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Abstract—DRAM is a precious resource in extreme-scale
machines and is increasingly becoming scarce, mainly due to
the growing number of cores per node. On future multi-petaflop
and exaflop machines, the memory pressure is likely to be so
severe that we need to rethink our memory usage models.
Fortunately, the advent of non-volatile memory (NVM) offers
a unique opportunity in this space. Current NVM offerings
possess several desirable properties, such as low cost and power
efficiency, but suffer from high latency and lifetime issues. We
need rich techniques to be able to use them alongside DRAM.

In this paper, we propose a novel approach for exploiting
NVM as a secondary memory partition so that applications
can explicitly allocate and manipulate memory regions therein.
More specifically, we propose an NVMalloc library with a suite
of services that enables applications to access a distributed
NVM storage system. We have devised ways within NVMalloc
so that the storage system, built from compute node-local
NVM devices, can be accessed in a byte-addressable fashion
using the memory mapped I/O interface. Our approach has
the potential to re-energize out-of-core computations on large-
scale machines by having applications allocate certain variables
through NVMalloc, thereby increasing the overall memory
capacity available. Our evaluation on a 128-core cluster shows
that NVMalloc enables applications to compute problem sizes
larger than the physical memory in a cost-effective manner.
It can bring more performance/efficiency gain with increased
computation time between NVM memory accesses or increased
data access locality. In addition, our results suggest that
while NVMalloc enables transparent access to NVM-resident
variables, the explicit control it provides is crucial to optimize
application performance.

I. INTRODUCTION

In the post-petascale era, scientific applications running
on leadership-class supercomputers are ever more hungry for
main memory. “Hero” jobs, running on O(100,000) cores,
consume O(100TB) of memory for their processing. For ex-
ample, a 100,000 core run of the GTS fusion application [29]
on the Jaguar machine (No. 3 on the current Top500 [26]
list) at Oak Ridge National Laboratory, consumes 200 TB
of memory (at 2 GB/core.) As we approach several hun-
dred petaflops or an exaflop, the memory requirements of
applications are only likely to get more intense.
DRAM is an expensive resource in the HPC landscape and

its provisioning consumes a significant portion of the multi-
million dollar supercomputer budget. While it may seem that

large-scale machines have a lot of memory, often to the tune
of hundreds of TBs (e.g., 360TB on Jaguar), problem sizes
attacked by modern HPC applications have been growing
fast as well. Further, the memory-to-FLOP ratio has been
steadily declining, from 0.85 for the No. 1 machine on
Top500 in 1997 to 0.01 for the projected exaflop machine
in 2018 [26], [19]. For example, the 2.5 petaflop Tianhe-1A
(current No. 2 on Top500) has around 229 TB of DRAM,
with a memory-to-FLOP ratio of 0.08. In addition, DRAM is
a significant contributor to the supercomputer power budget.
The shrinking memory/FLOP ratio can also be attributed
to the desire to cap the power budget for next generation
machines. Applications face the prospect of running wider
to account for the ever shrinking memory/node, thereby
incurring increased communication costs and, worse yet,
increased usage of supercomputer allocation, a precious
commodity mostly obtained through rigorous peer review.
The advent of non-volatile memory (NVM) devices, such

as solid state disks (SSDs) offers a tremendous opportunity
in such a setting. It is a well-known fact that flash technology
is already serving to bridge the performance gap between
DRAM and disk both in enterprise [16], [22], [5], [9] as
well as HPC [11], [21] domains. To this end, today’s large-
scale HPC machines are being equipped with SSDs on the
compute nodes. For example, the No. 5 machine in Top500
(Tsubame2) [26] has around 173 TB of total node-local SSD
storage. Similarly, Gordon [17] at SDSC is an SSD-based
data intensive cluster. We argue that NVM can also play a
significant role in extending memory capacity in extreme-
scale machines.
Flash technologies possess several features desired in

DRAM, including low cost, high power efficiency, and high
capacity. On the flip side, there are several other factors that
limit their use as a substitute for main memory, such as high
latency, access granularity, and limited lifetime. While the
holy grail of “universal memory” (UM) that can replace both
DRAM and NVM is still elusive [14], Mogul et al. propose
a hybrid memory scheme that seamlessly combines NVM
and DRAM with operating system support [15]. The premise
here is that in the event it is desirable to replace DRAM with
UM, the features of UM will require OS support. Even in
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Table I
DEVICE CHARACTERISTICS. DEVICE PRICES ARE BASED ON CURRENT MARKET VALUES (OCTOBER 2011).

Device Type Interface Read Write Latency Cap. (GB) Cost ($)

Intel X25-E [1] SLC SATA 250MB/s 170MB/s 75us 32GB $589
Fusion IO ioDrive Duo [8] MLC PCIe 1.5GB/s 1.0GB/s <30us 640GB $15,378
OCZ RevoDrive [18] MLC PCIe 540MB/s 480MB/s - 240GB $531
Memory (DDR3-1600) SDRAM DIMM 12.8GB/s 12.8GB/s 10-14ns 16GB <$150

commodity and enterprise-class systems, such an approach
is still a long-term vision, let alone in the HPC landscape,
where DRAM is integral to application performance and
scalability.
Consequently, at the other end of the spectrum, we are

faced with the following approaches for the use of NVM
towards memory extension. First, the availability of node-
local NVM makes it feasible to re-enable virtual memory
on the compute node OS on extreme-scale machines (e.g.,
swapping to NVM). Traditionally, the OS on the tens of
thousands of compute nodes on these systems has swapping
turned off due to the absence of node-local disks. Since hard
disks are particularly failure-prone, large-scale machines are
usually not equipped with node-local scratch disks and are
instead provided with high-speed central scratch parallel
file systems. NVM offers several desirable features when
compared to disks, such as superior throughput, lower access
latency, and higher reliability due to the lack of mechanical
moving parts, making it much more likely to be adopted
as node-local storage. Although the access latency of a
traditional NVM device (e.g., SATA-based SSD) is several
orders of magnitude higher than DRAM, interfaces such
as PCIe (e.g., FusionIO and OCZ flash cards) offer much
lower latency (Table I.) Recent efforts [23], [12], [10],
[20] have adopted the integration of a flash store with the
Linux commodity OS virtual memory system as a means to
extend memory capacity. Similar strategies can potentially
be adopted for the optimized OS kernels running on HPC
machine’s compute nodes (e.g., Compute Node Linux).
Alternatively, a novel angle would be to expose the node-

