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ABSTRACT

Scheduling multiple jobs onto a platform enhances system
utilization by sharing resources. The benefits from higher
resource utilization include reduced cost to construct, op-
erate, and maintain a system, which often include energy
consumption. Maximizing these benefits comes at a price
– resource contention among jobs increases job completion
time. In this paper, we analyze slow-downs of jobs due to
contention for multiple resources in a system; referred to
as dilation factor. We observe that multiple-resource con-
tention creates non-linear dilation factors of jobs. From this
observation, we establish a general quantitative model for
dilation factors of jobs in multi-resource systems. A job is
characterized by a vector-valued loading statistics and dila-
tion factors of a job set are given by a quadratic function
of their loading vectors. We demonstrate how to system-
atically characterize a job, maintain the data structure to
calculate the dilation factor (loading matrix), and calculate
the dilation factor of each job. We validate the accuracy
of the model with multiple processes running on a native
Linux server, virtualized servers, and with multiple MapRe-
duce workloads co-scheduled in a cluster. Evaluation with
measured data shows that the D-factor model has an error
margin of less than 16%. We also show that the model can
be integrated with an existing on-line scheduler to minimize
the makespan of workloads.
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1. INTRODUCTION
Sharing a system with multiple workloads enhances sys-

tem utilization, thereby lowering the economic [10] and envi-
ronmental dent [33]. Recent advents in server virtualization
bolster this sharing policy since it allows multiple operat-
ing system instances to share a physical machine [4]. How-
ever, sharing a system comes at a price – contention for
system resources. Contention for system resources leads to
high variance in performance, which would deter hosting la-
tency sensitive applications that require tight performance
guarantees [3]. The high variance in performance is often
considered as unpredictable performance [3], due to the de-
ficient understanding of performance variation of a work-
load from contention for multiple resources [13, 17]. This
in turn would make the usual, but costly over-provisioning
design more attractive, thereby defeating the whole concept
of resource consolidation and cloud computing. Therefore,
performance quantification of jobs (or performance degra-
dation) in a multi-resource shared platform is essential to
both facilitate co-hosting of applications and meet the ser-
vice requirements. However, performance prediction in such
an environment is admittedly a challenging problem and to
our knowledge, no efficient technique is available today.

We may capture the performance variation of jobs in shared
systems with slow-down due to resource contention. Let di-
lation factor denote the slow-down of a job due to resource
contention. Prior efforts to estimate dilation factor falls into
two groups – modeling based solutions [21, 24] or measure-
ments based solutions [13, 16, 18, 20]. Modeling based so-
lutions often use resource usage statistics of each job to
construct the model. For example, queuing theory based
approaches use system parameters like job arrival rates and
service rates of resources [21], while control theory based ap-
proaches use the relationship between allocated amount of
resources and workload behavior [24]. However, resource ac-
cess behavior of a job depends on co-located jobs and specific
hardwares, especially when both jobs and machines are het-
erogeneous [17,28,35]. For instance, co-located jobs can alter
cache hit ratio of a job in multi-core environments [17,27] or
disk access latencies in shared storage systems [35], which
can change resource access statistics of a job. Therefore, in
order to improve the accuracy of a model, prior modeling



based approaches require detailed resource access behavior
of each job.

In order to address such challenges, measurement based
approaches have been proposed [13,16,18,20]. Koh et al. [18]
predicted the performance degradation of co-located work-
loads using recorded similar workloads in terms of their re-
source usage statistics, similar to program similarity analy-
sis [16]. Recently, Govindan et al. [13] and Mars et al. [20]
independently proposed techniques that employ probe jobs
to infer behavior of workloads when they are co-located,
which does not require resource usage statistics. However,
those approaches do not provide generic strategies to esti-
mate dilation factors of co-located jobs. Therefore, we desire
to develop a simple, but generic model to estimate dilation
factors of co-located jobs, without depending on detailed
description on research access behavior of each job.

In order to develop such a model, we may start from a
simple model, linear sum of original completion times of
jobs, which has been used to obtain makespan of jobs in
scheduling algorithms [30]. With linear sum, we may ob-
tain dilation factor of each job from dividing the makespan
by individual completion time of each job. The benefit of
the linear sum model is that it only relies on the comple-
tion times of jobs. However, linear sum may not be able
to provide desired accuracy due to non-linearity between in-
dividual completion times and makespan in multi-resource
shared environments [5,11,17]. For example, completing two
co-hosted jobs – one 100 sec CPU-job with one 100 sec I/O-
job – will take less than 200 sec, contradict to estimation
from the linear sum of completion times of both jobs. The
deficiency of linear sum model is the lack of ability to con-
sider multiple resources at the same time. Thus, we propose
a model that extends the linear sum model to consider mul-
tiple shared resources, which only relies on the completion
times of jobs instead of resource usage statistics. With the
proposed model, we overcome challenges in using prior ana-
lytical model based approaches to estimate dilation factors
of co-located jobs. Also, we provide a mathematical founda-
tion on using well-known workloads, probe jobs in [13, 20],
to infer behavior of co-located workloads.

To provide accurate estimation of slow-down of jobs due
to resource contention in shared environments like data cen-
ters/cloud computing platforms, we propose a generic quan-
titative model for dilation factors of n-jobs contending for m-
resources, called the dilation factor model (D-factor model).
We view a job as a sequence of accessing one of the system
resources and a shared system as a collection of resources.
For this, we characterize the resource access statistics of a
job by a vector-valued loading statistics, a loading vector.
We obtain the factor of dilated completion time, the dila-
tion factor, of each job from a quadratic relation of load-
ing vectors for jobs in the system, which can be utilized
in optimization problems such as job scheduling. In addi-
tion, the proposed D-factor model can profile a job by only
measuring completion time of a job, which does not require
any instrumentations such as monitoring tools and modify-
ing software/hardware infrastructures as have been used in
prior studies [13]. This is an important characteristic for
cloud environment, where application operators on virtual
machines often cannot monitor physical resources.

We validated the proposed model with actual measure-
ments on cluster infrastructures running native Linux and
Xen Hypervisor [4], with synthetic workloads, FileBench [2],
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Figure 1: Non-linearity in slow-down of a job in a multi-
resource system. CPU represents a CPU-bound job and IO
represents an I/O-bound job. Each bar represents the com-
pletion time of job A when job B is colocated. For example,
CPU+IO denotes the completion time of the CPU-bound
job when the I/O-bound job is co-located.

and MapReduce. The experimental results from synthetic
workloads indicate that the average error rates of the esti-
mations from the proposed model are 7% for a system on
native Linux and 10.3% for a virtualized system. However,
the estimation error from the linear completion time model
could be up to 98% in the worst case. For the FileBench
benchmark, the proposed model estimates the completion
time of workloads within a 6.0% error. We used three pop-
ular applications to benchmark MapReduce– Sort, Grep,
and PiEstimator. In experiments with MapReduce, we in-
creased the number of instances of each MapReduce appli-
cation up to four and co-hosted three different MapReduce
applications. The margins of errors are about 16% for iden-
tical MapReduce applications and 11% for heterogeneous
MapReduce applications. We also demonstrate how the D-
factor model can extend a scheduler for single-resource sys-
tems into a scheduler for multi-resource systems for reducing
the makespan of workloads by about 20%.

