
Journal of Systems Architecture 57 (2011) 354–365
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
A comprehensive study of energy efficiency and performance of flash-based SSD q

Seonyeong Park a, Youngjae Kim b, Bhuvan Urgaonkar c, Joonwon Lee d, Euiseong Seo e,⇑
a Division of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
b National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
c Department of Computer Science and Engineering, The Pennylvania State University, University Park, PA 16803, USA
d School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Republic of Korea
e School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 February 2010
Received in revised form 13 December 2010
Accepted 30 January 2011
Available online 25 February 2011

Keywords:
Flash memory
SSD
Energy
Power
Filesystems
Storage
1383-7621/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.sysarc.2011.01.005

q This research was supported by Basic Science Re
National Research Foundation of Korea (NRF) funded
Science and Technology (2009-0089491 and 2010-00
⇑ Corresponding author.

E-mail addresses: parksy@calab.kaist.ac.kr (S. Par
bhuvan@cse.psu.edu (B. Urgaonkar), joonwon@skku.
ac.kr (E. Seo).
Use of flash memory as a storage medium is becoming popular in diverse computing environments. How-
ever, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL
(flash translation layer). Although the FTL enables flash memory storages to replace conventional hard
disks, it induces significant computational and space overhead. Despite the low power consumption of
flash memory, this overhead leads to significant power consumption in an overall storage system. In this
paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power con-
sumption and energy efficiency by using various methodologies. First, we utilize simulation to investigate
the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the per-
formance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the
block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

NAND flash memory (henceforth referred to as flash memory) is
widely used in a diverse range of computing systems as storage de-
vices, from hand-held scale embedded systems to enterprise-scale
high performance servers, as a replacement for traditional hard
disks.

In comparison to hard disks, flash memory has many character-
istics suitable for use as the storage medium of choice in various
fields. First, its small form-factor helps its placement in small de-
vices. In addition, flash memory exudes no noise or vibration, along
with kinetic shock resistance because it uses no mechanical com-
ponents. Finally, it provides fast read speed. Because it does not re-
quire any moving parts to access data, random read operations are
as fast as sequential reads.

Energy efficiency, as well as performance, of the storage subsys-
tem is very important in mobile devices. Laptop hard disks, whose
power consumptions has already been reduced from that of the
desktop hard disks, consume about 2 W while in operation. In con-
ll rights reserved.

search Program through the
by the Ministry of Education,
03453).

k), kimy1@ornl.gov (Y. Kim),
edu (J. Lee), euiseong@unist.
trast, the power consumption of flash SSDs during operation is in
the range of few hundred milliwatts (mW), and it consumes only
a couple of microwatts (lW) when idle.

However, in spite of flash memory’s advantages, flash memory
has an important limitation. As opposed to the traditional storage
media, the data that is already written on flash memory cannot be
updated immediately. The data has to be erased before rewriting.
Moreover, the unit size of an erase operation is bigger than the unit
size of a read/write operation. To overcome this gap, flash mem-
ory-based storage systems employ an emulation layer called the
FTL (flash translation layer) [10], which emulates the normal block
devices, such as hard disks.

Flash-based SSDs are the storage devices that use flash memory
as their storage media, and employ the FTL to emulate normal hard
disks. Because they can be used without modifying existing oper-
ating systems and applications, flash-based SSDs are now widely
used in laptops and mobile embedded systems [32].

Although the FTL enables flash memory storage devices to re-
place conventional hard disks, it usually requires a significant
amount of fast and non-volatile memory such as battery-backed
DRAM to store the translation mapping table for the FTL, along
with an embedded processor, which should be powerful enough
to search and manipulate the mapping data quickly. Consequently,
the FTL increases power consumption by the embedded processor
and memory included in the storage devices.

Research has been undertaken to investigate the performance of
flash memory and storage devices using flash memory in embedded

http://dx.doi.org/10.1016/j.sysarc.2011.01.005
mailto:parksy@calab.kaist.ac.kr
mailto:kimy1@ornl.gov
mailto:bhuvan@cse.psu.edu
mailto:joonwon@skku.edu
mailto:euiseong@unist.ac.kr
mailto:euiseong@unist.ac.kr
http://dx.doi.org/10.1016/j.sysarc.2011.01.005
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 355
systems [4]. However, there has been relatively little effort
expended to improve the energy efficiency of flash memory
storage devices.

In order to provide the insight to improve both performance
and energy-efficiency of flash-based storage systems, this paper
analyses the performance and energy efficiency of the flash-based
storage systems at diverse levels of system hierarchy, which spans
from the FTL to filesystems.

First, we observe the computational and spatial overhead of a
few popular FTLs under various workloads using a flash SSD simu-
lator, which was built for our previous research [12]. By using this
simulator we can measure the computational overhead, data trans-
fer overhead, and memory usage of SSDs for specific workloads.
The information obtained from this analysis is intended to help
storage system developers to design power-aware storages that
fit their target workload.

Next, we empirically analyze the energy efficiency and perfor-
mance of SSDs in the market. We measure the performance and
the energy efficiency according to block level I/O patterns. In addi-
tion, we observe the changes in the energy efficiency and perfor-
mance according to the filesystem and workload combinations
using a macrobenchmark tool on two different filesystems. This
empirical analysis will provide valuable information for system
software engineers to design filesystems and applications that fits
the power and performance characteristics of flash-based storage
devices because software engineers are not able to modify the
internals of storage devices and have to use off-the-shelf products
most of the time.

The remainder of this paper is organized as follows; Section 2
provides background about flash memory and the FTL. An in-depth
analysis of FTL overhead is presented in Section 3 and an empirical
study of the energy efficiency and performance characteristics of
flash-based SSDs is presented in Section 4. We conclude our work
in Section 5.
2. Background

This section introduces the diverse characteristics of flash mem-
ory and analyzes the mechanisms and pros and cons of popular FTL
algorithms.
Table 1
Performance and energy characteristics of NAND flash memory using 2 KB page/
128 KB block [12,21].