local NVM explicitly as a secondary, but slower memory
partition for applications. While it is more complicated
than virtual memory integration of NVM, this approach can
offer better performance and a greater degree of control to
applications, in allowing them to explicitly manage the NVM
and dictate data placement. For instance, applications could
potentially use the memory partition for operations that ex-
ploit the inherent device strengths, e.g., by allocating “write-
once-read-many” variables onto the NVM. In particular, this
usage model would be extremely beneficial for applications
that conduct “out-of-core” computation.
The POSIX mmap() interface offers a viable way to

map files or devices into memory. Using such an interface,
sophisticated management structures can be built for the

efficient use of node-local NVM. However, a realistic de-
ployment scenario of NVM in future leadership machines
makes this a non-trivial problem. For example, we noted
earlier that PCIe connected SSDs offer lower latency and
higher throughput than a typical SATA connected SSD (Ta-
ble I). However, they are also expensive. Currently, a high-
end Fusion I/O PCIe MLC flash card (io Drive Duo) at 640
GB is priced around $15K and offers around 1.1-1.5 GB/s
read/write throughput, which is still at least 8.53 times
lower than DRAM rates (Table I). Other PCIe offerings
are cheaper, but provide further lower throughput. While
NVM prices are continuing to reduce, the scale of current
and future supercomputers makes it prohibitively expensive
for each and every compute node to be equipped with an
NVM device. For example, the Jaguar machine has 18,000+
compute nodes and future 100-300 petaflop and 1 exaflop
machines are expected to host O(100,000) and O(1 Million)
compute nodes, respectively. It is more than likely that only
a subset of the nodes will be equipped with such devices
(e.g., perhaps a partition of special “fat” nodes.) Thus, we
need techniques so that clients can access such a partition
of NVM-equipped nodes as a memory device.
In this paper, we have developed methods to expose a

subset of NVM nodes as a secondary memory partition, from
which applications can explicitly allocate memory regions
and operate on them. Our key contributions are as follows:
NVMalloc: We have developed an NVMalloc library,

comprising of a suite of services so that client applications
can explicitly allocate and manipulate memory regions from
a distributed NVM store. The NVMalloc library exploits
the memory-mapped I/O interface to access local or remote
NVM resources in a seamless fashion. In addition, the library
provides an elegant approach to checkpoint both DRAM as
well as NVM-allocated variables in an elegant, transparent
manner. To the best of our knowledge, our work is the
first in its attempt to enable memory-mapped accesses to
an aggregate NVM store.
Revitalize Out-of-core Computation: Our solutions have

the potential to re-vitalize out-of-core computation on large-
scale machines with many-core processors. Applications can
compute problems at a scale much larger than what the
physical memory allows. Our approach presents a novel way
to exploit the collective potential of node-local NVM and
brings it bear on applications and machines faced with the
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DRAM pressure.
Byte-addressability to Block Store Mapping: We have

developed ways so that a block storage system can be
accessed in a byte-addressable fashion. NVMalloc bridges
the granularity gap between byte-by-byte accesses and large
chunk-based aggregate distributed store through additional
layers of data caches.
Evaluation: We have evaluated NVMalloc on a 128-

core cluster with node-local SSDs using resource-intensive
kernels such as matrix multiplication and sorting. Our
results suggest the following: out-of-core execution using
NVMalloc is a very viable solution (53.75% execution time
improvement for matrix multiplication); smart data access
patterns that can exploit NVMalloc’s caching and SSD
traits can achieve better performance; bridging mmap’s byte
accesses against the block store is critical to the success
of NVMalloc and the library can indeed enable efficient
computations on problem sizes larger than the DRAM size.

II. BACKGROUND: AGGREGATE NVM STORE

In our prior work [11], [21], we have built an aggregate
NVM storage system (using SSDs) from a subset of compute
nodes and have demonstrated that such a storage system can
be presented as an I/O impedance matching device between
applications and the parallel file system (PFS) in extreme-
scale systems. The aggregate NVM storage architecture is
similar to our prior efforts on node-local disk aggregation
(e.g., FreeLoader [27], stdchk [2].) In our design, compute
nodes (or a subset of them) run a benefactor process that
contributes the node-local NVM (or a partition of it) to a
manager process that manages the aggregated NVM space
to present a collective intermediate storage system to clients.
The manager carries out tasks such as benefactor status
monitoring, space allocation, data striping, and data chunk
mapping. The aggregate NVM storage is made available
to clients via a transparent file system mount point, (e.g.,
/mnt/AggregateNVM) using FUSE. A client that writes
data to the mount point will be redirected to the aggregate
SSD storage, without requiring any other code modification.
On a large-scale system, such an aggregate NVM store

can be used as a checkpointing device or a staging store for
large output/input data (as shown in our prior work [11],
[21].) Our work has shown that when the NVM devices are
distributed across a set of system nodes, aggregation and
access through a file system mount point offers an elegant
abstraction to transparently access them from the numerous
compute nodes. This decouples the placement of NVM from
the compute nodes and allows for sharing of NVMs across
multiple nodes, as well as easy system hardware upgrades or
re-configuration. Such a storage serves to complement the
HPC center’s PFS and provides intermediate staging area.
Thus, the storage system is required to be as lightweight as
possible and not be burdened by traditional PFS overhead.

This is the reason we did not choose PVFS [4] or Lustre [6]
for the aggregate NVM store.
In this paper, we use the aggregated NVM storage to

provide memory extension for data-intensive computing on
multi-core systems. The aggregate space can be presented
using a separate partition of “fat nodes”, equipped with
NVM to provide uniform local accesses. Alternatively, the
aggregate space can be built dynamically, on a per-job basis,
using a subset of the job’s allocated nodes that are equipped
with NVM. We examine both these models in our proof-of-
concept prototype development and its evaluation.