This paper is organized as follows: Section 2 provides the
motivation of this work. In Section 3, we present the under-
lying theoretical concepts for developing the D-factor model.
Section 4 describes the experimental settings of this study.
The validation results with both synthetic and realistic test
samples are presented in Section 5, followed by an example
application to a scheduling algorithm in Section 6. Related
work is presented in Section 7, followed by concluding re-
marks in Section 8.

2. MOTIVATION
Interference due to sharing resources results in slow-down

of workloads [9], depending on the characteristics of co-
located workloads [13, 17]. Prior findings have suggested
non-linear dilation factors when we consider multiple sys-
tem resources; co-located applications on multi-core proces-
sors [5, 11], co-located processes in an operating system [9],
co-located virtual machines in a physical machine [6], and
co-located workloads in a data center [10].

Figure 1 highlights the non-linearity in slow-downs of work-
loads due to multiple resource contention. Here, we created
two different types of jobs – a CPU-bound job, which con-
sists of arithmetic operations and an I/O-bound job, which
randomly reads two 2GB files. Both jobs take 100sec with-
out the presence of other jobs. Experiments are done in a
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Figure 2: Dilation factor model describes slow-down of each
job when multiple jobs are contending for multiple resources.
(Left) Job-slices in their neutral states, where loading vec-
tors are (1/2, 1/2) and (2/3, 1/3), respectively for CPU and
I/O. (Right) The processing times of job slices will be di-
lated when they request the same resource at the same time.
As described in Property 2 in Section 3, when two jobs are
competing, their dilation factors, λ, are identical.

machine with two single-core CPUs that run Linux. How-
ever, we turned off one CPU to ensure that both jobs are
accessing the same CPU. More details of the experimental
platform are described in Section 4. We measured comple-
tion time of each job with another job in order to under-
stand the interference between jobs. When the same type of
jobs coexist in the system, we observe a linear relationship
between total completion time and individual completion
times. However, for different types of jobs in the system, a
non-linear relationship is observed. This example suggests
that we may reduce the performance interference among co-
located jobs by considering multiple resources in a system.
An empirical study on a large scale data center has shown
that multiplexing workloads leads to higher efficiency since
each workload utilizes different system resources [10].

A simple truth is that a better estimation results in better
performance, which brings in the first fundamental question
to be answered in this work:

Question 1. What is the general quantitative model for
performance of systems with multiple-resource contention?

The previous simple example implies that, in a realistic
environment, a machine or a system consists of multiple re-
sources and hosts jobs that can request any of the resources,
as shown in Figure 2. Recall, when we assume that a job
accesses a single resource such as a processing unit, we may
characterize a job by its completion time to estimate inter-
ference as shown in Figure 1. For multiple resources, on
the contrary, a job cannot simply be measured by the time
duration between the start and the end of the job; we need
more information on the request distribution of the job for
each of the resources. Thus, we need to find the answer to
the following question:

Question 2. How can a job that requests multiple re-
sources be quantitatively modeled?

In this work, we consider a job as a scheduling unit such
as a process. We model a job as a sequence of hypothetical
job slices, each of which is devoted to a single resource in
order to approximate the behavior of real workloads. A

job, i.e. the entire sequence of job slices, is statistically
characterized by the probability of requesting/accessing each
resource by a (random) single slice. The result is a vector-
valued probability of resource-requests. Each job will be
characterized by this loading vector. Note that the loading
vector represents the portion of time to access each resource
during the execution of a job, which should be dependent
on the hardware that a job runs.

As for approximating a real job with job slices and char-
acterizing a real job with a loading vector, three major is-
sues need to be addressed: simultaneous access of resources;
dynamically varying resource access patterns; and multiple
resources of the same type such as multi-core CPUs. Since
loading vector represents the statistical characteristics to ac-
cess each resource – average intensity to access each resource,
simultaneous resource accesses can be approximated. Specif-
ically, we show that our model reasonably captures a mixture
of I/O workloads and CPU workloads in Section 5. We may
approximate a dynamic workload as a series of static work-
loads, each of which can be represented by a loading vector.
In this study, we will focus on static workloads since treating
time-varying parameters requires additioal effort. As for n-
core processors, we may reserve one element for each core in
a loading vector. More details will be discussed in Section 3.

Finally, in order to formulate the model for question 1,
the behavior of a machine with multiple resources should be
concretely defined.

Question 3. What is the quantitative model of a ma-
chine with multiple resources?

We model a machine as a collection of resource-queues –
one queue for each shared resource. A slice of a job on a
machine is assumed to be queued in one of the resource-
queues with the probability given by the loading vector.

Multiple jobs on a machine will populate the resource-
queues, hence, a job-slice can be slowed down due to the
waiting time for a resource-queue. A quadratic function of
loading vectors will be established to determine the dilation
of jobs. Eventually, the resource contention by a job set on
a machine will be described in terms of dilation factors –
referred to as slow-down of job completion time under the
presence of other jobs.

3. MATHEMATICAL MODELING
As illustrated by the simple example in Section 2, if jobs

on a single machine compete over multiple shared resources,
the dilation of their completion times can exhibit compli-
cated behavior. Recall, for a single-resource machine, time-
sharing jobs slow down uniformly and proportionally to the
number of competing jobs, which is not true any more if they
compete over multiple resoueces; jobs can even have differ-
ent dilation factors. To clearly describe this phenomenon,
we need the modeling of machines with multiple resources.

3.1 Modeling: machines and jobs
A machine with multiple resources can be viewed as a

collection of multiple resource-queues; each resource corre-
sponds to a queue and requests from jobs running on the
machine compete for the resources. Let a machine have
m resources, i.e. m-queues. We assume a resource-request
from a job can be issued only after the previous request from
the same job is completed. In order to describe this behav-
ior, we introduce the concept of job-slices – a hypothetical



atomic unit of work which is characterized by the following
assumptions; (i) a job-slice requests for and can be processed
by only a single resource, thus, it is also an atomic unit of
request for the resource queues. (ii) It takes 1 (hypothetical)
time-unit for a job-slice to be processed by the resource in
which it is queued, independent of the type of resource.

