A Next-Generation Parallel File System Environment for the OLCF

Galen M. Shipman, David A. Dillow, Douglas Fuller, Raghul Gunasekaran, Jason Hill,
Youngjae Kim, Sarp Oral, Doug Reitz, James Simmons, Feiyi Wang

Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

{gshipman,dillowda,fullerdj,gunasekaran,hilljj,kimy1,oralhs,reitzdm,simmonsja,fwang2 } @ornl.gov

Abstract

When deployed in 2008/2009 the Spider system at the
Oak Ridge National Laboratory’s Leadership Comput-
ing Facility (OLCF) was the world’s largest scale Lus-
tre parallel file system. Envisioned as a shared par-
allel file system capable of delivering both the band-
width and capacity requirements of the OLCF’s diverse
computational environment, Spider has since become
a blueprint for shared Lustre environments deployed
worldwide. Designed to support the parallel 1/O re-
quirements of the Jaguar XT5 system and other smaller-
scale platforms at the OLCF, the upgrade to the Titan
XK6 heterogeneous system will begin to push the limits
of Spider’s original design by mid 2013. With a doubling
in total system memory and a 10x increase in FLOPS, Ti-
tan will require both higher bandwidth and larger total
capacity. Our goal is to provide a 4x increase in total
I/0 bandwidth from over 240GB/sec today to 1TB/sec
and a doubling in total capacity. While aggregate band-
width and total capacity remain important capabilities,
an equally important goal in our efforts is dramatically
increasing metadata performance, currently the Achilles
heel of parallel file systems at leadership. We present in
this paper an analysis of our current I/O workloads, our
operational experiences with the Spider parallel file sys-
tems, the high-level design of our Spider upgrade, and
our efforts in developing benchmarks that synthesize our
performance requirements based on our workload char-
acterization studies.

1 Introduction

The Spider file system departed from the traditional
approach of tightly coupling the parallel file systems to

a single simulation platform. Our decoupled approach
has allowed the OLCF to utilize Spider as the primary
parallel file system for all major compute resources at
the OLCF providing users with a common scratch and
project space across all platforms. This approach has re-
duced operational costs and simplified management of
our storage environment. The upgrade to the Spider
system will continue this decoupled approach with the
deployment of a new parallel file system environment
that will be run concurrently with the existing systems.
This approach will allow a smooth transition of our
users from the existing storage environment to the new
storage environment, leaving our users a place to stand
throughout the upgrade and transition to operations. A
tightly coupled file system environment wouldn’t allow
this flexibility.

The primary platform served by Spider is one of the
world’s most powerful supercomputers, Jaguar [1, 12,
5], a 3.3 Petaflop/s Cray XK6 [2]. In the Fall of 2012
Jaguar will be upgraded to a hybrid-architecture cou-
pling the AMD 16-core Opteron 6274 processor running
at 2.4 GHz with an NVIDIA “Kepler” GPU. The up-
graded system will be named “Titan”. The OLCF also
hosts an array of other computational resources such as
visualization, end-to-end, and application development
platforms. Each of these systems requires a reliable,
high-performance and scalable file system for data stor-
age.

This paper presents our plans for the second gener-
ation of the Spider system. Much of our planning has
been based on both I/O workload analysis of our current
system, our operational experiences, and projections of
required capabilities for the Titan system. The remain-
der of this paper is organized as follows: Section 2 pro-
vides an overview of the I/O workloads on the current
Spider system. Operational experiences with the Spider
system are presented in Section 3. A high-level system



architecture is presented in Section 4 followed by our
planned Lustre architecture in Section 5. Benchmark-
ing efforts that synthesize our workload requirements
are then presented in Section 6. Finally, conclusions are
discussed in Section 7.

2  Workload Characterization

For characterizing workloads we collect I/O statistics
from the DDN S2A9000 RAID controllers. The con-
trollers have a custom API for querying performance
and status information over the network. A custom dae-
mon utility [11] periodically polls the controllers for
data and stores the results in a MySQL database. We
collect bandwidth and input/output operations per sec-
ond (IOPS) for both read and write operations at 2 sec-
ond intervals. We measure the actual I/O workload in
terms of the number of read/write request with the size
of the requests. The request size information is captured
in 16KB intervals, with the smallest request less than
16KB and the maximum being 4MB. The request size
information is sampled approximately every 60 seconds
from the controller. The controller maintains an aggre-
gate count of the requests serviced with respect to size
from last system boot, and the difference between two
consecutive sampled values will be the number of re-
quests serviced during the time period.

We studied the workloads of our storage cluster us-
ing the data collected from 48 DDN “Couplets” (96
RAID controllers) over a period of thirteen months from
September 2010 to September 2011. Our storage clus-
ter is composed of three filesystem partitions, called
widowl, widow2, and widow3. Widow]l encompasses
half of the 48 DDN “Couplets” and provides approx-
imately 5 PB of capacity and 120GB/s of bandwidth.
Widow?2 and Widow3 each encompass 1/4 of the 48
DDN “Couplets” and provide 60GB/s and 2.5 PB of ca-
pacity each. The maximum aggregate bandwidth over
all partitions is approximately 240GB/s. We character-
ize the data in terms of the following system metrics:

e /O bandwidth distribution, helps understand the
I/O utilization and requirements of our scientific
workloads. Understanding workload patterns will
help in architecting and designing storage clusters
as required by scientific applications.

® Read to write ratio is a measure of the read to write
requests observed in our storage cluster. This in-
formation can be used to determine the amount of
partitioned area required for read caching or write
buffering in a shared file cache design.

e Request size distribution, which is essential in un-
derstanding and optimizing device performance,

and the overall filesystem performance. The un-
derlying device performance is highly dependent
on the size of read and write requests, and corre-
lating request size with bandwidth utilization will
help understand performance implications of de-
vice characteristics.