III. DESIGN AND IMPLEMENTATION

A. Goals

We are guided by the following goals in designing
NVMalloc.
Providing explicit control to applications via familiar

interfaces: Scientific applications should be able to explicitly
manipulate the collective NVM storage just as they would
operate on DRAM allocations. This implies the ability to
control individual dataset’s placement (on DRAM or NVM
), allocate storage space from the aggregate NVM store and
have it appear as memory buffers, and free the allocated
buffers.
Transparent access to local and remote NVM alike: In

our target environment, only a subset of the compute nodes
might be equipped with NVM and nodes in this set may or
may not overlap with a job’s own node allocation (depending
on whether we have an aggregate NVM storage that is
center-wide or per-job.) From a compute client’s standpoint,
it should not be required to be aware of the location of NVM
devices and be able to use any NVM-resident variables in
the same way as DRAM variables.
Bridging byte-addressability and block storage: A key

requirement for NVMalloc is to address the granularity
mismatch between the byte-addressable mmap interface and
the distributed block storage. Since memory accesses are
byte-based, the mmap interface will send out I/O requests to
the underlying storage for each and every access. Even when
the NVM devices are local, the overhead can be significant,
let alone remote accesses within the distributed NVM store.
Meanwhile, block storage accesses perform I/O in larger
granularity due to the latency involved in accessing block
devices.
Optimizing NVM performance and lifetime: Byte-

addressability is one aspect towards overall performance.
Since we intend to provide the collective NVM storage to
expand memory for applications that will use it in conjunc-
tion with DRAM, it is essential to optimize its performance
through smart data placement. Even the fastest commodity
NVM device today is more than an order of magnitude
slower than DRAM. Therefore, we need to optimize the
NVM store by taking into account the locality of the NVM,
data access patterns, etc. Meanwhile, NVM devices such
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Figure 1. NVMalloc overview

as SSDs have limited write cycles. Our design needs to
optimize the total write volume on these devices.
Ability to seamlessly checkpoint the memory-mapped vari-

able: HPC applications routinely checkpoint their compu-
tation states. For a seamless user experience, we need to
reconcile the checkpointing of an application’s DRAM-
allocated variables (or state) along with variables residing
on the NVM device, while taking advantage of the persistent
storage offered by NVM.

B. Architecture Overview

In order to accomplish the desired goals, we have focused
our efforts on two fronts. First is a middleware layer,
NVMalloc, comprising of a suite of services that enable
clients to perform memory operations on the aggregated
NVM storage system. Second is a set of modifications to
the distributed NVM storage to make it amenable to be
used as a memory partition. Figure 1 illustrates this usage
model, wherein a parallel application’s processes, potentially
running on thousands of compute nodes, explicitly utilize the
aggregate NVM store as an extended memory partition.
The primary motivation of NVMalloc is to let applications

explicitly control the usage of the NVM store through the
use of memory-mapped variables. To this end, out-of-core
client applications can use NVMalloc to allocate memory
from the NVM store for certain variables. These might
include variables that are write-once-read-many or accessed
infrequently, relative to the ones allocated on DRAM, which
offers better access performance due to lower latencies and
higher bandwidth. Alternatively, an application may not
distinguish its variables in this fashion and might simply
need more memory than physically available.
Our architecture comprises of several layers as shown in

Figure 1. At the highest level is the application, requesting

memory allocations from the NVM. Beneath that is the
NVMalloc library, which enables explicit manipulation of
the underlying NVM space. At the next level is the FUSE
layer that provides a file system interface for NVMalloc so
that the aggregated space can be accessed seamlessly. All
of the above client-side components will reside on every
compute node of a cluster. The lowest layer is the aggregate
NVM store that abstracts the distributed NVM devices. This
server-side component sits on compute or a subset of “fat”
nodes with node-local NVM to contribute to the unified
NVM space through a benefactor process.

C. Memory Mapping Files on Distributed NVM Storage

The NVMalloc layer supports a set of services such
as ssdmalloc() and ssdfree() that lets a client al-
locate and free a block of memory from the aggregate
NVM storage. Thematic to our design is the use of the
POSIX mmap() interface that allows files or devices to be
mapped into memory. Under the covers, the ssdmalloc()
interface uses the mmap() system call, which maps a file,
residing on the distributed NVM storage, onto an address
space of the client process (Figure 1).
However, before we can memory-map a file on the dis-

tributed NVM, we need to be able to access the NVM store
in a seamless file system-like fashion. To this end, we exploit
our prior work on FUSE-enabling the distributed, aggregate
NVM storage [11], [2] and extend it by implementing several
file system flags necessary for interfacing with mmap().
Each compute node in our target environment has the
aggregate NVM storage mounted via the FUSE user space
file system (e.g., /mnt/AggregateNVM), which allows
clients to open, read and write logical files that are stored
in a distributed fashion. The file itself is striped across
distributed NVM devices as chunks (256KB). Clients can
invoke standard POSIX file system calls to operate on the
file in the distributed NVM storage space.
One example of the flags implemented within our FUSE

file system is O RDWR, which opens a file in read/write
mode and ensures that data written to it is available imme-
diately for reading. This is needed by NVMalloc to make
sure that the modified memory regions are available for
immediate read accesses.
The pseudocode sequence below gives a simplified view

of the mechanism behind an ssdmalloc() call:
fd = open("/mnt/AggregateNVM/MoreMem"...)

nvmVar = mmap(0, len, prot, flags, fd,

offset)

This maps a file, MoreMem, pointed to by fd,
onto the client application’s address space, beginning
at nvmVar. Thereafter, addresses within the range,
[nvmVar, nvmVar+len-1], are legitimate addresses
for the client application, mapped to the range of bytes
[offset, offset+len-1] in the file on the NVM
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store. Thus, ssdmalloc() returns a virtual memory ad-
dress space that is mapped to an SSD-resident file (either
on local or distributed devices.) Each ssdmalloc call creates
a file on the NVM store, with an automatically generated
file name internal to NVMalloc. The client need not be
aware of the file name and only sees the memory-mapped
variable, nvmV ar. The prot argument needs to be set to
PROT WRITE|PROT READ to indicate the combi-
nation of read/write accesses on the data being mapped,
which translates to a file that is also readable as well as
writable at the backend NVM storage. The flags argument
indicates the disposition of write references to the memory
object. This needs to be set toMAP SHARED to indicate
that write references shall change the underlying file object.
The alternative, MAP PRIV ATE flag, creates a copy on
write and does not affect the original file. In particular, if the
NVM-allocated variable, nvmV ar, is to be checkpointed,
the MAP SHARED mode is essential. Reads and writes
to the address range [nvmVar, nvmVar+len-1] are
transformed by mmap into reads and writes to the file that
is striped on the distributed NVM store.

