffic will flow over the private
WAN.

To determine the cost of a route, we sum the converted link-
rate metric for each subnet traversed. The route that uses
subnets 1, 2, and 8 has a total cost of 300. The route that
passes over subnets 1, 5, 6, and 8 has a total cost of 262
making this the preferred route. Bandwidth alone does not
tell the whole story. CCI supports multiple networks includ-

ing Sockets (UDP/IP and TCP/IP). Most high-performance
networks provide IP or Ethernet encapsulation as well. This
means that CCI can communicate over a network using its
native low latency, zero-copy, and OS-bypass interface and
over Sockets on top of this interface. The native interface
will always perform better than the Sockets interface, but
the link-rate is identical. In order to recognize this fact,
the routing information will include whether the interface
supports zero-copy and OS-bypass. When computing the
bandwidth metric, we will convert the link-rate to the band-
width metric and then, if the route does not use zero-copy
and OS-bypass, we will double the metric (in effect dividing
the link-rate by half). This will bias the routing decision
to use subnets with these capabilities over subnets that do
not.

5. CCI FOR THE WAN
In this section, we present CCI tuning required for the WAN,
as well as a performance evaluation of CCI over a dedicated
WAN.

5.1 CCI Tuning for the WAN

Transport Configuration. Users have the option of speci-
fying CCI parameters via the configuration file. The follow-
ing parameters are available: (i) bufsize: Default buffer size
of the system level (for Sockets-based transports, this spec-
ifies the size of both the send and receive socket buffers);
(ii) port: Specify the port used for communication; and (iii)
interface: Specify the network interface to use. For the re-
maining of the paper, bufsize is assumed to be set to 128MB.

System Tuning. Linux systems are not by default provid-
ing an adequate system configuration for high-performance
communications over the WAN. On the ANI platform, the
following system parameters have been used:

net.core.rmem_max=134217728

net.core.wmem_max=134217728

net.ipv4.udp_rmem_min=87380

net.ipv4.udp_wmem_min=87380

net.ipv4.tcp_rmem="8192 65536 134217728"

net.ipv4.tcp_wmem="8192 65536 134217728"

net.core.netdev_max_backlog=250000

net.ipv4.tcp_timestamps=1

net.ipv4.tcp_congestion_control=htcp

Also, to increase performance in the context on a LAN, it can
be beneficial to tune the network coalescing. For instance,
between nodes on a single ANI site, e.g., ORNL, we set the
network coalescing to 1 microsecond:

$ ethtool -C eth0 rx-usecs 1

$ ethtool -C eth0 tx-usecs 1

The TCP transport offers 8 tunable parameters: (i) the
default value of the maximum segment size (TCP DEF-
AULT MSS); (ii) the maximum segment size (TCP MAX-
MSS), usually equal to the MTU size; (iii) the progress time



in microseconds (TCP PROG TIME MS); (iv) the number
of CCI receive buffers per endpoint (TCP EP RX CNT);
(v) the number of CCI send buffers per endpoint (TCP EP -
TX CNT); (vi) the number of in-flight RMA messages in the
context of a single RMA operations (TCP RMA DEPTH);
(vii) the size of RMA fragments (TCP RMA FRAG SIZE);
and (viii) the maximum size for any RMA fragments (TCP-
RMA FRAG MAX). For the remaining of this paper, the

TCP transport has been tuned with TCP RMA DEPTH
set to 1024. All other parameters are set with the default
value.

5.2 Evaluation of CCI over WAN
The evaluation of CCI over WAN is based on point-to-point
communications. All results are based on experimentation
using the DOE-funded Advanced Networking Initiative (ANI)
testbed, which is part of the Energy Sciences Network, initi-
ating communications between Argonne National Labora-
tory (ANL) and Berkley National Laboratory (NERSC).
This network is a 100Gb network; each node on the net-
work having a 4x10G Myricom card; each node being setup
to expose four different 10Gb ethernet cards. All tests are
performed with an exclusive access to the computers and
the network; and are based on the usage of a single 10Gb
network card, the maximum theoretical bandwidth being
therefore 10Gb. All systems are setup to use a 9000 bytes
MTU. We use a ping test, which gives both the latency and
the bandwidth for communications between two endpoints
using small messages or RMA operations, based on the size
of the messages.

Figure 2 presents the latency achieved on the ANI platform
with the TCP transport (with a reliable-ordered connection)
using the ping-pong test. The latency achieved with CCI is
very similar to the one achieved with Netperf, i.e., about 24
milliseconds.