@ 90 Read

Ios) 80 r Write

¢ &

£ 3 I |

i

@©

Nl ' -
June-1 Jun-2 Jun-3 Jun-4 Jun-5 Jun-6 Jun-7

% '3[ Read

Ios) 80 r Write

¢ &

=

5 50

3 4 |

< .

o 18 EN"*J” I\ht “I \I| L Ul | L oy | 2l
June-1 Jun-2 Jun-3 Jun-4 Jun-5 Jun-6 Jun-7

) 188 Read

% %8 Write

= 60

5

% 30 ‘ | | Il | ‘ . il

31110 T A

& 79 QLA RH AL o P T (Gl e

May-31 Jun-1 Jun-2 Jun-3 Jun-4 Jun-5 Jun-6 Jun-7

Figure 1: Observed I/O bandwidth usage for a week in June
2011.

Figure 1 shows the filesystem usage in terms of band-
width for a week in the month of June 2011. This is
representative of our normal usage patterns for a mix of
scientific applications on our compute clients. We have
the following observations from the figure:

e The Widowl filesystem partition shows much
higher bandwidths of reads and writes than those
in other filesystem partitions (widow?2 and 3). Note
that widowl partition is composed of 48 RAID
controllers (24 “Couplets”) whereas other parti-
tions are composed of 24 RAID controllers (12
“Couplets”), widow1 is designed to offer higher ag-
gregate I/O bandwidths than the other file systems.

e Regardless of filesystem partitions, utilized band-
width observed is very low and only several high
spikes of bandwidths could be sparsely observed.
For example, we can observe high I/O demands,
which can be over 60GB/s on June 2, June 3, June
4, however, other days show lower I/O demands.
We can infer from the data that the arrival patterns
of I/O requests are bursty and the I/O demands can
be tremendously high for short periods of time but
overall utilization can be dramatically lower than
peak usage. This is consistent with application



,4
=
D

widow1-read

Wi

widow1-write ® ]

Wi

S

QOIWS

wiaows-rea

widow2-read

idow2-write mmmes |

idow3-read &

idow3-wfjte

i
y
IJ,
it
i
IN
i
o

=NWHAUINNCOO—=NWA

Maximum Bandwidth
OOOOOOOOOOOOOOO

n
i
I -
T v
| B i
| i

II“II Il i
| §i i

Septi0  Oct10 Novi0 Dec1i0 Janii  Febit

Mar11

Apri1 May11  Junid Jult1 Augl1  Septil

Figure 2: Aggregate read and write maximum bandwidths observed from widow1, widow?2, and widow3 partitions.

Checkpoint/Restart workloads. Whereas peaks in
excess of 60GB/s are common, average utilization
is only 1.22GB/s and 1.95GB/s for widow2 and
widow3 respectively. These results highly motivate
a tiering strategy for next-generation systems with
higher bandwidth media such as NVRAM with
smaller capacity backed by larger capacity and rel-
atively lower performance hard disks.

Figure 2 shows monthly maximum bandwidths for
reads and writes. Overall it is observed from all widow
filesystem partitions that max read bandwidth is higher
than max write bandwidth. For example, in widow1, the
max read bandwidth is about 132GB/s where as the max
write bandwidth is about 99GB/s. in widow2, max read
bandwidth is 50.2GB/s whereas max write bandwidth is
47.5GB/s. This asymmetry in performance is common
in storage media.

1.1
1
0.9

T 07 g
5 06 5
S 05 S
2 04 2
2 03 2
S o2 widow! —— P widow! ——
01 widow2 0.1 widow2
'0 widow3 .U widow3
1 10 100 1000 10000100000 1 10 100 1000 10000100000

Read Bandwidth (MB/s) - Log-Scale Write Bandwidth (MB/s) - Log-Scale

Figure 3: Cumulative distribution of I/O bandwidths for reads
and writes for every widow partition.

Our observations further revealed bursty properties of
I/O bandwidths from Figure 1. One way of analyzing
I/O bandwidth demands is through the use of CDF (Cu-
mulative Distribution Function) plots. In Figure 3, we
show the CDF plots of reads and writes for all widow
partitions. Similar to our observations that we made
[9], the bandwidth distributions for reads and writes fol-
low heavy long-tail distributions, and these trends are
observed across all widow filesystem partitions.

For example, in Figure 3(a), we see that read band-
width for widow1 exceed 100GB/s whereas it becomes
lower than 10GB/s at 90th percentile. It becomes even

lower than 100MB/s at the 50th percentile. Similar ob-
servations can be found in widow2 and 3. The band-
width can exceed 10GB/s at the 99 percentile of the
bandwidths, however, it becomes lower than 100MB/s
at around the 65th and 55th percentiles for widow2 and
widow3 respectively. Figure 3(b) illustrates the CDF
plot of write bandwidth for widowl, 2, and 3. Similar
observations can be found in Figure 3(a). However, it is
observed that the max write bandwidths are lower than
the read bandwidths, and at the 90th percentile, write
bandwidth for widowl becomes much lower than the
read bandwidth.

100
90
80
70
60
50
40
30
20
10

widow1 C——
widow?2
widow3  me—

Average:

|- widow1=61.6%
widow2=35.9%
widow3=35.3%

Reads (%)

o Ll (N
Sept10 Novi0 Jani11 Mar11 May11
Time (Month-Year)

Sept11

Jultt

Figure 4: Percentage of read requests observed every month
for every widow partition.

Typically scientific storage systems are thought to be
write dominant; this is generally attributed to the large
number of checkpoints written for increased fault toler-
ance. However in our observation we see a significantly
high percentage of read requests.

Figure 4 presents the percentage of read requests with
respect to the total number of I/O requests in the sys-
tem. The plot is derived by calculating the total read and
write requests observed during the 13 month period. On
average, widow1 is read-dominant with 61.6% of total
requests being reads. However, it’s observed that read
percentage can exceed 80% of reads. (referring to the
percentages of reads in October 2010, April and May



2011 in Figure 4). Compared to widow1, widow2 and
widow3 show lower read percentages. Average read per-
centage is around 35% in both widow?2 and 3 partitions.
However, we can also observe that the read percentage
can exceed 50%. And we also observe that the read per-
centage increases; For example, average read is 41.1%
in 2011 whereas it is 24% in 2010.