In response to an initial ssdmalloc() request, the
aggregate NVM storage performs file creation as follows.
First, the manager on the aggregate NVM store generates a
benefactor list (selected nodes equipped with NVM) that will
store the file chunks and performs NVM space allocation on
them (e.g., deducts their NVM space contributions to accom-
modate the size of the in-coming file.) The file creation is
simply a space reservation and does not involve any data
transfer immediately. The ssdmalloc buffer size is intimated
to the distributed storage using posix_fallocate(),
which tells the aggregate NVM manager to create appropri-
ate file size metadata. Typically, posix_fallocate() is
part of an advisory information option used to ensure that
writes to the named file does not fail due to the lack of free
space on the storage media. Subsequently, the benefactors
are ready to receive data from the client in parallel. Actual
data transfers occur between the client and the benefactors
when mmap() issues read and write calls. From then on,
a client application can operate on the NVM storage using
the virtual address nvmVar.

The ssdfree() call uses the munmap() system call to
release mappings to the file. Further, the memory-mapped
file on the aggregate NVM will be deleted. If it has not
been explicitly checkpointed (discussed in Section III-E)
NVMalloc or the aggregate store offers no guarantees that
the file will be persistent. One can imagine associating
a lifetime with these memory-mapped variables, residing
on the NVM store, so that they are persistent beyond the
application run. Such a scheme can aid data sharing between
a workflow of jobs or a simulation and its in-situ analysis.

D. Bridging the Granularity Gap

The mmap interface allows us to access a file residing on
a block NVM store in a byte-addressable fashion. However,
there is an obvious granularity gap between the byte-by-byte
memory accesses and larger block accesses. Moreover, our
distributed NVM storage system also delivers data in the
form of larger chunks to clients to minimize the number of
network requests. Thus, there is the need to bridge this gap
to optimize performance.
To address this, we exploit the FUSE layer, beneath the

NVMalloc library, on each compute node that is needed to
access the aggregate NVM store. We use the FUSE cache to
optimize both the read and write performance to the NVM-
allocated variable. The FUSE client’s cache size is a tunable
parameter that can be adjusted at the time of instantiation.
The cache size needs to be sufficient enough to aid with
bridging the granularity gap, while also not consuming too
much DRAM. The cache size used in our tests is 64 MB.
The NVM variable read operation in our library works

as follows. When a read access is made (e.g., with x
= nvmVar[i]), mmap resolves the index into a corre-
sponding POSIX read call for the particular offset into the
file, "/mnt/AggregateNVM/MoreMem", which is then
propagated to the FUSE layer. The read implementation
within the FUSE client transforms the operation into calls
understood by the aggregate NVM store. With NVMalloc,
benefactors store chunks as individual files and an NVM
variable can be spread across multiple chunk files. Therefore,
a call is first issued to the NVM manager to decipher
which benefactor stores the requested data chunk. Next, the
FUSE client makes a direct connection to the appropriate
benefactor to retrieve the data chunk needed. The default
chunk size used for this communication is 256 KB. Thus,
for each byte of access, a 256 KB chunk will be fetched
from a remote benefactor, which can be quite expensive if
we do not perform caching at the FUSE layer. Caching the
chunks at the FUSE layer can significantly aid in data reuse
and minimize network data transfers. We exploit this trait of
the FUSE buffers to improve the overall read performance
within the NVMalloc library. However, it should be noted
that this approach primarily helps the sequential read access
pattern, which is the predominant usecase in HPC settings.
The NVM variable write works as follows. Upon a write

request, the call is resolved, as in the read case, to the FUSE
layer and the corresponding chunk to be updated is read
from the benefactor to the FUSE client’s cache in case of
a miss. The 256KB chunk includes 64 pages (4KB) and
the OS page cache sends out write requests to the FUSE
layer on a page granularity. After this, we mark the page
as dirty within the FUSE cache. The 64MB FUSE cache
is managed using LRU. Upon chunk eviction, NVMalloc
performs optimized writing, by sending only the dirty pages
from within that chunk to appropriate target benefactors,
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avoiding unnecessary transfers of clean pages within the
chunk. This process is repeated until enough dirty pages
are evicted to make room for the incoming chunk. If there
are not enough dirty pages to evict to accommodate the new
chunk, then the oldest chunk is evicted. Thus, for writes, the
FUSE cache is optimized on a page-level within the chunks.

E. Seamless Checkpointing of DRAM and NVM Variables

Checkpointing is an I/O operation that saves the current
state of an application’s execution, mainly to protect it
from failure. Checkpoint files are used to restart an appli-
cation from a previous consistent state. We are interested
in studying the interplay between application checkpointing
and NVMalloc. When it comes to saving the state at every
checkpoint timestep, an application needs to snapshot both
DRAM and NVM allocated variables alike.
The process of checkpointing DRAM will typically pro-

duce a restart file on the PFS. However, in our setting,
given the availability of an aggregate NVM store, it is only
fair to assume that the application will want to checkpoint
to this fast storage instead of the traditional disk-based
PFS. In fact, we have previously shown that checkpointing
to such an intermediate device and draining to PFS in
the background is an extremely viable alternative and can
help alleviate the I/O bottleneck [11], [21]. An application
can easily open a checkpoint file on the distributed NVM
store (e.g., /mnt/AggregateNVM/CheckpointFile)
and write to it using standard POSIX I/O through our FUSE-
based file system. In such a scenario, the checkpoint file is
also distributed (striped) across many nodes, much like the
memory-mapped variable. The question then is how to rec-
oncile these two, to provide a logical restart file for the client,
and to optimize the checkpointing performance/volume in
the context of NVMalloc.
To this end, NVMalloc library provides the

ssdcheckpoint() service. An application can use
ssdcheckpoint() to checkpoint both its DRAM
variables (and execution state) as well as NVM variables
into one logical restart file. The ssdcheckpoint()
service is a transparent interface that essentially dumps the
entire application state to the aggregate NVM store as a
file. This method copies the entire physical memory address
space, followed by the NVM-allocated memory-mapped
variables. This process will begin to create the chunks for
the checkpoint file on the NVM store. Let the checkpoint
file at timestep, t, be, chckptF ilet. Let the chunks
created to checkpoint DRAM-resident data be {a, b, c}.
These chunks now reside on the NVM benefactors. The
memory-mapped variable is already persistently stored
on the aggregate storage and, therefore we should try to
avoid redundant copying. Let the memory-mapped variable,
nvmVar, point to the file, FileForNvmV ar, which in
turn points to the chunks {d, e, f}. The scope of nvmVar is
within the client application. The file, FileForNvmV ar,

and its chunks reside on the aggregate store. To avoid
redundant copies on the aggregate storage, we link together
the chunks of the nvmVar at the end of chckptF ilet.
Appropriate chunk-mapping metadata is updated in the
manager for chckptF ilet to reflect this merge. After this
process, chckptF ilet points to chunks {a, b, c, d, e, f}.
Here, we have shown a basic layout for the checkpoint
file. However, a user may wish to specify the layout of the
variables within the checkpoint file. Such information can
be potentially passed through the ssdcheckpoint()
interface.
The above solution avoids unnecessary copying of the