A job is considered as a sequence of job-slices each of
which requests a single resource. If a job consists of ℓ job
slices, its neutral (which means undisturbed by other jobs)
completion time is ℓ time-units. A request is viewed as the
submission of a slice into one of the resource-queues. The
job can proceed to the next slice only if the current slice in a
queue is completed. For n concurrent jobs on the machine,
we make the following two assumptions: (iii) there are at
most n slices (including the one in service) in any one of the
m queues. (iv) At any time, there are total n slices in all the
queues. Assumption (iii) implies that the time for a slice to
be completed is at most n time-units.

Remark 1. Notice that the actual amount of work during
a unit time such as the amount (in MB) of file processed
during the time depends on the system configuration; for
example, if the operating system utilizes I/O buffer cache,
some of the I/O requests turn effectively into memory re-
quests. Thus, it might not be feasible to generally estimate
the actual amount of work for multiple-resource workloads
by investigating the program source and hardware specifica-
tion. Characteristics of workloads will be obtained by probe
processes or by regression analysis of their completion times,
which will be illustrated in this paper.

Based on assumption (ii), we are actually proposing a uni-
fied measure of work done by different resources; Instead of
counting the amount of work done by resources by their na-
tive measure such as the number of instructions (for CPU)
and the file size in MB (for I/O), we represent the amount
of work by the the time spent by any resource for the task.
Thus, one unit of work is the amount of work that can be
done by any resource in unit time. This allows us to compare
the workloads of different kinds using a common unit.

Recall the only required information for the linear sum
model for single-resource machines is the neutral completion
time of the job. For a multiple-resource model, additional
information is required: the request–resource-queue corre-
spondence. The amount of information increases with the
size of the system, the number of resource types to be con-
sidered, and the number of workloads if we want to obtain
the complete description as with queuing model approaches.
Hence, we take a statistical approach.

3.2 The loading vector
In this paper, we characterize a job by the statistical pat-

tern of its resource requests. In general, a deterministic
resource-access pattern in time is difficult to obtain except
for very specific applications of known structures. Instead,
we assume a job has, for each resource, a unique probability
of a slice to be queued for the resource; that is, we view that
the number of job-slices queued for each resource divided by
the number of total slices of the job is a statistical invariant
of a job. Thus, in an m-resource model, the workload of a
job is characterized by an m-dimensional vector, which we
call the loading vector p of the job.

Remark 2 (Multicore systems). In order to avoid pos-
sible confusion, we present the theory and experimental re-

sults for single-core systems since there exists a variety of
multi-core processor architectures and process scheduling poli-
cies. However, the application of the presented model to
multicore systems would be possible. For example, as many
operating systems treat, a dual-core system can be consid-
ered as a machine with 2 CPU-resources independent of each
other. Thus, if we consider CPU and I/O resources in the
model, the resulting loading vector can be 3 dimensional –
namely, CPU1, CPU2, and I/O. Then, we can apply the
presented model to identify the 3 dimensional loading vector
of a job.

Thus, without any other competing job (in our terms, in
the neutral condition), pi are given by

pi =
the time spent at the resource-i

the total completion time
≥ 0. (1)

Also, pi can be interpreted as the probability of a job-slice
being queued for queue-i. Obviously,

‖p‖1 =
m
∑

i=1

pi ≤ 1. (2)

Notice the inequality; we allow a job to have slices that do
not request any resource. Such an idling slice simply spends
a time-unit without populating any of the m queues. We
define two classes of jobs: a job is

1. idle if
∑m

i=1
pi < 1 and

2. busy if
∑m

i=1
pi = 1.

Given a set of n jobs, we denote pj as the loading vector of
job-j and pij as the ith component of pj . An m by n matrix
can be formed with pij as its elements. We call this matrix
the loading matrix of the job set. Each column vector of the
loading matrix is the loading vector of the corresponding
job. The loading vector and the loading matrix are our
statistical characterizations of the workload of a job and a
job set, respectively.

3.3 The dilation factor
Consider n jobs on an m-resource machine characterized

by a given m by n loading matrix. Suppose a slice of job-j is
queued at queue-i. Then, the expected waiting time of the
job-slice (of job-j) is the expected number of job-slices (from
other jobs) in the queue. Hence, the conditional expectation
of the dilated completion time of the single slice of job-j, on
the condition that it is in queue-i, is given by

1 +
n
∑

k=1

k 6=j

pik = 1 +
n
∑

k=1

pik − pij , (3)

where the additional 1 time-unit is the service time.
Since pij is the probability of queuing a slice of job-j at

queue-i, the expectation of the dilated completion time Tj

of job-j is given by

Tj = τj

((

1−
m
∑

i=1

pij

)

+
m
∑

i=1

pij

(

1 +
n
∑

k=1

pik − pij

))

= τj

(

1 +

m
∑

i=1

pij

n
∑

k=1

pik −

m
∑

i=1

p2ij

)

(4)

where τj is the neutral completion time of job-j. Notice, the
term (1−

∑m

i=1
pij) represents the probability of idling that



causes no dilation. Let us define the total loading vector p

by p =
∑n

j=1
pj . The above relation can be rewritten in

vector notation by Tj = τj
(

1 + pj · p− pj · pj

)

. Thus, a
job j is slowed down by the factor of Tj/τj due to resource
contention. We summarize the result by introducing the
dilation factor λj = Tj/τj as follows:

Definition 1. Given a job set on a machine character-
ized by the loading vectors pj (j = 1, . . . , n), the dilation
factors λj = Tj/τj (j = 1, . . . , n) are given by

λj = 1 + pj · p− pj · pj . (5)

Remark 3. The above formula distinguishes our model from
other applications of queuing theory. Combined with the rep-
resentation of loading statistics by the loading matrix pre-
sented above, we can describe the average slow-down of a
job in a closed formula. Also, the formula can be viewed as
a statistical description of the interaction between jobs run-
ning on the same machine in terms of mutual interference.

For identical jobs, the formula can be simplified as follows:

Property 1. If all of n jobs are identical (pj = p), the
dilation factors are identical (λj = λ) and are given by λ =
1 + (n− 1)p · p.

The above property can be utilized to obtain experimen-
tally the loading vector of a job; (1) we obtain the loading
factor by measuring the dilated time of n identical jobs for
n = 1 to a sufficient number. (2) The data for various n can
be analyzed by regression to obtain p.

The dilation factors are also identical in another situation.
By applying n = 2 and p = p

1
+ p

2
to Equation (5),

Property 2. If there are 2 jobs, the dilation factors are
identical (λ1 = λ2 = λ) and given by λ = 1 + p

1
· p

2
.

If we create a synthetic process which requests only a sin-
gle resource, this reference (or probe) process can be utilized
to compute the loading vector of a job. The primary benefit
of the probe processes is that we can identify the loading
vector of a job when we cannot control the execution of a
job in the system.