Access time Read 130.9 us/page
Write 405.9 us/page
Erase 1.5 ms/block

Energy consumption Read 4.72 uJ/page
Write 38.04 uJ/page
Erase 527.68 uJ/block
2.1. Flash memory storage

A flash memory chip is a non-volatile memory component,
which can read and write data electronically. Because flash mem-
ory is purely electronic, it shares some positive characteristics with
DRAM. For example, it does not generate any noise and vibration.
Also, it is more resistant to kinetic shocks than hard disks. How-
ever, it also has significant differences from DRAM, especially in
the interface.

While each byte or word is addressable in a DRAM component
for both read and write operations, the basic unit of read and write
operations for flash memory is a page. Usually, a page is contiguous
memory space, with a typical size from 512 B to 4 KB, and if a page
has been already written to, it must be erased before it is written to
again. However, the unit of the erase operation is different from
that of the read and write operations. A block, which is the unit
of an erase operation, usually consists of multiple (from 32 to
128) pages. Because most of the filesystems currently in active
use have been built on the assumption that overwriting does not
create any special concerns, an emulation layer is required to man-
age the overlying flash memory and expose traditional storage de-
vice interfaces externally.

In addition to the interface gap, the time needed for a read oper-
ation, a write operation, and an erase operation, differs from each
other. Usually, as shown in Table 1, a read operation takes a signif-
icantly shorter time to finish than a write operation. Also, the time
for an erase operation is about one hundred times longer than that
of a read operation. Consequently, an in-place rewriting approach,
which rewrites a whole block after erasing the block for rewriting a
page in the block, is impractical because of its enormous temporal
overhead. For this reason, while emulating the writing or overwrit-
ing operations, the emulation layer should choose a free page,
which is to be mapped to a logical page so that it minimizes the
erase operations.

Flash-based SSDs are storage devices which use flash memory
as their storage medium and equip FTLs to manage the flash mem-
ory. By employing a standard interface such as S-ATA, SAS or E-IDE,
SSDs are externally identical to normal hard disks. They also work
like conventional hard disks. They are attached to the host comput-
ers via standard interfaces such as S-ATA ,SAS or EIDE, and they
share the same command set as hard disks. Consequently, they
can be used in existing systems, instead of the traditional hard
disks, without any modifications. As a result, they are currently
the most viable option to replace hard disks for flash memory stor-
age devices.

Although energy consumption of flash memory is very low even
when it is working as listed in Table 1, there are many components
inside a flash-based SSD which can affect the power consumption
of a flash-based SSD as illustrated in Fig. 1.

The embedded processor executes the system management
code and controls the other components. Unlike hard disks, which
normally use their dedicated ASICs, flash-based SSDs use general-
purpose embedded processors [18], which have high performance
as well as high power consumption because the system operating
codes of SSDs such as the FTL are significantly more complex than
that of the hard disks. Therefore, it can easily be expected that both
the complex management scheme and the high performance gen-
eral purpose embedded processor will increase power consump-
tion significantly.

The complex management code enforces the use of not only the
high performance processor, but also a large amount of DRAM,
which is used to accommodate management program code, dy-
namic data, as well as data cache. Generally speaking, the memory
subsystem is the second largest power consumer in a computing
system and the power consumption by the memory subsystem in-
creases depending on its capacity [28]. Therefore, the large amount
of DRAM equipped in a flash-based storage device is also expected
to consume a significant amount of power.

Both the host interface controllers such as SATA or SAS, and the
internal buses between the flash memory controller and the host
interface consume a certain amount of leakage power like embed-
ded processors when they are idle. They consume dynamic power
only when they transfer data or requests. The host interface con-
trollers and internal buses of SSDs are basically the same as that
of HDDs. Also, the number of requests and the amount of data that
flow through them are the same. Therefore, we do not consider the
power consumption by the host interface and internal buses in this
paper.

Finally, a FTL maintains at least a translation mapping table,
whose size varies from hundreds of KB to tens of MB depending



Fig. 1. Block-diagram of a typical SSD inside [3].

356 S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365
on the underlying FTL algorithms and implementation details. This
mapping table is accessed in every request and should be main-
tained when the storage system is powered off. Therefore, the
memory for this translation mapping table should be stored in fast
and non-volatile media such as battery-backed DRAM or battery-
backed SRAM. Because battery-backed DRAM is also a significant
power consumer, the memory component for storing the mapping
table is also suspected to contribute to the power consumption of
flash-based SSDs

2.2. Flash translation layer

The FTL maintains a mapping table of virtual sector numbers,
which are seen from the host system, to physical sector numbers
of the flash memory. It emulates the functionality of a normal
block device by exposing only read/write operations to the upper
software layers and hiding the presence of the erase operation.

Processing read requests in the FTL is simple. When the read re-
quest occurs from the host system, the FTL returns the correspond-
ing physical sector number after searching the mapping table.

In comparison to processing read requests, write requests in-
duce a complex update process. Basically, the sequence of process-
ing write requests is as follows; (i) find a suitable erased page to be
written, (ii) write the new data over the chosen page, (iii) invali-
date the original page mapped to the logical page currently in pro-
cess, if it exists, and (iv) update the mapping table to reflect this
change.

FTL algorithms can be roughly categorized into three groups by
their mapping granularity.

The page-mapping algorithm [16], which is a basic form of the
FTL, uses a translation table, which translates external logical page
addresses into internal physical page addresses on the flash
Fig. 2. Address translation in the page
memory as shown in Fig. 2(a). Because the granularity of each en-
try is a page, each mapping entry implies an one-to-one mapping
relationship from a logical page to the corresponding physical
page. When the overwriting operation occurs, the FTL only needs
to remap the corresponding entry.