NVM allocated variables, saving both checkpointing cost
and NVM write cycles. However, this creates a challenge for
subsequent accesses to these variables. nvmV ar is stored
as chunks on the aggregate NVM store, and chckptF ilet
essentially reused those chunks. We need to ensure that
subsequent modifications to nvmV ar, during the following
compute phases, do not alter chckptF ilet.
We need a way to optimally store the modifications

to nvmVar, during the compute phase, between any two
checkpoints. One approach is to create a new backend file
(as chunks on the aggregate NVM store) that is a copy of
the original variable at the time of the checkpoint. However,
this defeats our purpose of avoiding unnecessary duplicates
and is inefficient. Alternatively, we adopt a copy-on-write
scheme for data access and checkpointing.
With our approach, write operations to nvmVar will be

resolved to a chunk. For example, if chunk e is modified
out of nvmVar’s {d, e, f} chunks, we create a new chunk,
e′ (with the modifications), on the aggregate store. Now
the memory-mapped file, FileForNvmV ar for nvmVar,
contains the chunk set {d, e′, f}. Note that chckptF ilet and
FileForNvmV ar still share the other unmodified chunks,
{d, f}. In case of failure, the application can be restarted
from chckptF ilet. At the next checkpoint timestep, t+ 1, a
new checkpoint file, chckptF ilet+1, will be created with
chunks corresponding to any physical memory data and
nvmVar’s chunks, {d, e′, f}. This way, we ensure that
the checkpoint files and the NVM-allocated variables can
share chunks whenever possible and yet retain the ability to
modify the memory-mapped variables during the compute
phases. What is more, incremental checkpointing is automat-
ically enabled with the NVM store, further reducing write
overhead and wearing.

IV. EVALUATION

We have evaluated the NVMalloc library that we have
built atop an aggregate NVM store.

A. Testbed

Our experiments were conducted on the 128-core HAL
cluster at Oak Ridge National Lab. Detailed configuration
of the cluster is shown in Table II. Each compute node runs
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Table II
TESTBED: HAL CLUSTER.

Type HAL cluster

Compute nodes (#) 16
Cores per node (#) 8
Processor (GHz) 2.4
Memory per node 8GB
SATA SSD model Intel X-25E, 32GB

Network Bonded Dual Gigabit Ethernet

the Linux 2.6.32 kernel and is equipped with SATA Intel
X-25E SSD. The specification of the SSD is presented in
Table I. The aggregate NVM store is built by running a
benefactor process on a core/node, on a subset of the nodes.

B. Performance Analysis

We analyzed NVMalloc as follows. We measured an ap-
plication run that allocates certain variables through NVMal-
loc and compared it against a run when all the variables are
allocated on local DRAM. To be fair, we show results from
different application access patterns to study when it does
and does not make sense to use NVMalloc.
1) STREAM: STREAM [13] is a widely used synthetic

benchmark that measures the sustained memory bandwidth
and computation rate for simple vector kernels, namely
COPY, SCALE, SUM and TRIAD. In this paper, we present
the TRIAD kernel results, whose computation kernel is given
below. The other kernels produce similar results.

for(t = 0; t < TIMES; t++) {
for(i = 0; i < N; i++) // TRIAD

A[i] = B[i]+3*C[i];
}

We evaluated NVMalloc atop the distributed SSDs with
STREAM and experimented with a variety of data placement
settings (i.e., different combinations of arrays on NVM store
and DRAM.) As is evident, the STREAM kernel tests the
basic streaming of an array from/to the NVM store and does
not perform any significant computation. Further, there is no
reuse of data. Thus, this benchmark is intended to test the
worst case performance of NVMalloc.
The STREAM kernel (with 8 threads) ran on a single

node (with 8 cores.) The size of each array is 2GB and
the kernel iterates 10 times. Figure 2 shows the TRIAD
results, comparing the DRAM only mode and the NVMalloc
mode on local and remote SSDs. Both the local and remote
SSD accesses were handled transparently through the FUSE-
based distributed NVM store. For the NVMalloc results,
we tested 6 different TRIAD array placement options, by
allocating a subset of arrays (such as “A” only or “B&C”
together) on SSDs. Overall, we see that NVMalloc-based
STREAM performance (both local and remote SSDs) sig-
nificantly falls behind the DRAM performance by a factor
of 62 and 115 for local and remote SSDs, respectively.
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Figure 2. Bandwidth of STREAM TRIAD. Y-axis is
normalized to show the bandwidth measured in the DRAM-
only mode as 100. Note that a logarithmic scale is used for
the Y-axis. X-axis shows which arrays are on the NVM.
“None” indicates all arrays are on DRAM.

Table III
TABLE SHOWS THE BANDWIDTH (MB/S) OF STREAM WITH

ARRAY C ON LOCAL SSD, WITH AND WITHOUT NVMALLOC.
OTHER DATA PLACEMENT OPTIONS SHOW SIMILAR BEHAVIOR.

STREAM Kernel COPY SCALE COPY TRIAD

w/ NVMalloc 176 237 263 340
w/o NVMalloc 117 187 170 289

The results are not surprising, however, given that
STREAM benchmarks the raw device bandwidth and there
is at least a factor of 40 bandwidth difference between
DRAM and the SSD models we tested. What this experiment
suggests is that if all an application does is to stream
data through NVMalloc and not perform any intelligent
computation, it is obviously going to suffer a significant
performance hit. Meanwhile, further experiments suggest
that the NVMalloc framework does not introduce signif-
icant overhead itself. In fact, STREAM accesses to local
SSD with and without NVMalloc (Table III) suggest that
NVMalloc actually improves performance by introducing
another layer of FUSE-based read-ahead caching that we
have implemented. Since the STREAM access is sequential,
the larger chunks fetched by NVMalloc into the FUSE layer
helps subsequent accesses.