Property 3. Suppose there are two jobs – one that we
want to identify its loading vector p and the other that uses
only resource-i, a probe process. By Property 2, they share
the same λ and the ith component of p is given by pi = λ−1.

3.4 Special case: 1-resource-busy jobs (the lin-
ear sum model)

In this section, we illustrate that the linear completion
time model is actually a special case of our general model,
where all the jobs compete for the same resource.

Lemma 1. Assume 1-resource-busy jobs: pkj = 0 for
any j = 1, . . . , n and for every k = 1, . . . ,m except an index
1 ≤ i ≤ m, and ‖pj‖1 = 1. Then, the dilation factors are
identical (λj = λ) for all jobs and given by

λ = n (6)

Proof. Since all the jobs are busy, pij = 1 and pkj = 0
for any k 6= i. Hence, all jobs are identically given by pj = p.
Then, p · p = 1 and, by Property 1 in the previous section,
the dilation factors are identical and given by λ = 1 + (n−
1)p · p = 1 + (n− 1) = n

Let τj denote the neutral completion time of job-j in a job
set of size n. We define the total completion time T of the
job set as the time duration from the starting time of the
first initiated job to the ending time of the last completed
job. For 1-resource-busy jobs, T =

∑n

j=1
τj .

Theorem 1. Suppose during the total completion time,
there is no idling gap, i.e. the machine is always populated
by at least one job. Then, the total completion time is the
sum of individual neutral completion times independent of
the starting and ending times of the jobs, that is,

T =
n
∑

j=1

τj . (7)

Proof. Please refer to [19].

Note that Lemma 1 and Theorem 1 assume that jobs are
fully overlapped for estimating completion times.

Remark 4. In general cases, such a simple formula for
total completion time does not exist. Consider a 2-job system
with p

1
= (1, 0) and p

2
= (0, 1). Then, λ1 = λ2 = 1, that

is, there is no dilation of completion time. Let τ1 = τ2 =
1minute. If the two jobs started at the same time, they will
be completed at the same time after 1 minute. If one of
them started first and the other job started at the time of
completion of the first job, the total completion time will be
2 minutes. Depending on the overlap, the total completion
time can vary from 1 minute to 2 minutes. But, still the
linear model estimate becomes the upper bound of the total
completion time in any case.

Remark 5. (1-resource-idling jobs) Even if there’s only
one requested resource, the linear model cannot be applied to
a job set with an idling job. Consider a simple job set of n
identical jobs requesting only resource-i. Then, the loading
vectors can be represented by a single scalar parameter p < 1.
Then, λ = 1 + (n − 1) p2 = (1 − p2) 1 + p2 n, that is, λ is
a linear interpolation of 1 and n with respect to p2, since
p < 1 and λ < n.

3.5 Special case: 2-resource-busy jobs
The usefulness of this model comes from the fact that each

loading vector pj can be represented by a single scalar pa-
rameter pj . Without loss of generality, we can remove non-
requested resources from considerations and assume pj =
(pj , 1− pj). Then, p = (p, n− p) where p =

∑n

j=1
pj , and

λj = 1 + pjp+ (1− pj)(n− p)− p2j − (1− pj)
2

= 1 + n− p− n pj + 2 pj p− p2j − (1− pj)
2 . (8)

The result can be further simplified if the jobs are identi-
cal, i.e. pj = p. Then, p = n p and, for any j = 1, . . . , n,

λj = 1 + n− 2n p+ 2n p2 − p2 − (1− p)2 (9)

= 1 + n(1− 2 p+ p2) + (n− 1) p2 − (1− p)2 (10)

= 1 + (n− 1)
(

p2 + (1− p)2
)

. (11)

To emphasize the convenience of the formula, we summarize
the result as a theorem.

Theorem 2. Assume 2-resource-busy identical jobs with
the loading vector given by (p, 1 − p). Then, the dilation
factors are identically given by

λ = 1 + (n− 1)
(

p2 + (1− p)2
)

(12)



In other words, if the dilation factor is known, we can obtain
the loading vector by the formula:

p =
1

2

(

1±

√

1− 2
n− λ

n− 1

)

(13)

Proof. The derivation is given above.

Notice that there are two possible solutions for p and the
model does not distinguish them.

The above relation suggests a simple experimental strat-
egy to obtain the loading vector using Algorithm 1. Notice
that we can characterize jobs only from their completion
times, which does not require resource monitoring or ker-
nel instrumentation. However, by utilizing system resource
monitor, we can enhance the accuracy of the model.

Algorithm 1 Constructing the loading vector of a job in
2-resource model.

1: Measure τ by running job j alone.
2: Measure T , the dilated completion time of job j when n in-

stances of job j are running concurrently in the system.
3: Evaluate the dilation factor λj = T/τ .

4: From Equation 13, obtain pi =
1

2

(

1±

√

1− 2n−λ
n−1

)

5: Obtain loading vector pj = (pi, 1− pi)

3.6 The total dilation factor
One of the potential benefits of D-factor model is the ca-

pability to extend existing schedulers for single-resource ma-
chines into schedulers for multi-resource machines. Towards
this end, we define the total dilation factor λ by the sum of
λj for all jobs. Then, by the formula given in Definition 1,

λ =

n
∑

j=1

λj = n+ ‖p‖22 −

n
∑

j=1

‖pj‖
2

2 . (14)

Notice, this simple formula involves only the L2 norms of
the loading vectors; informally the absolute values of the
loading vectors. For details, refer to [19]. With the total
loading vector, we can state a new objective function for a
certain class of scheduling problems as follows:

Definition 2. Given a new job with the loading vector
p
′, find an assignment to machine µ which minimizes

p
′ · pµ (15)

where pµ =
∑

∀j∈µ
pj is the current total loading vector of

machine-µ.

4. EXPERIMENTAL ENVIRONMENT
This section describes the experimental settings designed

to validate the proposed D-factor model.

4.1 Target system overview
We experimented with clusters in two environments – na-

tive Linux and Xen-based virtualized environments [4]. Ta-
ble 1 shows the detailed specifications of experimental set-
tings for the native Linux and virtualized environment. In
the native Linux environment, each node is running only
one Linux operating system (OS). On the contrary, in the
VM environment, each node can host multiple OS instances.
The overview of the VM environment is shown in Figure 3.