By using this straightforward table management, the page-
mapping algorithm has a fast translation speed and simple page-
update mechanism, which only changes the mapping entry for
the page being updated. However, because there should be as
many mapping entries as the number of pages, the mapping table
takes a large amount of space, which we will explore in Section 3.3.

Therefore, the block-mapping algorithm [29] and its variants
were proposed. As shown in Fig. 2(b), the mapping table in the
block-mapping FTL only contains the block granularity mapping
entries, each of which maps a logical page address to the combina-
tion of a physical block number and an offset number. The actual
physical page, which stores the data for the logical page, is deter-
mined by the offset field of the logical page addresses in the block.

Although the table size of the block-mapping FTL is very small,
processing partial rewrites of previously written blocks induces a
substantial amount of copy and erase operations. This is because,
in order to overwrite a page, a new free block has to be allocated,
and all the pages, except the page to be overwritten in the original
block, have to be copied over to the pages with the same offsets in
the new block.

Therefore, the hybrid FTL (also known as the log-based FTL)
[19,23], illustrated in Fig. 3 has gained popularity [17] in commod-
ity flash-based storage devices, of which production cost is of the
highest priority.

The hybrid FTL has a few spare blocks, called log blocks, which
are used as temporary space for the updated pages. When a page
overwrite operation occurs, a free page in the log blocks is
-mapping and block-mapping FTL.



Fig. 3. Address translation in the hybird FTL.

S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 357
allocated for the updated page and the original page is marked as
an invalid page. Thus the hybrid FTL has two mapping tables.
One is block granularity mapping, which is the same as that of
the block-mapping FTL, and the other is page granularity mapping
for pages in the log blocks. By using this mechanism, the hybrid FTL
saves a lot of space for the mapping tables and achieves a fast over-
writing speed.

In general, log blocks can be as large as 5% of total storage
capacity [22,24]. When write requests occur continually, eventu-
ally there will be no available free blocks left in the log block area.
In order to extract free log blocks from used log blocks, garbage
collection operations are conducted. Garbage collection merges
invalidated blocks or partially invalidated blocks into a smaller
number of valid blocks so that they can be used as log blocks after
erase operations. Garbage collection is initiated on demand when
the amount of free log blocks drops below predefined thresholds
or when the storage systems are in idle to prepare for burst write
requests. By employing the garbage collection mechanism
throughput for burst write phases improve significantly by secur-
ing enough log blocks in advance.

Massive overwriting operations generate a large amount of par-
tially invalid blocks and consequently induce the shortage of free
pages in the log blocks. Therefore, the partially invalidated blocks
should be merged into fewer fully valid blocks, so that the partially
invalidated blocks can be erased to be used as free blocks and free
Fig. 4. Three kinds of merge ope
log blocks. This is called a merge operation. There are four types of
merge operations, which are illustrated in Fig. 4.

In Fig. 4(a), log block B contains all valid, sequentially written
pages corresponding to data block A. In this case, a simple switch
merge is conducted, whereby log block B becomes new data block
and the old data block A is erased. During the switch merge the
log-block mapping entries are erased and the block mapping entry
is changed to refer to the new log block so that the log block be-
comes a regular data block.

When only part of a block is invalidated by overwriting and the
overwritten pages are located in the same block sequentially as
shown in Fig. 4(b), just switching the mapping entry does not pro-
duce any free blocks. By copying the remaining valid pages in the
original block to the log block, the partial merge turns the original
block into a fully invalid one to be safely erased. In the partial
merge operation, every procedure after copying the remaining
pages is the same as the switch merge.

A full merge operation involves the largest overhead among the
three types of merges. As illustrated in Fig. 4(c), log block B is se-
lected as the victim block. The valid pages from log block B and
its corresponding data block A will be copied into a newly erased
block C, and block A and B will be erased.

The partial merge and full merge, which take a significant time
to finish, primarily occur due to small random writes. Therefore,
regardless of the type of the FTL, random writes on flash-based
rations in hybrid FTLs [19].



358 S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365
SSDs generally show significantly slower throughput than sequen-
tial writes [5].
3. Analysis of FTL overhead

3.1. Simulation environment

In our previous research [12], we developed a flash-based stor-
age simulator based on DiskSim 3.0 [6]. We enhanced the simulator
to simulate the power consumption model of a flash-based SSD
based on the flash memory specification described in Table 1.
The capacity of the target SSD is 1GB.

We measure the computational overhead with the simulator
while running two real-world workloads described in Table 2. OLTP
(online transaction processing) is a filesystem trace collected from
the financial system. The OLTP workload is primarily composed of
small random writes. The average I/O size is 4.38 KB and 91% of
requests are write operations. Among all the requests, 98% of
requests change the offset from the resulting offset of the last
request, which means a random request. The next trace, OLAP
(online analytical processing), is a trace extracted from a server
running the TPC-H benchmark suite [30]. In contrast to the OLTP
trace, it primarily consists of small random read requests.

Our simulator simulates three different kinds of FTL schemes;
page-mapping FTL, FAST (Fully Associative Sector Translation)
[23], LAST (Locality-Aware Sector Translation) [22] and DFTL
(Demand-based Page-mapped FTL) [12]. FAST and LAST are vari-
ants of hybrid FTLs, and DFTL is a FTL algorithm designed for
large-scale flash-based storage devices.

FAST allows log blocks to be shared by all data blocks. This
improves the utilization of log blocks as compared to the conven-
tional hybrid FTLs. FAST keeps a single sequential log block
dedicated for sequential updates while other log blocks are used
for performing random writes. Thus, it cannot accommodate
multiple sequential streams and does not provide any special
mechanism to handle temporal locality in random streams.