Conventional wisdom is that HPC I/O workloads are
write dominant due to a lot of checkpointing operations,
Spider I/0O workloads do not follow this convention.
This could be attributed to the center-wide shared file
system architecture of Spider, hosting an array of com-
putational resources such as Jaguar, visualization sys-
tems, end-to-end systems, and application development
systems.

As we studied in our previous work [9], we observe
that I/O request sizes from 4-16KB, 512KB and 1MB
account for more than 95% of total requests. This is
because the request sizes cluster near 512KB bound-
aries imposed by the Linux block layer. Spider’s Luster
OSSes use DM-Multipath, a virtual device driver that
provides fault tolerance. To ensure it never sends re-
quests that are too large for the underlying devices, it
uses the smallest maximum request size. If all of those
devices support requests larger than 512KB, it uses that
size as its maximum request size. The lower lever de-
vices are free to merge the 512KB into larger requests.
Lustre also tries to send 1MB requests to storage when
possible, thus providing frequent merge opportunities
under load.

3 Operational Experiences

In this section we’ll cover the reliability of the com-
ponents of the storage system to date, cover our experi-
ence with using an advanced Lustre Networking (LNET)
routing scheme to increase performance, and finally dis-
cuss our experiences with the Cray Gemini interconnect.

3.1 Hardware Reliability

3.1.1 DDN S2A 9900

The main focus of any storage system’s reliability and
performace is the disk subsystem. Over the course of 4
years in operation the DDN S2A9900 has been a very
stable and productive platform at the OLCF. The perfor-
mace has met our needs throughout its lifetime so far,
and has resulted in very little unscheduled downtime for
the filesystems. Of paramount concern as the storage
system ages is component failure rates. Based on our
current data from Crayport we have experienced an av-
erage of 4 disk failures per month since the storage sys-

tem was brought online in 2009. Figure ?? shows disk
failures in Spider over time.

Overall the S2A9900 has been fairly stable and has
not required large quantities of component replacement.
Additionally the architecture of Spider allows us to have
portions of the 9900 fail and not cause an outage. Fig-
ure 5 shows a chart of failures by component, and a com-
parison of failures that result in FRU replacement. The
majority of disk failures resulted in FRU replacement.
Most of the other compponent failure types had a lower
replacement to failure ration.

Failure

» - -
o | N — Replacement
& & 2 2 @ N} N} e
S AC S .
S © Q°
< & & & L

Figure 5: FRU failures in Spider from January 2009 through
March 2012.

3.1.2 Dell OSS/MDS nodes

The Lustre servers for Spider are the Dell PowerEdge
1950 for OSS and MGS servers; R900 for the MDS
servers. These platforms have been extremely reliable
through the life of Spider to date. Our on-site hard-
ware support team has been able to get nodes replaced
quickly to re-enable the full features and performance
of Spider. Node swaps are less common than disk fail-
ures, but on average since January 2009 we replace an
OSS node ever 3 months. We take periodic maintenance
to upgrade firmware and BIOS on machines. The most
common reason to replace a node is bad memory - and
it’s far easier to work with Dell to get the problem re-
solved with the node in the Spare pool and not serving
production data. The possibility exists to just swap the
memory from a spare node but that makes the case track-
ing much harder when interacting with the vendor.

3.1.3 Cisco and Mellanox IB switch gear

The Spider Scalable IO network (SION) consists of ap-
proximately 2000 ports (both host and switch HCA’s),
and over 3 miles of optical infiniband cabling. The net-
work was designed for fault tolerance — allowing access
to the storage resources even if on the order of 50% of
the networking gear is down. Since 2009 when Spider



was placed in production there are only 2 service inter-
ruptions that were based on issues with SION; one was
related to hardware, the other related to the OFED soft-
ware stack.

3.2 Software Reliability

As the Spider filesystem has transitioned from Lustre
version 1.6.5.1 with approximately 100 patches through
several versions of 1.8.X; stability has remained very
good. That code base is mature and it has resulted
an a very reliable and productive platform for the sci-
ence objectives at the Oak Ridge Leadership Computing
Facility. For calendar year 2011 (see Table 1 below),
the largest filesystem in the OLCF had 100% sched-
uled availibility in 8/12 months. Overall for the year
it had scheduled availibility of 99.26% — something that
was almost unheard of in the version 1.4 days of Lus-
tre. Those numbers are even more impressive when
you consider the scale of the system in relation to the
size of a Lustre 1.4 installation. The partnership be-
tween DDN, Dell, Mellanox, and the Lustre players at
Sun Microsystems, Cray, and Whamcloud has provided
a roadmap for other centers to remove islands of data
inside compute platforms, lower interconnection costs
between compute resources, and decouple storage pro-
curements from compute procurements.

Table 1: Spider Availibility for 2011

Filesystem | Scheduled Overall
Availibility Availibility
widow1 99.26% 97.95%
widow2 99.93% 99.34%
widow3 99.95% 99.36%

3.3 Advanced LNET Routing for Performance

In May of 2011 we applied an advanced Lustre
Networking (LNET) routing techinque we called Fine-
Grained Routing (FGR) that allowed us to achieve
much higherbandwidth utilization on the backend stor-
age without any modifications to the user application
codes [4]. As can be observed in Figure 6, the maximum
aggregate performance graph below there is a consider-
able dropoff in aggregate performance in August 2011 —
when we had to remove the FGR configuration in prepa-
ration for the progressive upgrade for Jaguar from XT5
to XK6. In August we saw a 20% performance decrease
in the maximum aggregate bandwidth performance for
Spider.

Aggregate BW Performance in MB/s

500000
450000
400000
350000

300000 i
250000 |
200000 |
150000 |
100000 |
50000 |

Figure 6: Aggregate bandwitdth to all of Spider for January
2011 through August 2011.