Table 1: Specifications for experimental environment

CPU Two single-core 64-bit AMD 2.4Ghz
RAM 4GB
Shared Storage NFS (disk images for Xen)
Local Storage Ultra320 SCSI
Network 1Gbps Ethernet, 10Gbps Infiniband
vCPU (Dom0) Runs on both CPUs
vCPU (VMs) Runs on one CPU
RAM/VM 256MB
I/O (VM) Tap:aio (bypasses buffer cache of Dom-0)
Kernel Linux 2.6.18
Hypervisor Xen 3.4.2

10G SDR Infiniband

Dom0 VM1 VMk…

…

Dom0 VM1 VMk… Dom0 VM1 VMk…

VMM VMM VMM

1G Ethernet

Shared Storage Subsystem (NFS)

Vol5 Vol4Vol1 Vol3Vol2

Figure 3: Virtualized experimental environment

Applications running on a virtual machine have an illusion
that they exclusively access the virtualized resources. A
special guest machine, Dom-0, can directly access physi-
cal resources, especially I/O devices. The Virtual Machine
Monitor (VMM) manages the shared resources such as pro-
cessors, memory, I/O subsystems and network devices. All
the access requests to the hardware resources from applica-
tions running on a virtual machine flow into the VMM and
then Dom-0, if necessary. Each node in the native Linux
environment accesses local SCSI disks whereas the virtual
hard disks of guest virtual machines are located in a Net-
work File System (NFS) partition. Thus, I/O requests from
guest machines may invoke network traffic. We employed
varying number of applications on each node in the native
Linux environment. In the VM environment, we run one
application per virtual machine, but we varied the number
of virtual machines.

4.2 Description of workloads
We used a mixture of synthetic and realistic workloads

to validate the proposed D-factor model on a variety of
workload environments. For synthetic workloads, we em-
ployed standard jobs (the details of which will be described
later) and file compressions that use both CPU and I/O re-
sources. For realistic workloads, we used I/O-bound work-
loads (FileBench [2]) and MapReduce workloads. Table 2
summarizes resource usage profile of workloads in this study.

Synthetic workloads – standard jobs and file compres-
sion. We have created standard jobs for two purposes. The
first is to demonstrate that the proposed model can capture
completion times of synthetic workloads using only one sys-
tem resource. The second is to illustrate a method to profile
workloads. Standard job is a workload that uses only one
resource without any idle period. The completion time of a



Table 2: Resource Usage Profile of Workloads

Type Name CPU I/O
Synthetic STD-CPU High Low
Synthetic STD-IO Low High
Synthetic FileComp High Med
FileBench FileServer Low High
FileBench VarMail High Med
MapReduce PiEstimator High Low
MapReduce Sort Med Med
MapReduce Grep Med Med

standard job should be consistent, provided that the stan-
dard job is running alone in the system. For example, the
completion time of a standard job for disk I/O should not de-
pend on the current size of free memory or the current status
of buffer cache. In this study, we created two standard jobs
– a standard job for CPU (STD-CPU) and a standard job for
disk I/O (STD-IO). STD-CPU is a workload that repeats inte-
ger arithmetic calculations. STD-IO is a workload that opens
two 4GB files on the local disk in the synchronous mode and,
then, reads 1MB from random positions of both files, while
avoiding to access the buffer cache using the POSIX library,
specifically posix_fadvise.

We have created a workload, FileComp to show that we
can profile a CPU-I/O workload with standard jobs. File-
Comp compresses 2,560 files, each of 256KB size. The neutral
completion time of FileComp τ is 78.08sec. With STD-CPU

of the duration of 200sec, the completion time of FileComp
T is 123.67sec. If we assume that a system consists of two
resources – CPU and I/O, we may consider FileComp as a
two-resource-busy job. Since STD-CPU is a CPU-only job, the
loading vector is (CPU, IO) = (1, 0). Let the loading vector
of FileComp be p = (p, 1 − p). According to Property 2 in
Section 3, the dilation factor λ = 1 + p. λ can be calcu-
lated by T/τ = 123.67/78.08 = 1.58, which yields p = 0.58.
Hence, the loading vector of FileComp, p = (0.58, 0.42). We
used FileComp for evaluating our model in the native Linux
environment. In this example, we profiled a job using stan-
dard jobs. However, it is non-trivial to implement these
standard jobs due to their dependence on the system config-
uration. Thus, with FileBench workloads, we demonstrate
an alternative way to profile a job – Algorithm 1.

Realistic workloads – FileBench and MapReduce. We
experimented with FileBench in a virtualized environment.
We employed two predefined workloads in FileBench, file-
server and varmail. FileBench is an application bench-
mark that mimics the typical behavior of workloads. We
employed one FileBench workload per VM and varied the
number of VMs. According to Algorithm 1, both workloads
are profiled by pfile = (0.02, 0.98) and pmail = (0.10, 0.90).

We experimented with three MapReduce workloads : Sort,
Grep, and PiEstimator in the native Linux environment.
MapReduce job consists of multiple tasks that are hosted
in parallel on different cluster nodes. We run these MapRe-
duce workloads on a dedicated 17-node native Linux cluster
with Hadoop 0.20.1 [1]. Each workload generates two map-
and-reduce tasks on each node. Each task accesses the local
disk and exhibits insignificant communication between each
other. The completion time of an application is determined
by the completion time of the slowest task. For these exper-
iments, we confirmed that the variance of completion times
between tasks for one application is insignificant. Since our
experimental platform consists of two single-core CPUs, in-

creasing the number of instances of an application creates
resource contention for each CPU. We conducted two exper-
iments; (i)increasing the number of instances of each appli-
cation from 1 to 4 and (ii) co-locating three different MapRe-
duce workloads in the system. Applications are initiated at
the same times and we used the Hadoop fair scheduler [1]
to allocate system resources to these applications.

In order to estimate the completion times with the D-
factor model, we profiled each workload with STD-CPU, sim-
ilar to the FileComp workload. The loading vector, p =
(CPU, other resources), and the neutral completion time, τ ,
of each application are pSort = (0.9, 0.1), τSort = 56.0sec,
pGrep = (0.5, 0.5), τGrep = 95.0sec, pPi = (0.5, 0.5), τPi =
90.0sec. Then, the loading matrix is given by

P =

[

0.9 0.5 0.5
0.1 0.5 0.5

]

.

Note that the loading vector represents the probability of
accessing each resource instead of the utilization. Thus, re-
source usage does not necessarily match with the loading
vector. For example, regardless of high CPU usage, some
other factors may dominate the execution time of PiEstima-
tor, which is captured in the loading vector representation.

Methodologies. We compare the estimated total comple-
tion time from the D-factor model and the linear sum model
with actual measurements. We compare D-factor with lin-
ear sum since both methods do not require information of
request arrival rate and service rate as in queuing analysis.
For two jobs i and j when τi > τj , we can calculate the actual
completion times of two jobs, Ti and Tj , from the dilation

factors, λi and λj , obtained by Ti = λjτj +
(

1−
λjτj
λiτi

)

τi,

Tj = λjτj . Since job j finishes at λjτj < λiτi, 1 −
λjτj
λiτi

of

job i will be executed without interference with job j. Sim-
ilarly, we can calculate the actual completion times of more
than two jobs. Note that in Remark 4, we have already dis-
cussed the difficulty of calculating completion time of jobs
when jobs are partially overlapped during their executions.
We believe that an efficient method for such a general case
deserves a seperate effort.