The more recently developed LAST scheme tries to alleviate the
shortcomings of FAST by providing multiple sequential log blocks
to exploit spatial locality in workloads. It further separates random
log blocks into hot and cold regions to reduce full merge cost. In or-
der to provide this dynamic separation, LAST depends on an exter-
nal locality detection mechanism. However, the authors of LAST
realized that the proposed locality detector cannot efficiently iden-
tify sequential writes when the small-sized write has sequential
locality. Moreover maintaining sequential log blocks using a
block-based mapping table requires the sequential streams to be
aligned with the starting page offset of the log block in order to
perform switch-merge. Dynamically changing request streams
may impose severe restrictions on the utility of this scheme to effi-
ciently adapt to workload patterns.

The capacity of a log-block area affects write performance
depending on workload patterns. The relationship between log-
block capacity and performance is well studied by Lim et al. [24].
In general larger log-block areas have higher manufacturing cost,
but have the advantage of faster write response times. According
to the evaluation results from the inventors of LAST, log blocks as
large as approximately 2% of total capacity is sufficient to have
Table 2
Workload characteristics used in our simulation.

Workload Avg. Req.
size

Rd.:Wr. Randomness Inter-arrival
time

Simulated
time

OLTP [1] 4.38 KB 9.0:91.0 98% 133.50 ms 11.97 h
OLAP [14] 12.82 KB 95.0:5.0 82% 155.56 ms 10.29 h
performance benefit [22]. In our simulator, FAST and LAST com-
monly have 50MB of log blocks, which is approximately 5% of
the total capacity. Observing the workload patterns for our evalu-
ation, we conclude that log block capacity as large as 5% of total
capacity is large enough to benefit from temporal locality.

In SSDs that employ FTLs with log-blocks, actual writing
operations to permanent locations occurs during garbage collection.
Performance drops during garbage collection operations may not
affect the user experiences because they are usually done during idle
time. However, the energy consumption from merge operations
contributes to the overall energy efficiency of storage systems.
Therefore, in order to analyze energy efficiency, we have to count
energy consumption for merge operations in garbage collection.
When our simulator measures the cost for processing workloads,
it considers the energy consumption during workload handling, as
well as during garbage collection after finishing workloads.

DFTL makes use of the presence of temporal locality in work-
loads to judiciously utilize the small on-flash SRAM. Instead of
the traditional page-mapped FTL approach of storing all the
address translation entries in the SRAM, it dynamically loads and
unloads the page-level mappings depending on the workload
access patterns. Furthermore, it maintains a complete image of
the page-based mapping table on the flash device itself. This
enables DFTL to exploit the locality of workload patterns by
caching frequently accessed mappings in the SRAM and storing
other huge mapping entries on flash memory.

We compare the characteristics of these four FTLs in terms of
performance and energy.

3.2. Run-time overhead

Although the power consumption of flash memory is relatively
small in comparison to the other components, erasing and writing
flash memory, which take significantly greater energy than read-
ing, could affect the system’s overall energy efficiency. Thus, we
estimate the energy consumption of each kind of flash memory
operation during the workload execution. Fig. 5 shows the results.

Only some parts of page-mapping entries, which are frequently
used, are accommodated in RAM and the selection of the entries to
be stored in RAM is done on the fly based on the workload changes.
Therefore, the overhead for managing the address translation table
occurs only with DFTL. Fig. 5 shows the number of data writes, ad-
dress translation writes for evicting entries as well as the number
of data reads, address translation reads for loading entries.

The page-mapping FTL does not require merge operations be-
cause it allocates space at page granularity. Consequently erase
operations from conducting merge operations do not occur in the
page-mapping FTL. As a result, a minimal amount of erase opera-
tions is necessary. Because erase operations consume significantly
more energy than the other operations, the page-mapping FTL is
expected to consume less energy for flash memory operations than
the other FTLs.

Using log blocks reduces copy and erase operations by deferring
merge operations and aggregating write operations in comparison
to the conventional block mapping algorithms. Therefore, the num-
ber of flash operations ,such as read, write and erase operations,
decreases by employing log-block schemes.

As expected, simulation results illustrated in Fig. 5 reveal that
FAST consumes significant energy for both erase and write opera-
tions during merge operations in the garbage collection phase.
Also, we verified that out of all the FTLs, the page-mapping FTL
consumes the least amount of energy.

Without a merge operation, the time to process read or write
requests in the FTL is usually finished in a discrete time period.
However, a merge operation takes a much longer time than read
or write requests, because it has to find appropriate victim blocks



 0

 10

 20

 30

 40

 50

 60

 70

 80

Page-Mapping FAST LAST DFTL

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
)

Page Read
Page Write

Address Translation (Read)
Address Translation (Write)

GC Block Erase
GC Page Read
GC Page Write

 0

 5

 10

 15

 20

 25

Page-Mapping FAST LAST DFTL

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
)

Page Read
Page Write

Address Translation (Read)
Address Translation (Write)

GC Block Erase
GC Page Read
GC Page Write

Fig. 5. Energy consumption by each flash memory operation after running the
workload under the three different FTLs.

S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 359
to be merged by searching the mapping table along with other
metadata. Naturally, a merge operation is expensive from an en-
ergy usage point of view.

Fig. 6 shows the average response time of all the requests in the
workload and the number of total searches in all the merge oper-
ations that occurred during execution.
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

Const. 0.2 0.4 0.6 0.8 1.0
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1
Normalized response time Normalized search count

Fig. 6. Normalized average response time and number of FTL table search
operations for all the merge operations during the workload execution according
to the victim search window size of merge operations in DFTL. ‘‘Const.’’ means
choosing a victim block randomly. ‘‘1.0’’ means searching for the best candidates
among all the partially (or fully) invalidated blocks.
If optimized victims are chosen for a merge operation, the result
yields more free blocks than a merge operation with sub-optimal
victims. Therefore choosing good victims reduces the number of
merge operations and, naturally, the response time for random
write operations. However, in our simulation, we find that the ef-
fort to find good victims, which increases the search operations
for a merge operation, exceeds the effort saved from avoiding fu-
ture searches in total.