B Aggregate BW Performance

3.4 Gemini Experiences

3.4.1 Filesystem Interaction with Gemini Re-route

Our largest issue related to Gemini in production is doc-
umented in Cray bug 780996. Under certian circum-
stances the LO component has extremely high CPU load
and does not answer a routing request from the SMW,
causing the entire machine to destabalize. In all cases
where this bug was encountered, a reboot was required
to rectify the situation. Work is ongoing with this bug
with a near term resolution proposed. Under normal op-
erating conditions we see this bug on the order of once
per month. The dynamimc routing feature of the Gem-
ini interconnect has been our biggest win for availibility
of the compute resource in moving from the XTS5 to the
XKeé.

3.4.2 LNET Self Test performance

As part of our acceptance suite for the XK6 we ran
the LNET Self Test application from the Lustre testing
suite. With our stated requirements of 1TB/s of sequen-
tial IO performance for the next generation filesystem
we needed to verify that the Gemini interconnect could
pass enough traffic based on the approximate number
of LNET routers we would have in the machine. The
metric was at least S00GB/s of performance, and we
achieved 793GB/s using 370 X1O nodes; a 2.14GB/s av-
erage per node. Additional performance will be required
to attain the 1TB/s performance as there are only 512
available service nodes in the machine and they cannot
all be LNET routers. Areas where we think performance
could be gained would be in making the checksumming
routines multithreaded, and possibly changing the algo-
rithm used for computing the checksums.



3.4.3 kgnilnd

At OLCEF there is a large knowledge base of tunable pa-
rameters for the LNET modules for Seastar (kptlind),
and for tuning on Seastar as well. Transition to Gem-
ini provided us the opportunity and challenge of learn-
ing the parameters for an entirely different network tech-
nology. Documentation for kgnilnd circa October 2011
was very sparse. There was no baseline configuration
that could be referenced, and no official document from
Cray that pointed to the module parameters and recom-
mended as well as default values. This made bringing
up Spider on portions of the XK6 more difficult as we
would make progress and have to send an e-mail to a
developer at Cray and wait for a response. Luckily we
had planned the schedule to allow for things like this and
we were able to go on working on other hardware while
we waited for responses.

Interaction between the HSN and SION changes a lit-
tle on Gemini also. With Seastar the HSN was the bot-
tleneck — with Gemini the IB network is the bottleneck.
Care must be taken to allow for router buffers and for
monitoring outstanding messages on the router to insure
that things are not backing up and causing congestion.

4 System Architecture

OLCF’s current center-wide file system, Spider
(§4.1), represented a leap forward in I/O capability for
Jaguar and the other compute platforms within the fa-
cility. Lessons learned from the Spider deployment and
operations will greatly enhance the design of the next-
generation file system. In addition to a new storage in-
frastructure, the OLCF’s Scalable I/0 Network, SION
(§4.2) will be rearchitected to support the new storage
platform.

4.1 Spider

Spider is the current storage platform supporting
OLCEF. It was architected to support Jaguar XTS5 along
with the other computing and analysis systems within
the center. The current Spider system is expected to re-
main at OLCF through 2013/2014.

Spider is a Lustre-based [13][15] center-wide file sys-
tem replacing multiple file systems within the OLCF. It
provides centralized access to petascale data sets from
all OLCEF platforms, eliminating islands of data.

Spider is a large-scale shared storage cluster. 48
DDN S2A9900 [3] controller couplets provide storage
which in aggregate delivers over 240GB/s of bandwidth
and over 10 petabytes of formatted capacity from 13,440
1 terabyte SATA drives.

The storage is accessed through 192 Dell dual-socket
quad-core Lustre OSS (object storage servers) nodes
providing over 14 Teraflop/s in performance and 3 Ter-
abytes of memory in aggregate. Each OSS can provide
in excess of 1.25 GB/s of file system level performance.
Metadata is stored on 2 LSI Engino 7900s (XBB2) [10]
and is served by 3 Dell quad-socket quad-core systems.

A centralized file system requires increased redun-
dancy and fault tolerance. Spider is designed to elimi-
nate single points of failure and thereby maximize avail-
ability. By using fail-over pairs, multiple networking
paths, and the resiliency features of the Lustre file sys-
tem, Spider provides a reliable high-performance cen-
tralized storage solution greatly enhancing our capabil-
ity to deliver scientific insight.

On Jaguar XK6, 192 Cray Service I/O (SIO) nodes
are configured as Lustre routers. Each SIO is connected
to SION using Mellanox ConnectX [14] host channel
adapters (HCAs). These Lustre routers allow compute
nodes within the Gemini torus network on the XK6 to
access the Spider file system at speeds in excess of 1.25
GB/s per compute node. In aggregate, the XK6 system
has over 240 GB/s of storage bandwidth.

4.2 Scalable I/0 Network (SION)

In order to provide true integration among all systems
hosted by OLCEF, a high-performance, large-scale Infini-
Band [8] network, dubbed SION, was deployed. SION
provides advanced capabilities including resource shar-
ing and communication between the two segments of
Jaguar and Spider, and real time visualization, stream-
ing data from the simulation platform to the visualiza-
tion platform at extremely high data rates.

SION will be rearchitected to support the installation
of the new file system while retaining connectivity for
the existing storage and the other platforms currently
connected to it. As new platforms are deployed at OLCF,
SION will continue to scale out, providing an integrated
backplane of services. Rather than replicating infras-
tructure services for each new deployment, SION per-
mits centralized, center-wide services, thereby reducing
total costs, enhancing usability, and decreasing the time
from initial acquisition to production readiness.

4.3 New System Architecture

OLCF’s next-generation parallel file system will be
required to support the I/O needs of Titan while suc-
ceeding the current storage infrastructure as the primary
center-wide storage platform. While the final architec-
ture will depend strongly on the storage solution selected
and supporting hardware required to build the file sys-



tem, many necessary characteristics are known based on
currently understood system requirements.

In its final configuration, Titan will contain between
384 and 420 service nodes for use as I/O routers. These
nodes will connect to SION using QDR InfiniBand.
Based on the final file system architecture, this QDR fab-
ric will likely exist as a separate stage within SION with
cross-connections to the Spider file system.