Figure 2: Ping-pong latency with the TCP transport

Figure 3 presents the RMA bandwidth with the CCI TCP
transport. In the context of RMA write operations, all types
of communications (RO, RU) presents a similar bandwidth
since TCP is used for the implementation of the transport;
only the protocol inside the transport if different for ordered
and unordered connection (the transport has its own se-
quence number management for ordered connections). Ul-
timately, since the system is performing flow control and
since the TCP layer is implementing the reliability protocol,

it is possible to achieve higher bandwidth. This is not a
streaming test; it is similar to a request/response where the
request size is listed in the message size and the response is
a very small message. The bandwidth tops out near 1200
MB/s at a message size of 1 GB, achieving near line-rate
performance.

Figure 3: RMA bandwidth with the TCP transport

6. TERABIT DATA TRANSFER USING MPI-
IO AND CCI

In order to demonstrate the coupling of MPI applications as
well as the data transfer between the two applications, we
present in this section a model based on MPI-IO and CCI
for the transfer of data between two MPI applications. We
also present an evaluation of the proposed model.

6.1 Data Transfer Model
This model is based on the following assumptions: (i) two
sites are connected via a dedicated WAN; (ii) each site has its
own separated parallel file system; and (iii) a routed com-
munication is required for all communication between the
two parallel file systems. We also assume, for simplifica-
tion, that the data is read from site A and transferred to
site B. Furthermore, in order to achieve high performance,
parallel communications are initiated between ranks running
on each site: rank i on Site A sends its data to rank i on
Site B. Finally, since we assume big data files have to be
transferred, ranks on site A will perform a parallel read of
the file to transfer and ranks on site B will perform a par-
allel write to save the data into a local file once the data
received. File access can be implemented using MPI-IO or
the POSIX API. Figure 4 illustrates the proposed model.
For the implementation of the model, CCI has been inte-
grated into an MPI implementation: a specific Byte Trans-
fer Layer (BTL) for Open-MPI was used; BTLs being net-
work abstractions. It is therefore possible to use MPI for
both file access, using MPI-IO, and the transfer between the
two sites, using MPI communication (i.e., MPI Send() and
MPI Recv()). The coupling of the two application is done by
using MPI Comm connect() and MPI Comm accept(). Ul-
timately, this makes possible to couple two MPI applications
using MPI, which prevent application developers from hav-
ing to use specific code coupling methods and languages.



Figure 4: Data Transfer Model Using MPI-IO

6.2 Evaluation
We performed a set of preliminary evaluations using the ded-
icated WAN ESnet network between two hosts, one at Ar-
gonne National Laboratory (Illinois, USA) and the other
at Berkley National Laboratory (California, USA). Table 1
summarizes the configuration of the nodes. The disk through-
put tests were performed using the dd system tool.

To evaluate our work, we developed a synthetic benchmark
to mimic the configuration described in Section 6.1: 2 MPI
applications are running on two different sites that are con-
nected to a WAN. The goal is to transmit a data file from site
A to site B by extending the MPI application. Furthermore,
since we assume we are running across a WAN, we cannot
assume there is a distributed or parallel file system shared
by the two sites. Site A is assumed to be nersc-diskpt-1 and
Site B star-mempt-2. We first compared the transmission
of a 1 gigabyte file using the default TCP BTL from Open-
MPI and the CCI BTL. We also compared the results when
accessing the file using MPI-IO and the POSIX API.

Figure 5 presents the results on the ESnet. The bandwidth
is calculated starting a timer when all ranks start to read
the file on Site A. Then each rank sends its file chunk to
its corresponding rank on Site B, which writes the file upon
reception. After reception, all ranks on Site B enter into a
barrier to ensure the file is successfully written on the disk.
Rank 0 of Site B then send a message back to Site A to no-
tify completion of the operation. The time is stopped on Site
A upon reception of this message and the throughput calcu-
lated. CCI always outperform the TCP BTL mainly because
the CCI BTL enables a RMA operation for the transfer of
the file, whereas the TCP BTL only uses small messages.
The results also show that MPI-IO is a limiting factor when
using the CCI BTL since using the POSIX API to read
and write the file allows us to achieve about 400MB/s with
POSIX and only about 100MB/s using MPI-IO.

Based on these results, we then optimized the benchmark
to overlap file access and MPI send/receive operations. For
this, we extended our benchmark based on the POSIX API:
as previously each rank is assigned a chunk of the file, but
the chunk is now split up in blocks of predefined size. For

Figure 5: Data Throughput Across the WAN

instance, a 100MB file with 10 ranks and a block size of
1MB results in each rank sending 10 blocks of 1MB. For the
transfer, all ranks on Site B post a non-blocking receive at
the beginning of the test, before Site A starts to read the
file. Ranks on Site A use non-blocking send and read/send
the blocks as quickly as possible. Ranks on Site B track all
the receives so we can determine overall completion.

We perform two different tests using a 1GB and a 10 GB
file. For each file size, two different block size (1 and 10 MB)
are used. Table 2 shows the results using 16 ranks on each
site. With a 10GB file and a block size of 1MB, it is possible
to achieve more than 1,000 MB/s.