The search operation induces energy consumption in the pro-
cessor and system bus. Consequently, we can conclude that mini-
mizing victim search operations will save energy consumption
for merge operations, although it harms the response time of the
storage device by creating more partially invalidated blocks than
searching over more candidate blocks.

3.3. Memory space usage

FTLs require fast access memory, such as DRAM, in order to
accommodate translation mapping entries, and DRAM consumes
a significant amount of power while it is powered-on and ready
to serve requests. However, it is hard to provide absolute numbers
of energy consumption from the memory subsystem of SSDs be-
cause both the memory access timing parameters and energy
requirements for an access operation are determined by design
and fabrication technology of the memory. In this section, we ana-
lyze the memory requirement and memory access count of each
FTL scheme. We believe that this analysis results will provide
meaningful clues to understand the energy and power consump-
tion patterns of memory subsystems in SSDs.

The power consumption of DRAM is usually as high as a few
hundreds of mW per chip with ordinary SDRAM technology [2]
and around a hundred mW per chip with LPRAM technology [11].

There is a slight increase in power consumption as big as a few
tens of mW while access operations are being served [2][11]. How-
ever, because the actual service time for requests is extremely
short in comparison to the total operation time, the energy con-
sumption of the memory system mostly depends on the size of
equipped memory. Also, it is revealed that the actual dynamic
power is significantly less than that on the published specification
[27].

Considering that the time to access DRAM memory for retrieving
a translation entry is around a few ns (nanoseconds), we expect that
the contribution to the overall system energy consumption from
handling read requests is negligible, and that capacity is a dominant
factor for power consumption of the memory subsystem when read
requests greatly outnumber write requests. Therefore, we analyze
the memory capacity requirement by each FTL algorithm.

Fig. 7 shows the memory space of the FTL mapping table of each
FTL algorithm, as well as the generic block-mapping algorithm for
comparison. It can be interpreted as the power consumption of
memory components during idle time or processing read requests.

Each mapping entry is assumed to be 8 bit aligned, which means
that the smallest data unit for the mapping entry is a byte. For exam-
ple, a 512 MB flash storage consists of 262,144 2 KB-pages. That
number can be addressed with a 24-bit variable, and therefore the
total size of the mapping table will be 262;144 � 3 ¼ 786432
bytes, which is 768 KB.

As shown in Fig. 7, as the capacity of the storage device grows,
the size of the mapping table also grows in all algorithms. How-
ever, the memory requirement of the page-mapping FTL increases
much faster than that of the other algorithms. Therefore, it is
expected that the power consumption in idle of the large capacity
flash-based storages will consume more power with the page-
mapping FTL than the block-mapping FTL.

In our analysis, both FAST and LAST use 5% of total capacity as
log block space. The global mapping tables of both FAST and LAST



 0

 50

 100

 150

 200

 250

 300

128MB 512MB 2GB 8GB 32GB 128GB

M
ap

pi
ng

 ta
bl

e 
si

ze
 (M

B)

Storage capacity

Page-mapping Block-mapping FAST and LAST DFTL

Fig. 7. Size of the mapping tables in the two representative FTL schemes.

360 S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365
are the same as that of the block-mapping FTL. Therefore, the
difference in memory requirements arises only at the log-block
mapping tables. Generally, log-blocks are managed by page-
granularity mapping tables, and the memory requirement for
managing log-blocks increases as the size of log-block area grows
as shown in Fig. 7.

Basically, DFTL requires the same amount of memory as the
block-mapping FTL, except for the memory that manages the
page-mapping area, which exists to boost performance. Read and
write performance under DFTL depends both on spatial locality
of workloads and the size of the page-mapping area. If a workload
has high spatial locality, even a small page-mapping cache will en-
hance throughput significantly. To contrast, if a workload has low
spatial locality, the performance improvement will be proportional
to the size of the cache area. Existing research insists that approx-
imately 32 KB is enough to benefit from the locality of general
workloads [12]. Therefore, we assume that the cache size is fixed
to 32 KB regardless of total capacity.

Actually, because most modern general purpose processors use
32-bit aligned addressing, commodity products typically use 32 bit
entries for simplifying design and achieving high performance. So,
our model to achieve Fig. 7 is thought to be conservative and, nat-
urally, we can tell that the real sizes of the FTL tables, as well as the
differences between those of the two FTL schemes are larger than
those in the real world.

The hybrid FTL maintains the same block-granularity mapping
table as the block-mapping FTL. Although the size of the mapping
table for the pages in the log blocks depends on the internal imple-
mentation of the hybrid FTL, the size of the mapping table in the
hybrid FTL would be similar to that of the block-mapping FTL. Also,
the cached mapping table, which is a battery-backed DRAM or
SRAM area in the DFTL, is comparatively small within the block-
mapping FTL. This means that the power consumption in idle
would be low under both the hybrid FTL and DFTL.

Frequent memory accesses occur when finding victim blocks for
merge operations during write request processing. Although the
access time is short and the power difference between access
and idle is a few mW, the power consumption from massive mem-
ory accesses may sum up to a significant value.

The number of memory accesses for finding victim blocks de-
pends on how many blocks a FTL algorithm scans over in search
of a victim block. As we have already seen in Fig. 6, better perfor-
mance through the use of larger scanning regions carry with it
more memory accesses, which results in more energy consumption
by the memory subsystem.

To summarize, a FTL algorithm trades the efficiency of merge
operations, which is determined by the number of clean blocks
out of partially invalid victim blocks, for the number of memory
accesses to find the victim blocks.
4. Empirical analysis

The performance of a storage device that users actually feel is
not the pure block-device-level I/O performance of the device,
but the final result that comes from a combination of storage de-
vices, filesystems and workloads. Therefore, in order to give users
the best experience out of a storage device, the filesystem has to
understand the characteristics of both the storage device and tar-
get workload, and utilize the storage device efficiently based on
this understanding.