What our model computes is the dilation factor, λj for job
j, which is given by λj = 1+pj ·p−pj ·pj , where pj is the
jth column vector of the loading matrix and p = p

1
+ p

2

in the two-resource-busy model. To compute the dilation
factor, we obtain the loading vector or loading matrix using
either Algorithm 1 or Property 2 (Refer to Section 3).

5. MODEL VALIDATION
In this section, we validate the proposed D-factor model

while illustrating the procedure to profile a job and to es-
timate the completion time of a job when it is co-hosted
with other jobs. Experimental results in this section indi-
cate that the D-factor model captures the behavior of each
job in shared systems. The D-factor model provides (1)
more accurate estimation of the completion times of co-
hosted jobs than the linear sum model, (2) more efficient
utilization of the system resources and (3) better predictable
performance with existing scheduling algorithms than with
the linear sum. Note that all numbers are averaged over
40 runs since dilation factor model actually aims to predict
average completion time of jobs, not to predict variance of
completion time of jobs. Numbers in parenthsis represent
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Figure 4: Experiments with standard jobs show the average
errors from dilation factor are 7% for the native Linux and
10.3% for the virtualized environment. CPU represents STD-
CPU and I/O represent STD-IO. We hosted two processes in
(a) and two VMs in (b).

the relative error of the estimation given by |(T̂ − T )/T̂ |,

where T̂ is from measurement and T is from estimation.

5.1 Synthetic workloads

Standard jobs. As shown in Figure 4, the experiments with
both STD-CPU and STD-IO confirm that the proposed model
estimates the slow-downs of completion times of jobs due to
multiple resource contention in shared systems. Since each
standard job uses only one resource, we may consider STD-
CPU characterized by p = (1, 0) and STD-IO by p = (0, 1).
With the given loading vectors, we obtain λ = 1 for two
different standard jobs and λ = 2 for two identical standard
jobs according to Theorem 1. When we set the duration of
each standard job to 100sec, the total completion time of two
different standard jobs will be 100sec and that of two iden-
tical standard jobs will be 200sec. Hence, we may observe
that the completion time of a job in a shared multi-resource
system is not linearly proportional to the completion times
of individual jobs.

The gist of the dilation factor theorem is that multiple re-
source contention results in a non-linear waiting time, pro-
portional to their probabilities of accessing the system re-
sources. In contrast, the linear sum model estimates the
total completion time as the linear sum of completion times
of individual jobs. The linear sum fits when the system
owns one resource or serves each job after completing the
previously assigned jobs. Experiments from standard jobs
indicate the average errors from D-factor model are 7% for
the native Linux and 10.3% for the virtualized environment.
However, the linear model shows a 98% error in the worst
case.

Figure 4a shows completion time of each co-located work-
load in the native Linux (two processes) and Figure 4b for
the virtualized environment (two VMs). These experiments
confirm that D-factor model accurately captures the com-
pletion times of jobs with multiple shared resources in both
native Linux and virtualized environments. In addition, we
show that we can construct a standard job to profile work-
loads according to the proposed model in actual systems.
However, we observe a significant error for two identical STD-
IO, which is attributed to variance in disk access latencies
to perform the same operations according to the sequence
of access requests [31].

File compression. Now, we demonstrate that the proposed
model can estimate the completion time of a workload with
both CPU and disk I/O accesses, FileComp (refer to Fig-
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Figure 5: Estimated completion times of FileComp (a) us-
ing the loading vector of FileComp from measurements with
STD-CPU; and (b) using the loading vector to predict the
completion time with STD-IO. The numbers in parenthesis
represent relative errors from D-factor and linear sum, re-
spectively.
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Figure 6: Completion times for various combinations of
FileBench workloads on one physical machine with up to
3VMs. The loading vectors are obtained as to Algorithm 1.

ure 5). In these experiments, we set the duration of STD-
CPU and STD-IO to 200sec. For the loading vector of File-
Comp, p = (0.58, 0.42), the estimated completion time will
be 78.1 × (1 + 0.42) = 110.9sec since we assume that the
loading vector of the I/O standard is (0, 1). From actual
measurements for FileComp with the I/O standard, we ob-
tain the completion time as 105.50sec, resulting in a 5.1%
error. We have shown the accuracy of estimation from D-
factor model with synthetic workloads. Next, we show the
validation results with realistic workloads.

5.2 Realistic workloads

FileBench in a virtualized environment. Experimental
results with FileBench are shown in Figure 6. We confirm
that the D-factor model well explains the dilated completion
times for collocated I/O workloads in a virtualized environ-
ment as well.

With the provided loading vectors for both workloads, we
estimate the completion time as 458.1sec when we co-locate
one varmail and one fileserver in the same physical ma-
chine, compared to 433.1sec with actual measurements. In
this situation, we estimate the running time of varmail to
be 87.62sec, which shows an error of less than 1% with ac-
tual measurements. However, the linear model cannot esti-
mate the completion time of each workload. With the linear
model, if we consider the total completion time of all the
workloads in the system as the completion time of each job,
the completion time of varmail becomes 463.6sec.

From Figure 6, we can observe that for one instance of
fileserver and two instances of varmail, the respective
average running times are 133.5sec and 498.3sec. The corre-
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Figure 7: (a) Total completion time of each MapReduce
application against the number of instances. The maximal
errors are 9.4% for Sort, 15.78% for Grep, and 12.1% for
PiEstimator. (b) With the loading vectors of each of three
applications, we can estimate the completion time of each
hetorogeneous MapReduce application. Both experiments
used a 17-node cluster.

sponding average running times from estimation are 133.48sec
and 497.2sec. From the experimental results with FileBench,
the estimation from the D-factor model shows 6.0% error.
Next, we show more complex examples of identical MapRe-
duce applications and heterogeneous MapReduce applica-
tions in a system.

Identical MapReduce applications. Experiments with iden-
tical mapreduce applications on a 17-node cluster demon-
strate the accuracy of the D-factor model as the number of
instances increases up to four. In Figure 7a, the estima-
tion from dilation factor theorem shows 9.4% error for Sort,
15.78% for Grep, and 12.1% for PiEstimator in the worst
case. Compared with the D-factor model, the linear model
shows larger margin of errors for all the considered work-
loads, 26%, 38%, and 54% for Sort, Grep, and PiEstimator,
repsectively. We observe that applications with substantial
I/O accesses tend to show larger errors as we increase the
number of instances in the system. We speculate that this
trend stems from the variance in disk latencies similar to
what we observed for STD-IO cases. We plan to model this
behavior in future work.