7. CONCLUSION
This document presents a solution for end-to-end data move-
ment over routed terabit infrastructures. The proposed so-
lution is based on MPI for the coupling of MPI applications,
simplifying the effort for coupling the applications; MPI-IO
or the POSIX API being used for accessing the files and
MPI communications for the actual data transfer between
the sites. In that context, the Common Communication
Interface prototype has been integrated into an MPI imple-
mentation (Open-MPI) and a proof-of-concept benchmark



Name nersc-diskpt-1 star-mempt-2
Location Berkley National Laboratory Argonne National Laboratory

Number of cores 12 16
Network 10Gb Ethernet 10Gb Ethernet

Disk Write Throughput 1.7 GB/s 84.1 MB/s
Disk Read Throughput 6.2 GB/s 3.0 GB/s

Table 1: Hardware Configuration of the Testbed

Block Size 1 GB File (Thoughput in MB/s) 10 GB File (Thoughput in MB/s)
1MB 488.17 1012.42

10 MB 481.71 963.52

Table 2: Throughput Overlapping File Accesses and MPI Communications

developed to validate the proposed approach.

Ultimately the contributions of this work are: (i) the opti-
mization of CCI for the WAN; (ii) the routed CCI; (iii) the
development of a proof-of-concept benchmark; and (iv) a
preliminary evaluation based on TCP, comparing CCI over
TCP with the TCP substrate from Open-MPI, as well as
different methods to perform file I/O.

The results show that it is possible to achieve near line-rate
performance relying only on TCP and MPI for a end-to-end
file transfer. This shows the benefit in this context of CCI
over existing communication substrates such as the TCP
BTL from Open-MPI. As a result, scientists can couple MPI
applications or extend existing MPI application by using
MPI, greatly decreasing the complexity of such tasks and
avoiding requiring the scientists to interface their application
with extra tools and/or learn new programming language.
This study also shows the importance of method to access
the files and its impact on the overall performance. For
instance, we show that the current implementation of MPI-
IO in Open-MPI introduces a very high-overhead and, as a
result, it might be preferable to use other methods to read
and write files (in the context of this study, the standard
POSIX API provides better performance). In fact, other
parts of the project are focusing on this approach, including
I/O optimization solutions with layout-awareness on end-
system hosts for bulk data movement [6].

CCI is designed to be extensible and therefore it is pos-
sible to support more advanced networking solutions such
as RoCE or any future networking solution. We anticipate
that the usage of such technologies would drastically improve
overall performance and for instance achieve near line-rate
performance even for smaller files.

Acknowledgment
We would like to acknowledge the individuals from The In-
novative Computing Laboratory at the University of Ten-
nessee who developed the Open-MPI Byte Transfer Layer
for the Common Communication Interface prototype.

This research is sponsored by the Office of Advanced Scien-
tific Computing Research; U.S. Department of Energy and
performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 and used resources of the Center for Com-

putational Sciences at Oak Ridge National Laboratory.

This research used resources of the ESnet Testbed, which is
supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-05CH11231.

8. REFERENCES
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,

C. Dumitrescu, I. Raicu, and I. Foster. The Globus
Striped GridFTP Framework and Server. In
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, SC ’05, pages 54–, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] S. Atchley, D. Dillow, G. M. Shipman, P. Geoffray,
J. M. Squyres, G. Bosilca, and R. Minnich. The
Common Communication Interface (CCI). In Hot
Interconnects, pages 51–60. IEEE, 2011.

[3] T. M. Forum. MPI: A Message Passing Interface, 1993.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of
Supercomputer Applications, 11:115–128, 1996.

[5] A. Hanushevsky, A. Trunov, and L. Cottrell.
Peer-to-Peer Computing for Secure High Performance
Data Copying. In In Proc. of the 2001 Int. Conf. on
Computing in High Energy and Nuclear Physics (CHEP
2001), Beijng, 2001.

[6] Y. Kim, S. Atchley, G. R. Vallée, and G. M. Shipman.
Layout-Aware I/O Scheduling for Terabits Data
Movement. In To Appear in Proceedings of ithe
Workshop on Distributed Storage Systems and Coding
for BigData (DSSCB 2013), Oct. 6-9, 2013. Held in
conjunction with the 2013 IEEE International
Conference on Big Data (IEEE BigData 2013).

[7] C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA
Component Model for Numerical Code Coupling. In
M. Parashar, editor, GRID, volume 2536 of Lecture
Notes in Computer Science, pages 88–99. Springer,
2002.

[8] Y. Ren, T. Li, D. Yu, S. Jin, and T. Robertazzi.
Middleware Support for RDMA-based Data Transfer in
Cloud Computing. In Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPSW ’12,
pages 1095–1103, Washington, DC, USA, 2012. IEEE
Computer Society.