The performance of commodity SSDs were previously evaluated
through block-level benchmark tools and workload emulators [9].
However, the existing analysis was only for performance, and not
for power consumption or energy efficiency of SSDs. In this paper,
we evaluate four commodity SSDs with various characteristics in
terms of performance, power consumption and energy efficiency
at both block level and filesystem level. Also, based on the evalua-
tion results, we infer the internal configurations of the SSDs and
draw some hints to obtain better performance and energy effi-
ciency out of commodity SSDs.

To reveal the block device level performance as well as the com-
binatory performance of the storage device with filesystem and
workload, we evaluate its performance and energy-efficiency while
running both microbenchmarks and macrobenchmarks. The
microbenchmark suite issues diverse patterns of block read/write
operations and measures working time and power consumption.
The macrobenchmark suite evaluates two different filesystems,
ext2 [7] and LFS (the log-structured filesystem) [26], on each stor-
age device used in our study.
4.1. Experimental setup

In our empirical study, we use three different SSDs and a HDD to
investigate the performance and power characteristics from differ-
ent hardware configurations. Table 3 presents their specifications.
The throughput values in the table are not measured, but are from
the vendor specifications.

OLD is one of the first-generation SSDs for the consumer mar-
ket. It was released to the market at year 2006. MLC is a MLC
flash-based SSD introduced in 2008. MLC flash has poorer perfor-
mance and a shorter lifetime than SLC flash but it is less expensive.
Due to multi-channel technology which enables reading from mul-
tiple flash memory chips simultaneously, SSDs with MLC flash have
comparable performance in read operations [8], thus they are
becoming popular in the mass market of SSD products. SLC is
one of the high-end SSDs with high sustained throughput, which
is being marketed as an enterprise-class SSD. By employing a
parallelized controller for the SLC flash memory, it shows high
performance for both read and sequential write. TGN is the state-
of-the-art consumer-grade SSD, which was released in 2010. TGN
is one of the third generation SSDs that can read and write at over
200 MB/s. For a comparison with a traditional storage device, we
also evaluate a laptop hard disk denoted as HDD in Table 3. HDD
is a laptop hard disk which consumes less power than the desktop
or server hard disks.

Power consumption is measured with a Signametrics SM2040
Digital PCI Multimeter, which is able to acquire power values once
a millisecond. We measured the power from +5 V and +12 V power
lines in SATA power cables.

For the microbenchmark, we implemented a workload genera-
tor called DIO Tool to measure the performance and power
consumption for various patterns of I/O operations. It uses a direct



Table 3
Specifications of the storage devices used in our work.

OLD MLC SLC TGN HDD

Model FSD32GB25M 1C32G MSP7000 MMCRE28G5 WD1600BEKT
Vendor Super talent OCZ MTron Samsung Western digital
Form factor 2.5 in. 2.5 in. 2.5 in. 2.5 in. 2.5 in.
Flash type/RPM SLC MLC SLC MLC 7200
Capacity 32 GB 32 GB 16 GB 128 GB 160 GB
Rd./Wr. Perf. (MB/s) 60/45 143/93 120/90 220/200 NA/NA

 0

 50

 100

 150

 200

 250

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (M

B/
s)

Size of a Unit Request (Bytes)

OLD Seq
OLD Rand

SLC Seq
SLC Rand

MLC Seq
MLC Rand

TGN Seq
TGN Rand

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (M

B/
s)

Size of a Unit Request (Bytes)

OLD Seq
OLD Rand

SLC Seq
SLC Rand

MLC Seq
MLC Rand

TGN Seq
TGN Rand

 30

 40

 50

 60

 70

 80

ro
ug

hp
ut

 (M
B/

s)

Seq Rd Rand Rd Seq Wr Rand Wr

S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 361
I/O interface provided by the Linux kernel to measure throughput
without any effect from the operating system buffer cache. For the
macrobenchmark, we test two filesystems, ext2 and LFS to study
power consumption differences due to the overlying filesystems.
We use an open-source LFS implementation [15].

4.2. Microbenchmark

Idle power, along with working power, is an important factor
because it affects the battery life of mobile electronics. We mea-
sure the power consumption of each device for 10 min without
sending any requests, as shown in Table 4.

The power consumption of OLD and SLC in an idle state is sim-
ilar to or higher than that of HDD. TGN consumes the least power.
Although this sample set is too small to generalize, we can easily
see the tendency that a newer SSD consumes smaller idle power.

Considering that SLC and MLC are introduced in the same year,
equipped memory size seems to be one of the major reasons of the
difference between idle power of them. With few simple experi-
ments, it is verified that SLC has larger buffer memory than MLC
and SLC employs page-mapping FTL variants while MLC uses hy-
brid FTLs.

When a request larger than the buffer size arrives, the process-
ing time dramatically increases from the time for a request smaller
than the buffer size. By exploiting this characteristic we can iden-
tify the size of write buffer externally. By conducting simple exper-
iments, we verify that SLC has approximately 16MB of write buffer,
while MLC barely shows the performance benefit from write buf-
fering. We also observe that it has very poor performance when
writing data randomly. From this, we suspect that MLC equips
small write buffer and this aggravates merge overhead under ran-
dom writes.

Most modern hard disks commonly provide low power modes,
in which they stop spinning and consume minimal power. The
sleep is initiated by delivering ioctl command for sleep to disks.
However, all SSDs in our evaluation do not react to the sleep com-
mand. They keep the same idle power shown in Fig. 4 after issuing
the sleep command. By this experiment, we can conclude that
most commodity SSDs do not provide the low power idle mode,
which is a common feature for hard disks.