2) Matrix Multiplication: For the next set of experiments,
we used an MPI implementation of dense matrix multipli-
cation (MM), a resource-intensive kernel, which possesses
computation and memory access patterns common in numer-
ical simulations. MM computes C = A×B, where A, B and
C are n×n matrices. Both A and B are stored contiguously
in an input file. Like in many applications, only one master
process reads the input file and broadcasts the data to all the
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Figure 3. MM runtime with shared mmap file for matrix
B for the problem size of 2GB/matrix.

other processes for parallel multiplication, using a BLOCK
distribution. Input and output files, one for each matrix, are
stored in a PFS.

MM’s execution is broken down into five steps (shown
in Figure 3 and 4): (i) the master MPI process reads A

from an input file and sends chunks (partitioned in row
or column order) to the slave processes; (ii) the master
reads B; (iii) the master broadcasts B to all processes;
(iv) all processes compute their local C partitions; (v)
the master gathers and writes the resulting C partitions.
Thus, A and C are distributed among all the processes,
while B is fully replicated. We implemented MM with loop
tiling [30], a common optimization that partitions the main
loops’ iteration space for better cache reuse.

In our experiments, we varied the following: (i) tiling
size, (ii) data access patterns (row-major or column-major
access for the SSD-resident matrix), and (iii) the matrix
placement (which matrix or matrices to place on NVM.)
For a fair comparison, we disabled all swapping files or
devices, and locked enough memory through mlock() to
leave only 1.25GB memory for the system (including space
for the kernel or underlying file system cache/buffer). We
also tested with two other options (1.75GB and 2.25GB)
but did not see significant difference in our experiments and
report numbers with 1.25GB memory for the system.

As all processes share the same matrix B, which remains
read-only after being initialized, an obvious optimization
here is to allow multiple processes within a compute node
to map their matrix B to a shared file, residing on the NVM
store. This option saves both storage space, I/O and network
traffic and is enabled by a special flag to the ssdmalloc()
interface within the NVMalloc library.

Figure 3 shows the results for a size of 2GB for each
of the matrices, accessed in a row-major fashion. The
figure also depicts multiple memory allocation and storage
distribution settings, with the total execution time of each job

broken down into the five aforementioned stages. The MM
algorithm we tested has excellent computation scalability.
Since matrix B is replicated across all processes, each
process can proceed with its computation, requiring little
communication with its peers. On the other hand, this
approach has higher memory consumption (compared to
alternatives such as decomposing both A and B.) With
the amount of physical memory available (8 GB/node), the
DRAM-only solution could only fit two processes on each
node, wasting 75% of the compute power on these 8-core
machines. With NVMalloc, SSDs can be used to seamlessly
extend the DRAM space, allowing all of the cores to be
utilized.
For a direct comparison, we carried out experiments where

only 2 processes are allocated on each compute node. This
result is shown by the L-SSD(2:16:16) bar in Figure 3
(where “L” stands for “local”, and “2:16:16” indicates that
there are 2 processes per node, 16 nodes used in the job, and
16 SSD benefactors). In this case, the overall performance
with NVMalloc is only slightly worse (by 2.19%) than using
DRAM only, due to an increase in the cost of broadcasting
B. The computation, which consumes the bulk of the total
execution, appears to take the same amount of time when
the majority of data structures are allocated on the SSD.
This suggests that commodity SSD units can be effectively
used as a memory extension in high-performance computing
applications, with their higher access latency hidden auto-
matically by multiple layers of memory caches in the system.
The result further indicates that we can even run larger
problem sizes than what the DRAM can accommodate.
Next, we examined the performance of using 8 processes

per node to maximize core utilization (Figure 3). NVMalloc
enables each process to occupy a smaller footprint on
DRAM. L-SSD(8:16:16) achieves a 53.75% improvement
compared to the DRAM only case. Again, the computation
stage shows excellent scalability, relative to the total number
of processes. We then analyzed the use of remote SSDs from
the NVM store. For these tests, the SSD benefactors were
all remote to the compute nodes. We can see that there
is very little overhead (1.42%) in using remote SSDs as
shown by cases L-SSD(8:8:8) and R-SSD(8:8:8). Further, R-
SSD(8:8:8) is still 34.73% better than the DRAM only case,
suggesting that network does not appear to be a bottleneck.
The group of results using R-SSD(8:8:z) settings in Fig-

ure 3 tested the performance of MM under varied ratios
of compute node to SSD benefactor nodes in the NVM
store. This can shed light on the number of clients an SSD
benefactor can serve. We can see that reducing the number
of SSD units equipped on the cluster (with each shared by
more compute nodes) does not have a visible effect on most
stages of the MM execution, except for slight increases again
in the broadcasting stage due to higher I/O and network
traffic concentration. In particular, the R-SSD(8:8:1) results
reveal that by adding one $300 SSD drive to every 8 compute
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Figure 4. MM: shared versus individual mmap files for
matrix B for a problem size of 2GB/matrix.

nodes and using mechanisms like NVMalloc, we can bring
about a 32.47% performance improvement while running on
half the nodes compared to the DRAM only mode. This
result suggests that future machines can reduce the total
provisioning cost by purchasing a combination of DRAM
and NVM and use them in concert as above.

Shared versus Individual mmap files: To observe the
performance when processes do not share common read-
only data structures, we also evaluated the case where each
process maps its matrix B to a separate file. In Figure 4,
bars labeled “-SSD-S” use shared mmap access, while “-
SSD-I” uses per-process mmap files. Not surprisingly, the
individual mode is slower (up to 18%). Key factors include
the increased broadcasting and computation overhead. The
performance difference is particularly more, when all 8 cores
are used (the “(8:y:z)” cases), with larger memory and
I/O contention. However, the individual file mode still has
significant advantages over the DRAM case.
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2GB/matrix.

Table IV
DATA EXCHANGED BETWEEN APPLICATION, FUSE AND SSD

STORE FOR A PROBLEM SIZE OF 2GB/MATRIX.