Heterogeneous MapReduce applications. Figure 7b shows
that the D-factor model estimates the completion times of
three co-hosted MapReduce applications within 11% error.
Loading vector and neutral completion time of each applica-
tion remain the same as identical MapReduce experiments.

This experiment contrasts the D-factor model with the
linear model in terms of the ability of estimating comple-
tion times of individual workloads when they are hosted in
a shared system. The linear model accounts for the total
completion time without considering the completion times
of individual jobs. However, the D-factor model obtains the
total completion time based upon the completion times of in-
dividual workloads. The ability to estimate completion time
of each workload is practically useful in shared systems. In
our experiment, we observe that Sort completes in about
120sec. Using the linear model, a new job will be sched-
uled to the system after all the previous workloads are com-
pleted; 241sec later since we cannot estimate that Sort will
be completed before that (refer to Figure 7b). However, the
D-factor model can estimate that Sort will be completed in
110sec. Thus, we may schedule another workload at 110sec
after initiating all the applications.

We notice that the measured completion times of Grep

and PiEstimator are smaller than the estimation. In this
analysis, we assumed two-resource-busy jobs, which means
there is no idle period in processing the given workloads and
consumes only two resources. Since Grep and PiEstimator

have substantial I/O activities, we may have idle wait times
for completing I/O accesses. When we multiplex I/O work-
loads with other types of workloads, operating systems may
utilize idle wait times. Thus, the completion time of Grep
and PiEstimator could be smaller than the estimation when
they are co-hosted. We have briefly discussed how to handle
jobs with idle periods in Section 3.4 (refer to Remark 5).

To summarize, through experiments, we demonstrated that
the D-factor model can estimate the total completion time
of jobs when they share multiple system resources. In this
section, we experimented with synthetic workloads – stan-
dard jobs and file compression as well as realistic workloads
– MapReduce and FileBench. We demonstrated that the D-
factor model well describes the behavior of both the native
Linux and virtualized systems since the model is a high-level
statistical abstraction of system behaviors. We showed that
the D-factor model does not only estimate the total comple-
tion time, but also estimates the completion times of individ-
ual jobs. We can observe that the D-factor model can quan-
titize the performance of multiplxed workloads, given the
workload profiles. Also, we showed the process to use the D-
factor model to estimate the completion times of given work-
loads: construct standard jobs, probe the target workloads
using the standard jobs, and estimates completion times of
given workloads.

Experiments in this section suggest that we may predict
I/O performance for cloud services [3] using the D-factor
model. In the following section, we demonstrate an example
for exploiting the D-factor model to enhance actual system
performance with a scheduling algorithm.

6. EXTENDING SCHEDULERS FOR SIN-

GLE RESOURCE SYSTEMS
This section describes practical benefits from the proposed

D-factor model by applying it to an existing scheduling al-
gorithm. We selected the on-line parallel machine schedul-
ing problem [30] that addresses the problem of scheduling
jobs on parallel machines without the knowledge of the se-
quence and the size of future jobs. This problem can be
translated into the on-line bin packing problem [26], which
is most widely considered in assigning virtual machines to
physical machines [23,32,34]. We acknowledge that it would
be challenging to apply the D-factor model to other classes
of scheduling problems that consider flow control of jobs or
machines such as open-shop, flow-shop, and job-shop [29]
since the model assumes independent jobs.

One of the initial studies on on-line parallel machine schedul-
ing problems is the list scheduler [14], an on-line greedy
scheduler, which decides schedule S of a new job j with
size pj by

min







pj +
∑

i∈Jµ

pi







,∀µ ∈ M , (16)

where Jµ is the set of jobs that is currently running in the
machine µ and M is the set of machines. For breaking a tie,
the lowest indexed machine is chosen. Although this algo-
rithm is simple, competitive ratio of list scheduler is 2, while
the best result known to date is 1.9201-competitive algo-
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Figure 8: Adopting D-factor as objective function in Gra-
ham’s on-line scheduler [14] shortens the makespan by
20.5%, compared with the original algorithm.

Table 3: Job profiles for the scheduling example.

workload completion time loading vector
W1 110.56 sec (1,0)
W2 115.83 sec (0,1)
W3 180.0 sec (1,0)
W4 110.56 sec (1,0)

rithm for deterministic algorithms [12] and 1.58-competitive
algorithm for randomized algorithms [7]. Thus, we selected
this algorithm to demonstrate the performance enhancement
by adopting the D-factor model in scheduling algorithms,
though we do not claim any theoretical improvements in
scheduling problems.

Here, we created four jobs using synthetic workloads, STD-
CPU and STD-IO, which run on two machines on the same
experimental platform described in Section 4. We consider
a situation that three jobs (W1, W2, W3) are already in the
system and a new job, W4, arrives at the system 60sec later.
The size, completion time and loading vector, of each job
are shown in Table 3. Experimental results shown in Fig-
ure 8 demonstrate that the makespan with D-factor is 20.5%
shorter than that with the original list scheduler, which is
a significant enhancement since the theoretical lower bound
of deterministic on-line parallel machine scheduling problem
is 1.88-competitive [25], which is a 12% enhancement (1.88
compared to 2 ). However, with the multi-resource con-
tention model, performance enhancement may exceed the
theoretical bound for single-resource machines.

Let us explain the rationale behind this performance im-
provement. The original list scheduler schedules the first
three jobs as follows:

Machine1 : W1 W2 (226.4sec)
Machine2 : W3 (180.0sec)

,

where the numbers in the parenthesis represent estimated
completion times of jobs in each machine. When the fourth
job, W4 with job size of p4 = 110.56sec, arrives 60sec later,
list scheduler schedules the fourth job to Machine 2, expect-
ing 180.0 + 110.56sec of total completion time. Thus,

Machine1 : W1 W2 (226.39sec)
Machine2 : W3 W4 (290.56sec)

.

By augmenting the objective function (Equation 16) to
Equation 15, we can use vector-valued size, loading vectors.
Then, the list scheduler with loading vectors schedules the
first three jobs as follows:

Machine1 : W1 W2 (p = (1, 1), 115.83sec)
Machine2 : W3 (p = (1, 0), 180.0sec)

,

where p is the total loading vector and the numbers are es-
timated total completion times based upon D-factor model.
Notice that, for the same configuration of machine 1, the es-
timated completion time with D-factor model is 115.83sec,
compared to 226.4sec with the original list scheduler based
upon linear sum. Actual measurement of this schedule was
138.65sec, which confirms that the D-factor model provides
better estimation of total completion time. This will lead to
a contrasting schedule when W4 arrives 60sec later. For W4

with p
4
= (1, 0), the schedule becomes

Machine1 : W1 W2 W4 (p = (2, 1), 221.2sec)
Machine2 : W3 (p = (1, 0), 180.0sec)

,

which results in 20.5% enhancement in makespan.
In this example, we demonstrated that the same schedul-

ing algorithm may show significant performance gain by
evaluating the total completion time of candidate schedules
with the D-factor model. In general, we can expect bet-
ter scheduling results with the D-factor model when work-
loads access multiple resources and they are independent
since the D-factor model considers multiple resources con-
tention among independent jobs. In order to consider mul-
tiple resources in a system, we may consider other types of
scheduling problems such as open-shop, flow-shop, or job-
shop scheduling problems. Instead, the D-factor model can
augment existing on-line parallel machine scheduling algo-
rithms that assume a machine as one resource, to consider
multiple resources in a machine. Hence, when a system uses
on-line parallel machine scheduler or on-line bin packing al-
gorithms, we could augment the system without significant
changes in software/hardware to reduce the makespan of
workloads.