To measure performance and power consumption characteris-
tics, we employ four categories of I/O operations; sequential read,
random read, sequential write, and random write. In each category,
we change the request size.

The throughput of HDD has little difference between reads and
writes as shown in Fig. 8. Both the size of requests and randomness
Table 4
Idle power consumption of each device.

Device Power (W) Device Power (W) Device Power (W)

OLD 1.075 MLC 0.519 HDD 0.869
SLC 0.937 TGN 0.210 – –

 0

 10

 20

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Th

Size of a Unit Request (Bytes)

Fig. 8. Block-level read/write performance.



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Size of a Unit Request (Bytes)

OLD Seq
OLD Rand

SLC Seq
SLC Rand

MLC Seq
MLC Rand

TGN Seq
TGN Rand

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Size of a Unit Request (Bytes)

OLD Seq
OLD Rand

SLC Seq
SLC Rand

MLC Seq
MLC Rand

TGN Seq
TGN Rand

 2.8

 2.9

 3

 3.1

tio
n 

(W
)

Seq Rd Rand Rd Seq Wr Rand Wr

362 S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365
are critical factors that affect throughput. The SSDs gave a similar
performance for sequential reads and random reads as shown in
Fig. 8. This is because flash memory has no positioning overhead.

However, sequential writes and random writes on the SSDs
have a big performance gap as shown in Fig. 8. This is because ran-
dom writes increase the merge overhead when making free space.
This means that the random writes generate a larger number of
erase and valid copy operations than sequential writes do. The
throughput difference between random write and sequential write
persists even for the requests of 16 MB size. This implies that
changing the offset in consecutive write requests requires a signif-
icant temporal overhead. TGN has the biggest difference between
random writes and sequential writes. The slow erase and write
operations of the MLC flash memory and its FTL mechanism seem
to be the causes of this significant difference.

Generally, SSDs have larger flash memory than their marketed
capacity. This extra space is set aside for spare free blocks or log
blocks to improve write performance by reducing the chance of
garbage collection during a burst period. However, after writing
over all the free or log blocks, the SSDs cannot avoid garbage col-
lections, which are required for making erasable blocks.

Fig. 9 shows time-series measurements of throughput and
power consumption of MLC during a random burst write period.
In this experiment, we issue 4 MB random writes continually, until
the cumulative size of those requests reach 1 GB. Until the cumu-
lative size of the processed requests reaches approximately
300 MB, the throughput is similar to that of sequential requests
of the same size. After that, the throughput splits into two different
values. Low throughput value is for the throughput with merge
operations and high throughput value is for the normal throughput
without merge operations. During the experiment, power con-
sumption is between 50 W and 60 W. However, after handling all
requests, power consumption periodically hit the double of its idle
power. Based on this observation, we verified that the MLC pre-
pares log blocks of about 300 MB during the idle period and it takes
a few minutes.

Because both MLC and TGN showed this behavior, we believe
that both of them employ hybrid FTLs using log blocks, while the
others use the page-mapping FTL or its variants.

Fig. 10 shows the power consumption of SSD reads. SSDs con-
sume similar power for both random and sequential read opera-
tions. Power consumption grows as the throughput grows. The
Fig. 9. Throughput and power consumption of MLC for a burst period of continual
4 MB random writes that finally make up to 1 GB write.

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Po
w

er
 C

on
su

m
p

Size of a Unit Request (Bytes)

Fig. 10. Power consumption of block-level read/write requests depending on
different request sizes.
amount of increased power is due to the increased transferring
operation.

On the contrary, power consumption for writes on SSDs shows a
dramatic difference between random and sequential patterns as
shown in Fig. 10. Random writes consume almost the highest
power regardless of the request size. Only OLD consumes more
power when sequentially writing over 1 MB data. This is because
the power consumption for transferring data starts to exceed the
power consumption for processing the randomness.



S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 363
Both the high power consumption and the low throughput of
random write induce low energy efficiency. We measure the en-
ergy efficiency for each case using the same amount of data. As
shown in Fig. 11, the required energy of random writes for OLD
and MLC is higher than HDD. SLC and TGN also do not show a clear
superiority over HDD.

In the case of HDD, random writes with a small request size
have better energy efficiency than random reads because the
read-ahead for small random reads spends more energy without
any performance gain, and with write buffering and reordering,
head movement is dramatically reduced. The random reads of
 0

 20

 40

 60

 80

 100

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
)

Size of a Unit Request (Bytes)

OLD SLC MLC TGN HDD

 0

 20

 40

 60

 80

 100

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
)

Size of a Unit Request (Bytes)

OLD SLC MLC TGN HDD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
)

Size of a Unit Request (Bytes)

OLD Rd
OLD Wr

SLC Rd
SLC Wr

MLC Rd
MLC Wr

TGN Rd
TGN Wr

HDD Rd
HDD Wr

Fig. 11. Energy consumption to process 1 MB of data with different request sizes.
the SSDs show substantially better energy efficiency than the
HDDs in Fig. 11. They present similar energy values with sequential
reads of SSDs. The energy efficiency of sequential access is simi-
larly good with all the devices, presenting under 1 J/MB as shown
in Fig. 11c.

In spite of low energy efficiency of small random writes on SSDs,
the actual power consumption value of them is not higher than that
of the laptop hard disk. The primary reason of the low energy effi-
ciency is extremely slow performance. Therefore, the low energy
efficiency does not cause any trouble in high density storage sys-
tems or large scale RAID systems. However, if they process intensive
small random writes in energy-limited environments like laptops or
smart phones, they will reduce the battery lifetime significantly.