Access Aggregated Request Request
Pattern Accesses to FUSE to SSD
of B to B (GB) (GB) (GB)

Row-major 256 4 2
Column-major 256 113 130

Table V
PERFORMANCE (COMPUTING TIME IN SECONDS) OF MM

(L-SSD(8:16:16)) WITH VARIOUS TILE SIZE FOR

2GB/MATRIX.

Tile Size 16×16 32×32 64×64 128×128

Row-major 464 449 446 443
Column-major 4190 2628 2549 1325

Row and Column-major Accesses: To evaluate the impact
of memory access pattern, we experimented with two access
orders for B: column-major and row-major (effectively
altering the data placement strategy). Figure 5 shows the
runtime of the computation phase. As expected, column-
major is much slower. Further, its performance degrades
significantly when the SSD resources are reduced (from L
to R, then with declining number of benefactors), while
the row major performance remains stable. Also, the dif-
ference between row- and column-major performance is
much more pronounced with NVMalloc-enabled memory
extension compared to the DRAM only case. The explosion
in column major execution time is due to a combination
of factors, including less data locality for DRAM caching,
random SSD accesses, and more network communication as
well as I/O volumes. For row-major accesses, our FUSE-
based read caching helps due to the locality of accesses.
Essentially, a sub-optimal access pattern can dramatically
weaken the capability of hiding SSD access latencies with
DRAM caches, exposing the inferior capability of SSD-
based memory extension. This indicates that applications
need to be aware of the ramifications of the data access
patterns and the placement of their data structures while
using the NVMalloc library.
Table IV shows the size of the aggregated data read during

the computing phase of MM, the size of the data requested
from the system to the FUSE buffers, and the real transfers
between the compute node and the SSD-benefactor-node, for
both row-major and column-major L-SSD(8:16:16) cases.
From the table, the SSD access latency can be effectively
hidden by the caching mechanism in NVMalloc if there
exists good access locality (row-major). This is also shown
by the performance comparison between row-major and
column-major results (Figure 5).
Varying the tiling size: We also varied the titling size of
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Table VI
SORTING TIME (IN SECONDS) WITH VARIOUS CONFIGURATION.

Quicksort DRAM L-SSD R-SSD
(8:16:0) (8:16:16) (8:8:8)

Time (s) 1148.82 100.57 301.24
Pass (#) 2 1 1

MM to further study memory access patterns. The matrix
size is 2GB, which means each process has 128 rows or
columns to calculate. Thus, the largest tile size possible is
128 × 128. For column-major accesses, Table V shows that
as the tile size increases, the computing time decreases, indi-
cating locality of accesses within larger tiles. For row-major
accesses, however, we did not see a significant improvement
due to larger tiles, due to inherent sequentiality.
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Figure 6. MM with 8GB/matrix problem size.

8GB Problem Size: To illustrate the potential to run
applications with problem sizes larger than what the physical
memory allows, we increased the size of the matrices to
8GB each (Figure 6.) Note that the physical memory size is
only 8GB/node. Matrix B is accessed from the NVM store
using a shared mmap file, while matrices A and C are in
DRAM, split between the processes in each configuration.
Comparing against the 2GB computation phase, the 8GB
computation should have increased by a factor of 16. How-
ever, the loop tiling technique favors computing with longer
rows (the 8GB case) much more than shorter rows and the
computing phase only increases by a factor of 9. Thus, the
performance due to NVMalloc scales well for larger sizes.
3) Parallel Sorting: In this experiment, we used an MPI

based parallel Quicksort program. Quicksort sorts a list of
data elements based on the divide and conquer strategy,
splitting the entire list into two sub-lists and sorting them
recursively. The basic steps of the algorithm are as follows:
(i) Choose a pivot element in the list. (ii) Reorder the list
such that elements less than the pivot are arranged before

Table VII
DATA EXCHANGED DUE TO NVMALLOC WRITE OPTIMIZATION

FOR A RANDOM WRITE SYNTHETIC APPLICATION.

NVMalloc write Data Written Data Written
optimization to FUSE to SSD

w/ Optimization 467MB 504MB
w/o Optimization 471MB 19.3GB

the pivot and all elements greater than the pivot come after
it. After the partitioning, the pivot is in its final position.
(iii) Recursively reorder two sub-lists.
Table VI presents the results of the MPI based Quicksort

program. In these experiments, we measured the total run-
ning time of a 200 GB data list for various DRAM/NVM
configurations. DRAM(8:16:0) is a configuration that runs
on the entire machine (8 cores/node and 16 nodes), using
all of the system memory (128 GB). Even so, it does not
have sufficient memory to load all of the data (200GB)
at once. L-SSD(8:16:16) is a hybrid DRAM + SSD store
configuration, where 100 GB of data are loaded on the
DRAM, and the other 100 GB are loaded on 16 local SSDs,
using NVMalloc. R-SSD(8:8:8) is also a hybrid DRAM +
SSD configuration, where 50 GB of data are loaded on the
DRAM, and the other 150 GB are loaded on 8 remote SSDs,
using NVMalloc. The results show that L-SSD(8:16:16)
offers the best performance for this setting, providing a
factor of 10 speedup compared to DRAM(8:16:0). Since
DRAM(8:16:0) is unable to load the entire 200 GB dataset,
it requires us to change the original program to decompose
the entire dataset into two sub datasets and run two passes to
sort the sub datasets. The two passes of DRAM(8:16:0) also
require significant data exchange between each other, with
the PFS used to share the interim sorted data. These steps
are obviously not required for both L-SSD(8:16:16) and R-
SSD(8:8:8). R-SSD(8:8:8) is slower than L-SSD(8:16:16),
since it has half the number of nodes with double the
workload. This experiment illustrates that NVMalloc is able
to run problems much larger than what the physical memory
allows.
4) Write Optimization in NVMalloc: With MM, we

showed the benefits of read caching within NVMalloc. To
study the write optimization, we constructed a synthetic
application that issues write operations (128K times) to
randomly generated address within a 2GB data located on
the SSD store. Writes were issued byte-by-byte to these
random addresses, to depict the performance of our opti-
mization under an extreme case. Table VII shows the results
with and without our optimization. For each dirty chunk,
rather than sending the entire chunk (256KB) to the local or
remote SSD, writing only the dirty pages (4KB) significantly
reduces the data transferred between FUSE and the SSD.
5) Checkpointing DRAM/NVM Variables: We study the

benefits of seamless checkpointing of DRAM/NVM vari-
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Table VIII
PERFORMANCE OF SEAMLESS CHECKPOINTING