To fully support the I/O capabilities of Titan, the
new file system will require up to 1TB/sec of sequen-
tial bandwidth. The system will employ Spider’s scal-
able cluster philosophy to enable a flexible deployment
capable of adjustment based on evolving system require-
ments and budget realities. Additionally, the decoupled
nature of the SION network combined with the network
agnosticism of LNET will permit OLCF to procure any
back-end storage technology supported by Lustre. A
conceptual diagram of the new system architecture is
presented in Figure 7.

Titan

V2 N i
J/ N ; T
f/ Upgraded SION N H 'Current SION}\
\ (IBQDR/FDR) /

h_(1BDDR) /

o~ N
K R

0 |
Nt |
-
| - - ..a
F———— Future Existing
[ =3
=== Analysis and Analysis and

Next Gen Compute Compute
File System Clusters Clusters Spider

New or future components and systems  Existing components and systems

Figure 7: Conceptual diagram of the new system architecture.

5 Lustre Architecture

Spider is a Lustre-based [13, 15] center-wide file sys-
tem.Implementing Spider drove many enhancements to
the Lustre file system in the 1.6 and 1.8 release series,
and we expect the next-generation OLCF file system to
make use of both OLCF and OpenSFS driven features in
Lustre 2.2 and beyond.

Lustre 2.2 saw many improvements in the code base.
Many of these directly affect the performance of the file
system, and help to improve the scientific productivity

of the center:

e Farallel directory operations(PDO) improve a long
standing performance issue when operating a sys-
tem at large scale — each modification to a directory
is serialized by a single lock, allowing a single op-
eration to proceed at a time. File-per-process 10
models combined with ever-increasing core counts
significantly increases the impact of this serializa-
tion on creating a checkpoint or analysis data set.
OpenSFS funded development to split the the direc-
tory lock into multiple locks, improving parallelism
and reducing the time required to create thousands
of files in a single directory.

o [ncreased maximum stripe count allows more OSTs
to be used for a single file. Prior to Lustre 2.2, a
file was limited to 160 OSTs. With 1diskfs’s limit
of 2 TB per object, a single file was limited to 320
TB. This ORNL funded development allows up to
2000 OSTs per file, allowing a single file to store
4 PB. Perhaps more important than the increase
in file size is the potential performance improve-
ment from spreading the load over more OSTs.
Spider currently has over 672 OSTs in its largest
file system; these improvements allow a theoretical
4x bandwidth improvement for a single shared file
with well formed IO characteristics.

e [mperative recovery helps reduce the time required
to recover from the inevitable hardware failures
seen at scale. In the past, recovery is allowed to
take up to three times the OBD timeout to com-
plete. At small scale, this does not add significant
delay to recovery, as the default timeout is 100 sec-
onds and smaller client counts both increase the
odds of each client performing IO at the time of the
failure and decrease the chance of a client failure
during the recovery window. However, the scale of
OLCEF has the opposite effect: it is unlikely that all
of the center’s resources are performing IO during
a failure, and it is much more likely that a client
may die during the recovery window. This, com-
bined with operational parameters that required a
6x increase in OBD timeout, caused the recovery
window to grow to over 30 minutes.

Imperative recovery takes advantage of a shared
lock on the MGS to note when an OST is restarted
— cither on the same OSS or another — and causes
each client to notice the new location of the OST
without waiting for a timeout to occur. While
this alone improves the recovery time, the recov-
ery window is also reduced to take advantage of
this active notification — we notice dead clients



much sooner. In combination, these ORNL funded
changes are on track to reduce the OLCF recovery
time from over 30 minutes to well under 5 minutes.

e Asynchronous glimpse locks Lustre has over the last

several years been improved with added features
to deal with traversing directories. Prior to Asyn-
chronous glimpse locks, the client would trigger
many RPCs for each file or subdirectory for a spe-
cific parent directory. To improve this, statahead
was added to Lustre so clients could prefetch file
attributes from the MDS asynchronously. This ini-
tial design while improving the problem still expe-
rienced limitations. Each parallel statahead thread
would require access to the VFS layer which in-
troduce race conditions with other operations also
needing to access the VFS layer as well. In addi-
tion, not all RPCs were processed asynchronously.
The glimpse size RPCs used to pre-fetch file size
where still synchronous. The solution was to make
glimpse size RPCs asynchronous and to take infor-
mation in the RPC reply to cache it in a statahead
local dcache on the client.

PTLRPC thread pools In Lustre 2.2 a generic ptl-
rped pool of threads was developed to handle all
the asynchronous RPCs on the client. In the past
lustre had 2 threads to handle the RPC load. Of-
ten one of those threads would be idle while the
the CPU was pegged. As one can see this does
not scale well to modern machines. So a pool of
threads was created that would take advantage of
each CPU core. These threads are then bound to
each core to avoid cache misses which degrades
overall perform. Even though this helps distribute
the CPU load, it is still possible to have one thread
experience a delay due to an over utilized CPU. To
get the best of both worlds two pools are created.
Some threads are always bound to a core and the
other threads are free to migrate to the least loaded
core. This can be controlled with binding polices
set at module load time.

merged within the controller. Sending 4 MB write
requests to the controllers returns performance to
above 80% of peak irrespective of merging of re-
quests and achieves above 90% in many cases.

Lustre 2.3 is expected to increase the maximum
RPC size to 4 MB, allowing the OSSes to send
larger requests through the object storage file sys-
tem to the block layer. This will recover much of
the performance lost to the highly random IO pat-
terns seen from thousands of clients simultaneously
accessing the file system.

SMP  scalability improvements, funded by
OpenSFS, will improve performance on to-
day’s multi-core systems often used for Lustre
servers. Currently, Lustre has many points of
contention at multiple layers of the stack. At
these points, locks may be bounced from core to
core, and from socket to socket, thrashing caches
and dramatically increasing latency. Additionally,
requests may be bounced from core to core while
migrating from LNET to the RPC service that will
ultimately process it, loosing the benefits of any
warm cache it may have generated.