7. RELATED WORK
Despite the importance of estimating dilation factor of

each co-located job for providing predictable performance
in shared environments, there is no established generic ap-
proach to estimate dilation factor of workloads in shared
envionments [13, 20]. The main difficulty to estimate the
dilation factor of each job is that it depends on the be-
havior of co-located jobs, which is often described as non-
deterministic behavior [17] and a critical problem in Cloud
platforms [3].

As an attempt to estimate dilation factor, Govindan et
al. [13] and Mars et al. [20] proposed an empirical method for
sharing memory subsystems. Especially, Mars et al. demon-
strated that they could predict dilation factors up to three
co-located Google’s workloads in Google’s infrastructure.
Both studies created a probe program to measure the sen-
sitivity of each workload for sharing memory/cache. Based
upon the empirical sensitivity analysis, they estimated slow-
down of workloads with different co-located workloads. With
our model, both works can be considered as an example of
two-resource busy model to express the slow-down of co-
located applications. Their concepts of sensitivity of each
application and pressure on shared resources are captured
in our statistical job characteristics – loading vector. In ad-
dition, we suggested probe jobs for other resources such as
CPU and disk I/O. We believe that loading vector can be
constructed using probe jobs in [13,20] in order to consider
spatial characteristics of memory systems.

The closest problem setting to our model is the bin pack-
ing problem, specifically the multi-bin packing problem. Bin
packing problem finds a solution to pack items into single or



multiple bins so as to minimize the number of bins used [8].
In the bin packing problem, the total size of packed items
is the linear sum of the sizes of individual items. However,
this study mentions that obtaining the actual size of all the
packed items might be smaller than the total size of each
item. In multi-bin packing, we model bins and the sizes
of items as vectors, but it does not consider the contention
across resources when we place items to bins. Thus, it can-
not express the non-linearity of dilation factors of workloads
in shared environments. Since most of prior virtual machine
placement methods are based upon on-line bin packing al-
gorithms [23,32,34] or similar linear relations [15], they are
inherently difficult to reflect non-linear slow-down of a job
due to multiple resource contention.

Unlike the prior work, we provide a model that can pre-
dict the performance of applications in shared environments.
With mixed workloads in data centers, we can achieve more
graceful performance degradation [10, 22]. In addition, the
issue raised from I/O-bound work in [3] implies that we need
to consider the importance of multiple resource requests in
processing a job. Therefore, we proposed a performance
model that estimates the performance impact on a job by
other collocated jobs running together in a server.

8. CONCLUSIONS
In this study, we derived a novel completion time model

of jobs for shared service systems. We estimate the comple-
tion time of jobs on a system by considering that multiple
shared resources may be involved to process a job. The
resource usage of a job is represented by a loading vector,
which in turn is used to estimate the dilation in individual
job completion times. Based upon the proposed model, we
profiled a job and estimate the overall completion time of
jobs in shared service systems. In contrast to queuing the-
ory based models that require parameters of each resource
such as service rates and request arrival rates, the D-factor
model only needs to the completion times to profile a job,
from which the model can estimate the completion times of
co-located jobs. We validate the proposed D-factor model
with experiments using synthetic and real workloads. From
the validation results using synthetic workloads, the aver-
age relative errors are 7% in the native Linux environment
and 10.3% in a VM environment. With realistic workloads,
the D-factor model also predicts the completion time of co-
existing workloads within a 16% error.Also, we presented an
example to extend a scheduler based upon single-resource
model, which reduces the makespan by 20.5%.

Calculating the overall completion times of the assigned
jobs is the fundamental operation in designing or evaluat-
ing a scheduling algorithm. We can use the D-factor model
to estimate the completion time more accurately or conve-
niently than previous models. The required overhead is to
find the loading vector of a job to obtain the expected total
completion time. As described in section 3, we can obtain
the loading vectors by comparing the total completion time
of multiple instances of identical jobs with the neutral com-
pletion time of the job. One of the assumptions made in
this study is that the resource access pattern of each job
is independent to each other. Otherwise, we cannot easily
calculate the probability of the resource contention by the
inner product of loading vectors.

Since sharing multiple resources among jobs is a common
practice in computing systems, we can find a plenty of appli-

cations for the proposed D-factor model. Some of possible
applications are as follows: Estimating the total completion
time of jobs when we have heterogeneous processors such as
CPU and GPU might be possible. CPUs and GPUs can be
treated as different types of resources to be shared among
jobs and the total completion time of a job depends on the
portion of accessing times of each processor. Similarly, when
we have multiple layers of caches and want to find the total
completion time of a job, we can apply the D-factor model.

Although we successfully demonstrated the potential of
D-factor model, several diretions are possible to further en-
hance the D-factor model. These include:

• Extending the model for the space-shared resources like
memory systems: the working set behavior of each co-
located job will modify the loading vector of each job. In
order to use the model for the space-shared resources, we
need to establish a model that identifies the modifier of the
loading vector of each job due to the working set behavior.
The authors believe such an extention can consider in-
processor cache and shared system memory, which will
make the D-factor model more useful in modern many-
core environments.

• An algorithm to compute the dilation factor for n partially
overlapped jobs: this can be discussed in the context of job
scheduling since the initialization and completion of jobs
are dependent on job schedulers. As breifly mentioned in
the section 6, developing a job scheduler with the D-factor
model is one of the eventual goals of this study.

• Overcoming the dependency of the loading vector of a job
on the measured platform: since the loading vector of a
job is obtained from measurements, it is dependent on
a specific hardware-operating system combination. How-
ever, the D-factor model requires relatively smaller effort
than prior analytical models. One possible direction to
work around this would be a method to convert the load-
ing vector of a job in one system to other systems.

In a sense, although the proposed D-factor model is not the
most perfect model to explain shared resource contention,
the model provides an insight to understand contention for
multiple shared resources. In addition, the D-factor model
allows to extend many existing scheduling algorithms for
single resources into scheduling algorithms for multiple re-
sources.
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