DRAM/NVM Test Test Test Test
Variables Case 1 Case 2 Case 3 Case 4

checkpointing
DRAM size (GB) 8 8 8 8
NVM size (GB) 4 8 16 32
Regular chkpt 248.6 437.3 866.4 1633.5

time (s)
SSDcheckpoint 82.4 82.4 82.4 82.4

time (s)
Improvement in time 66.8% 81.2% 90.5% 95.0%

Improvement in size 33.3% 50.0% 66.7% 80.0%

ables. We varied the size of NVM variables from 4GB to
32GB and fixed the size of DRAM variables at 8GB. We
used 112 clients, checkpointing in parallel, to the NVM
store. We compared ssdcheckpoint that avoids the redundant
copy using incremental writes against regular checkpointing
that re-writes the NVM-allocated variable to the checkpoint
file. For both ssdcheckpoint and regular checkpointing,
the checkpoint file is saved in the aggregate NVM store.
Table VIII provides the average performance improvement

of ssdcheckpoint over regular checkpointing. The check-
pointing cost mainly contains two parts: (1) saving the
DRAM state to the checkpoint file and (2) saving the
memory-mapped file on NVM to the same checkpoint file.
The time taken to save the DRAM state is obviously the
same for both ssdcheckpoint and regular checkpointing.
However, for the NVM variables, our ssdcheckpoint mecha-
nism enables the sharing of chunks between the checkpoint
file and the memory-mapped files of the NVM-allocated
variables. Therefore, the entire overhead of duplicating data
is avoided. Thus, as Table VIII shows, the larger the NVM
memory to checkpoint, the better the improvement. Note
that the improvement is more significant than the portion of
memory allocated on the NVM store. This is because check-
pointing NVM-resident variables with the regular approach
is more costly, as NVM reads are slower than DRAM reads.

V. RELATED WORK

Paging is a popular memory management technique in
modern operating systems that enables memory pages to be
swapped in and out between DRAM and I/O devices [24].
HDD can have virtual memory partitions for swap spaces.
Recent popularity of NAND flash memory has enabled the
exploration of swapping on SSDs. To this end, several
solutions have been proposed [10], [20], [12], [23], [25].
Ko et. al. [10] have proposed a log-structured swapping
algorithm to avoid performance degradation due to garbage
collection. Park et. al. [20] have proposed a flash aware page
replacement algorithm that can avoid the high performance
penalty of erase operations on NAND flash. Also there have
been several empirical studies on how to use a flash device,
connected over the network (such as Infiniband) or the PCIe

bus, as a swap area [12], [25]. All of these explore the
following unique properties of NAND flash unlike magnetic
disks: (i) writes are expensive than reads, (ii) data access
granularity is a page (2KB or 4KB), thus misaligned pages
need to be carefully managed, and (iii) flash device has a
life time concern on flash cells.
Large-scale HPC machines have swap space turned off as

they do not contain node-local disks. Also, swapping to disk
can potentially cause more unpredictable performance due to
the memory to disk gap. Faster flash devices and the above
optimization efforts can encourage the use of swap on flash
in HPC. While NVMalloc shares the goal of providing more
memory through flash, it is different in its attempt to provide
explicit control over the extended partition. We provide
applications more control on data placement. Further, all of
the aforementioned efforts require changes to the operating
systems, however, our approach resides at the user-level.
Accessing remote memory to supplement node-local

DRAM has been explored previously [31]. This effort at-
tempts to access additional memory from specialized mem-
ory servers through MPI communication panels. NVMalloc
is similar in the sense that it mmaps from a distribute pool
of devices (albeit NVM), but needs to deal with a variety of
byte-addressability issues that network memory systems do
not address.
In the recent work on ssdalloc [3], the authors have

considered various application level approaches to use the
flash device as an extended memory space on a single
server-based system, and concluded using mmap on flash
device can incur significant runtime overhead. In contrast,
we aim to provide more memory for data-intensive parallel
applications running on many-core systems. In particular,
we address the unique challenge of building an aggregate
store upon distributed SSD devices attached to a subset
of supercomputer nodes. Our work also draws different
conclusions on the utility of mmap based on our target
domain and application access patterns.
Efforts such as Mnemosyne [28] and NV-heaps [7] strive

to provide a persistent interface to second-generation NVM
such as phase change memory (PCM), STT-RAM, mem-
ristors so that in-memory data structures such as trees,
lists and hashes can survive system crashes. Our work on
NVMalloc complements these efforts and while we have
demonstrated it using the first-generation NVM (SSD), it is
applicable to next-generation devices as well. Further, the
byte-addressable, second generation Phase Change Memory
(PCM), which is still a few years from mass production,
cannot yet scale to the capacity levels of block-based NVM
(e.g., PCM on DIMM has only been prototyped for up
to 1GB; PCM on PCIe can scale further, but is slower.)
Moreover, the power consumption for a baseline PCM is
much more than DRAM. Thus, deep memory tiers are
most likely to be presented on a subset of “fat” nodes
with some node-local byte-addressable NVM as and when
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that technology matures. Thus, our work on accessing a
distributed NVM store through NVMalloc is very timely.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the rationale, design
and implementation of NVMalloc, a runtime library that
supplies parallel applications with a distributed NVM stor-
age as a secondary memory partition. NVMalloc provides
a suite of services for applications to explicitly allocate
and manipulate memory regions on the NVM store, bridge
the gap between byte-addressable memory accesses and
the block-based store, seamlessly checkpoint DRAM/NVM-
resident variables and optimize for SSD-specific data access
patterns. Our evaluation on a multicore testbed suggests
that NVMalloc is viable. It further enables cost-effective
parallel computation by allowing applications to (1) utilize
the multiple cores available more efficiently in data-intensive
computation, and (2) compute problem sizes much larger
than what the physical memory permits.
In our future work, we plan to evaluate NVMalloc with

more out-of-core applications, address proactive prefetching
based on application memory allocation/access patterns, and
explore transparent interfaces for applications to allocate
large objects across the DRAM and NVM space.
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