The SMP scalability improvement work will split
locks with high rates of contention and add per-
socket and/or per-core queues for LNET and RPC
services. This will improve the LNET small mes-
sage throughput, RPC service rate, and overall re-
sponsiveness and throughput for the MDS server.

Online Object Index scrubbing will help protect the
file system from corrupted meta-data due to non-
graceful shutdowns, as well as restore the ability to
perform file-level MDT backups. Lustre 2.x uses
an object index to map file ids (FIDs) to inodes
in the backing store. If this index is corrupted or
deleted due to a file-level backup or other storage
issue, Lustre is unable to retrieve user data from
storage without manual intervention. OpenSFS has
funded work to perform an online scrub of this in-
dex in the background of user-initiated operations.

Lustre 2.3 is expected to bring further improvements
in performance:

This will verify that every FID in the index points
to a correct and valid inode, and that every in-
use inode has a FID and entry in the object index.

® 4+ MB requests will help improve storage backend This work will form the basis for follow-on work

performance when driven under heavy workloads
from thousands of clients. While well-formed, se-
quential 10 is able to generate peak bandwidth
from the storage system, the IO stream presented
quickly becomes random at the block level. With
1 MB write request sizes, block-level performance
on Spider’s DDN 9900 controllers is reduced to be-
tween 35% and 40% of peak unless I/O requests are

to allow for online integrity checks of the Lustre
metadata between MDT(s) and the OSTs, avoiding
lengthy down-times to detect and correct missing
and/or orphaned data objects.

The Network Request Scheduler (NRS) enhance-
ment will allow the Lustre servers more control
over the order in which they processes the RPCs



presented by the clients, leading to better 10 pat-
terns to the block scheduler and allowing for dif-
ferent quality of service levels for different users or
clients.

Currently, Lustre processes requests from clients in
a first-in, first-out (FIFO) manner. This allows a
large system to starve out smaller ones due to the
disparate request generation rate, or due to many
requests for the same resource to eat up service
threads waiting for a lock while requests to other
resources sit idle in the network queue. NRS allows
pluggable algorithms to specify the order in which
requests are processed. These algorithms can im-
plement policies that restrict the relative number
of requests from a group of clients or could give
preferential treatment for contiguous requests to the
same data object. While the enabling technology
will be introduced in Lustre 2.3, we expect to see
community development of additional policy en-
gines once the foundational mechanism is in place.

e The Object Storage Device (OSD) rework will al-
low Lustre to utilize different object storage sys-
tems. Currently, Lustre uses an ext4 derivative
called ldiskfs to store user data in objects on disk.
Lawrence Livermore National Laboratory has been
working to allow Lustre to take advantage of the re-
dundancy, management, and performance features
of the ZFS filesystem. The OSD rework provides
the flexibility to allow both 1diskfs and ZFS to be
used as the underlying object store in the near fu-
ture, and allows for future expansion to BTRFS and
other new file systems longer-term.

As we look beyond the expected features in the Lus-
tre 2.3 release, it becomes more difficult to determine
when various improvements will become available to the
Lustre community. However, there are several improve-
ments being worked on as likely candidates for inclusion
in the OLCF next-generation file system:

o Distributed Namespaces (DNE) will improve Lus-
tre aggregate metadata performance by allowing
multiple MDTs to be used in a single Lustre filesys-
tem. This horizontal scaling will help isolate the
metadata demands between groups of users while
allowing management of the storage as one aggre-
gated pool. The initial implementation of DNE
will allow directories to be created on separate
MDTs, spreading the load in different portions of
the namespace. Follow-on work will allow a sin-
gle directory to be striped across multiple MDTs,
allowing improvements when thousands of clients
are performing operations in that directory, such as
during large-scale job startup and checkpointing.

e Client 10 improvements to prioritize page write-
back. It has been observed for some time that in-
dividual clients suffer from several IO bottle necks.
Lustre currently uses a basic FIFO to cache dirty
pages which ties performance to the behavior of the
application. This is remedied by merging sequen-
tial pages on the client side during formation of re-
quests. Further performance improvement will be
gained by prioritizing the write-back of pages asso-
ciated with a lock being canceled by the OST. This
will reduce the time required to release the lock to
other clients waiting to write their data. By mov-
ing the locking to a per-object basis, this will also
reduce lock contention on the clients.

o Improved performance for directory scans will im-
prove common use cases such as a user listing the
names and sizes of files in a directory or applica-
tions scanning for their input deck. Currently, Lus-
tre uses multiple requests to retrieve the names of
the files in the directory, the size of the files, and the
attributes of the files. While multiple names may be
retrieved in one request, obtaining the size and at-
tributes requires two requests per file. This load is
reduced by sending all of the information about the
file along with the name, reducing the number of re-
quests (and LDLM locks) required from the MDT.
While this improvement may not significantly im-
pact application performance, it will increase re-
sponsiveness to interactive user commands.

While looking to the future of the OLCF file systems,
it is important to not forget the past and to minimize user
pain as much as possible during the transition. It is pos-
sible to upgrade the existing Spider file systems from 1.8
to 2.2 (and beyond) without requiring a reformat. This
has the advantage of not requiring users to move their
data to archival storage and restoring it to the new sys-
tem, but trades off access to many of the new features
supported by recent Lustre releases. There is work un-
derway to convert the on-disk format of 1.8 file systems
to 2.X, and OLCF will monitor the progress of this effort
to provide the least interruption possible to our users.

6 Systematic Benchmarking

The benchmarking suite is a comprehensive suite
providing Lustre file system-level and block-level per-
formance metrics for a given file or storage system. The
suite also provides tools for quick visualization of the
results allowing head-to-head comparison and detailed
analysis of system’s response to exercised I/O scenar-
i0s. Using bash scripts as wrappers to control, coordi-
nate, and synchronize pre-selected I/O workloads, the



suite uses the obdfilter-survey at the file system-level
and the fair-lio at the block-level as workload genera-
tors. Obdfilter-survey [7] is widely used and exercises
obdfilter layer in Lustre I/O stack for reading, writing
and rewriting Lustre objects. Fair-lio [4] is in-house
developed and libaio-based tool which generates paral-
lel and concurrent block-level sequential and random,
read and write asynchronous I/O to set of specified local
block-level targets. The benchmark suite is developed as
part of OLCF’s efforts towards procuring and deploying
the next generation center-wide shared Lustre file sys-
tem for the Titan supercomputer and other OLCF com-
puting, analysis, and visualization resources. The suite
is publicly available and can be obtained at the OLCF
website [6].

Based on the lessons learned from our Spider file
system deployment and operations and also from our
I/O workload characterization work outlined in Section
2, our benchmark suite evaluates the file and storage
system I/O response in terms of various characteristics,
such as, performance and scalability. Our I/O workload
characteristics work and experiences with the Spider file
system both pointed out that the aggregate I/0 workload
observed at the file and storage system level is highly
bursty, random, and a heavy mix of small (less than 512
kB) and large (512 kB and above) read and write re-
quests. Therefore, our benchmark suite tries to mimic
this workload.

As stated, the benchmark suite has a block 1/O sec-
tion and a file system I/O section. The block I/O sec-
tion consists 4 different benchmarks: single host scale
up test (block-io-single-host-scale-up.sh), single host
full scale test (block-io-single-host-full-run.sh), scalable
storage unit scale up test (block-io-ssu-scale-up.sh), and
the scalable storage unit degraded mode full scale test
(block-io-ssu-degraded.sh). Of these, the first three are
used for assessing the performance and scalability of a
healthy system, while the fourth is used for degraded
systems. All four benchmarks require pdsh and dshbak
utilities to execute. In each of the four benchmarks, the
storage system is exercised with random and sequential,
small and large read and write I/O operations. For all
tests, command line parameters including queue size,
block size, and I/O test mode (sequential write, sequen-
tial read, random write random read) and the iteration
number is generated before the actual execution and then
randomized. The randomized list of tests then fed into
the benchmark I/O engine and executed. Through this
randomization of test parameters and sequence of I/O
operations and modes, we eliminate the caching effects
on test nodes and the storage system, therefore obtaining
much more realistic readouts (based on our Spider expe-
riences and results of our workload study, we know that

10

the I/O traffic is heavily bursty and heavy mix of I/O
modes and operations with varying block sizes). Each
individual iteration of tests is run for 30 seconds to ob-
tain statistically meaningful results.

Of these four benchmarks, the block-io-single-host-
full-run test is used to characterize the performance and
scalability of the underlying storage system for a sin-
gle 1/O server perspective. A single SCSI disk block
device (sd device) configured on the target host is exer-
cised in this test. There are 720 individual tests in this
one benchmark and the total run time of the benchmark
will be (720 tests * 45 seconds), or in other words 9
hours. The script will generate a summary file capturing
the STDOUT of the script with some additional infor-
mation and a .csv (comma separated values) results file
capturing detailed results of the tests and derived statis-
tics. The script will also create a subdirectory located at
the parent directory where the script was launched and
write individual raw test results in separate files in this
new directory. This benchmark will use 4 kB, 8 kB, 16
kB, 32 kB, 64 kB, 128 kB, 256 kB, 512 kB, 1 MB, 2 MB,
4 MB, and 8 MB block I/O request sizes and sequential
and random write and read I/O modes and operations
and queue sizes of 4, 8§, and 16. A permutation of all
these variables is generated as command line arguments
before the actual execution of the benchmark and then
randomized and then fed into the actual I/O workload
generator engine (i.e. fair-lio), as explained above.

The block-io-single-host-scale-up test runs a ran-
domized set of sequential and random write and read I/O
benchmarks using the fair-lio binary for various block
and queue sizes for all SCSI disk block devices config-
ured on one a single I/O server node for a given scalable
storage unit for multiple iterations. Similar to the pre-
vious test, this benchmark also generates and random-
izes test parameters and test modes and operations be-
fore the execution. Also, as outlined in our workload
study, I/O block size PDF show three spikes at less than
16 kB, 512 kB, and 1 MB for both read and write op-
erations. These three request sizes were observed to ac-
count for more than 95% of total requests. Therefore, to
speed up the benchmarking process and to shorten the
actual test time, we chose 4 kB, 8 kB, 512 kB, and 1
MB as block sizes. The total run time of the test will be
at least log2(number of target test devices) * (144 tests
* 45 seconds), or in other words at least 1.8 hours for
(log2(number of target test devices)). As an example, if
every test host has 5 target test devices, the total run time
will be 7.2 hours.

The block-io-ssu-scale-up benchmark will exercise
all configured SCSI block devices on all configured test
hosts on the scalable storage unit to gather the maximum
obtainable performance of the scalable test cluster under



various I/O test modes and operations. This test will
again run a randomized set of sequential and random
write and read I/O benchmarks using the fair-lio binary
for various block and queue sizes for all SCSI disk block
devices devices for multiple iterations on all I/O servers.
The block and queue sizes selected for this benchmark
is identical to those of the block-io-single-host-scale-up
benchmark. The total run time of the benchmark will
therefore be at least (log2(number of target test devices))
* (144 tests * 45 seconds), or in other words at least 1.8
hours for (log2(number of target test devices)). As an
example, if every test host has 5 target test devices, the
total run time will be 7.2 hours.

The degraded mode test, block-io-ssu-degraded, is
similar to ssu scale-up test, and has an identical sets of
block size, queue size, and I/O mode and operation pa-
rameters. This test will exercise all SCSI block devices
(i.e. RAID arrays or LUNs) on all test hosts and pro-
vide the performance profile of the ssu when 10% of the
SCSI block devices are being rebuilt. Before running
this script it is expected that the tester makes sure that
there are at least 10% of the SCSI block devices are in
active rebuild state for the entire execution of the bench-
mark. This script will again run a randomized set of se-
quential and random write and read I/O benchmarks us-
ing the fair-lio binary for various block and queue sizes
for all SCSI block devices. The total run time of the test
will be (144 tests * 45 seconds), or in other words 1.8
hours.

Also included in the benchmark suite, are tools for
parsing and plotting the obtained results for the block
I/O benchmarks. These plotting tools require gnuplot
and ps2pdf utilities to execute. These two utilities are
quite common in HPC environments. A sample block
I/0O plot is presented in Figure 8.

seq_rd-Max-biock io_SSU_SCale_up_Oct_08_11_05_18-53s

100

% of total performance

Figure 8: A sample block I/O benchmark plot

For assessing the Lustre-level performance and scal-
ability of a file and storage system, we developed a set of

11

tools built around the obdfilter-survey engine. Our tools
generate a required set of parameters and variables and
then feed them to the obdfilter-survey. Again, similar
to our block I/O tests, these parameters are determined
based on our experiences with Spider and our I/O work-
load characterization study. Our Lustre-level benchmark
package includes a obdfilter-survey-olcf script. This
script is different than the one that comes with Lustre
distributions and includes the required set of I/O pa-
rameters and variables. The only modifiable parame-
ters in this benchmark package is the list of OSTs to be
tested. There are no other modifiable variables or pa-
rameters. This benchmark assumes a fully configured
and functional Lustre file system already running on the
test hardware. However, Lustre clients are NOT needed
to run this benchmark suite. The benchmark is tested
against Lustre version 1.8. The benchmark package re-
quires passwordless ssh capability from the head node
to the OSSes and between the OSSes, as well. A sam-
ple file-system-level benchmark plot is presented in Fig-
ure 9.

Obdfilter-survey SAS, Cache 32 GB
T T

100 \wirtes for rsz 8K
Reads for rsz 8K

80
60

w0 + °

% of total performance using 20 objs

20

L . . . . L
0 50 100 150 200 250 300 350
number of threads

Figure 9: A sample file-system-level benchmark plot

OLCF’s benchmark suite was shared with our part-
ners and vendors in 2011 and is publicly available since
early 2012. The initial feedback we have received is very
encouraging.



7 Conclusions

To support the need of a scalable, high-performance,
center-wide parallel file system environment, the OLCF
architected, developed, and deployed the Spider system.
In 2013, Spider will have been in operation for over 5
years having supported Jaguar XT4, Jaguar XTS5, and
Jaguar XT6 throughout this time. As the OLCF tran-
sitions to the next-generation hybrid Titan system, the
Spider system will undergo a major upgrade to meet the
performance and capacity requirements of Titan.

The design of our next-generation Spider system will
draw upon our operational experiences, I/O workload
characterizations, and the performance, capacity, and re-
siliency requirements of the OLCF. This system will in-
corporate a number of major changes in Lustre to im-
prove resiliency, performance, and scalability. Similar
advances in storage system technologies will be incor-
porated into this system.

Given the flexible architecture of the current Spider
system, this upgrade will be brought online and will be
operated concurrently with our current storage systems.
This strategy will provide a smooth transition for our
users allowing them access to our current storage sys-
tems as new storage is deployed and made accessible.

References

[1] A.Bland, R. Kendall, D. Kothe, J. Rogers, and G. Ship-
man. Jaguar: The worlds most powerful computer. In
Proceedings of the Cray User Group Conference, 2009.
Cray Inc. Cray XK6. http://www.cray.com/
Products/XK6/XK6 . aspx.

Data Direct Networks. DDN S2A9900. http://www.
ddn. com/9900.

D. A. Dillow, G. M. Shipman, S. Oral, and Z. Zhang. I/o
congestion avoidance via routing and object placement.
In Proceedings of Cray User Group Conference (CUG
2011),2011.

J. Dongarra, H. Meuer, and E. Strohmaier. Top500 su-
percomputing sites. http://www.top500.org, 2009.
O. R. L. C. Facility. Olcf i/o evaluation benchmark
suite. http://www.olcf.ornl.gov/wp-content/
uploads/2010/03/0lcf3-benchmark-suite.tar.
gz.

O. Inc. Benchmarking lustre performance (lus-
tre i/o kit). http://wiki.lustre.org/manual/
LustreManual20_HTML/BenchmarkingTests.html.
Infiniband Trade Association. Infiniband Architecture
Specification Vol 1. Release 1.2, 2004.

Y. Kim, R. Gunasekaran, G. M. Shipman, D. Dillow,
Z.Zhang, and B. W. Settlemyer. Workload characteriza-
tion of a leadership class storage. In Proceedings of the
5Sth Petascale Data Storage Workshop Supercomputing
10 (PDSW’10) held in conjunction with SC’10, Novem-
ber 2010.

(2]
(3]
(4]

(5]

(6]

(7]

(8]
(9]

12

(10]

(11]

[12]

[13]

[14]

[15]

LSI Corporation. 7900 HPC Storage System.
http://wuw.1lsi.com/storage_home/high_
performance_computing/7900_hpc_storage_
system/index.html.

R. Miller, J. Hill, D. D. A., G. Raghul, G. M. Shipman,
and D. Maxwell. Monitoring tools for large scale sys-
tems. In Proceedings of Cray User Group Conference
(CUG 2010), 2010.

Oak Ridge National Laboratory, National Center for
Computational Sciences. Jaguar. http://www.nccs.
gov/jaguar/.

Sun Microsystems Inc.
lustre.org, 2009.

S. Sur, M. J. Koop, L. Chai, and D. K. Panda. Per-
formance analysis and evaluation of mellanox connectx
infiniband architecture with multi-core platforms. In
HOTI '07: Proceedings of the 15th Annual IEEE Sym-
posium on High-Performance Interconnects, pages 125—
134, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang,
and I. Huang. Understanding lustre filesystem internals.
Technical Report ORNL/TM-2009/117, Oak Ridge Na-
tional Lab., National Center for Computational Sciences,
2009.

Luste Wiki. http://wiki.