For example, a six-cell battery, which is currently used in lap-
tops, contains 50 Wh of energy. When MLC is used to write data
on random locations at 4 KB granularity, the battery will be used
up after writing 2.2 GB of data. However, if we use HDD instead
of MLC, the battery will last until it writes 46 GB of data. Also, if
the random writes are transformed into sequential writes, the
amount of data to be written to MLC and HDD with the battery will
be 3 TB and 1.8 TB, respectively. As a result, we expect that using
SSDs for workloads with massive small random writes such as
peer-to-peer file sharing or web file caching creates little benefit
in terms of energy consumption as well as performance.

These results strongly support the assertion from Narayanan
et al. [25] that using SSDs instead of low power laptop hard disks
does not show a noticeable benefit from the viewpoint of the ratio
between energy efficiency and price to own. While they simply
compared the energy consumption and performance of SSDs to
that of HDDs under general filesystem level workloads, we ana-
lyzed the characteristics under diverse request patterns at the
block device level. Our analysis reveals that the reasons behind
the claim are the extremely low performance and comparable
power consumption of SSDs for small random writes.

While an intuitive way to improve the performance of a hard
disk is increasing the RPM of its platters, currently the most popu-
lar way to improve the performance of a flash-based SSD is increas-
ing the parallelism of access to its flash memory. Considering the
results of Fig. 10 and Table 4, we can tell that increased perfor-
mance through SSDs’ channel parallelism is not a dominant factor
for determining power consumption. This is contrary to hard disks,
in which increased RPM increases power consumption as well as
performance [13].

4.3. Macrobenchmark

The request patterns of a workload at the block device level de-
pends on the filesystem that the storage device is using. When a
file is fragmented into many pieces and scattered over entire disk
space, sequential read over that file will create multiple random
read requests to the file fragments. On the contrary, random writes
over multiple files will be transformed into sequential writes at the
block device level, if the overlying filesystem allocates write space
sequentially on the disk.

In this paper, in order to observe the energy efficiency and per-
formance changes depending on underlying filesystems, we exper-
iment two filesystems with different characteristics, ext2 and LFS.

ext2 is one of the quintessential UNIX filesystems, including
UFS, NTFS, ext3 and ext4, which manage files through index node
structures. They accommodate data blocks belonging to a file on
closely located free blocks so that the seek distance of the hard disk
heads is minimized. Also, because hard disks allow in-place update
operations, the locations of files are the same after they are up-
dated. In other words, they reduce the performance drawback from
seeking operations by exploiting the in-place update ability of hard
disks.



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

OLD SLC MLC TGN HDD

Th
ro

ug
hp

ut
 (M

B/
s)

varmail / ext2
varmail / LFS

fileserver / ext2
fileserver / LFS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

OLD SLC MLC TGN HDD

En
er

gy
 (J

ou
le

)

varmail / ext2
varmail / LFS

fileserver / ext2
fileserver / LFS

Fig. 12. Throughput and energy efficiency change to the overlying filesystems for
Filebench workload.

364 S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365
Those conventional filesystems have worked well for hard
disks. However, considering that random reads on SSDs performs
at the same speed as sequential reads and SSDs are unable to con-
duct an in-place update, it is natural to expect that they cannot
perform as well on SSDs as they do on hard disks.

LFS allocates space for incoming write requests on contiguous
sequential blocks like logging on a sheet of white paper. It also re-
cords the locations of file fragments on metadata blocks, which are
stored together with data blocks and written sequentially like data
blocks. Therefore, all write requests including writes for recording
metadata on LFS only advances the disk head sequentially. In order
to reclaim free blocks from invalidated garbage blocks, LFS em-
ploys a segmented disk space management scheme and garbage
collection operation.

We can expect that LFS would have better performance for the
workload with many random writes because it transforms random
writes into sequential writes. However, sequential reads of files that
have been updated many times is transformed into multiple random
reads. This is one of the weak points that have impeded the LFS from
being used as a general filesystem because the workload on average
has a greater number of read requests than write requests.

To study throughput and power consumption differences due to
overlying filesystems, we use fileBench [31], which is a benchmark
framework to emulate various filesystem workloads. We select
two workload models; varmail and fileserver. The varmail bench-
mark simulates filesystem workloads of mail servers or news serv-
ers. The average size of write requests is 16 KB and the average file
size is 128 KB. The read to write ratio is 1:1 and the total file set
size is about 1.5 GB. The write requests in varmail workload are
small and random. Therefore, this workload is a representative
example for which the LFS performs better than the ext2 filesys-
tem. The fileserver benchmark simulates a file server. We modify
the original fileserver workload shipped in FileBench to clearly re-
veal the flaw of LFS. Each file is written sequentially one by one and
updated about thirty times by random writes. After that, 50 reader
threads simultaneously read them in a sequential manner. The
average file size is 8 MB and the average update size is 16 KB.
The total file set size is about 8 GB. Performance and power con-
sumption is measured only for the reading stage.

Fig. 12 shows the FileBench results regarding throughput. In the
benchmark of the fileserver on both ext2 and LFS, SSDs impress
with their read performance, which is significantly faster than that
of the hard disks. However, in varmail on ext2, they perform sim-
ilarly or slightly better than HDD because varmail has numerous
random writes, which are the weak point of both SSDs and HDDs.
By transforming random writes into sequential writes, using LFS
for the varmail benchmark dramatically improves the performance
on all the disks used in our evaluation. In particular, LFS boosts the
performance of SLC by about 2.5 times.

LFS transforms sequential read operations into multiple random
reads, when the target file has been overwritten multiple times.
Therefore, using LFS for fileserver, unlike varmail, decreased the
performance for HDD and MLC.

Fig. 12 shows the FileBench results in terms of energy. Because
fileserver has read-dominant requests, SSDs consume less energy
than HDD except with respect to OLD with varmail. The through-
put, in addition to the energy efficiency of fileserver with LFS on
HDD, is significantly decreased from that with ext2. However,
there is no significant drawback caused by using LFS on the SSDs.

Although MLC performs the worst in terms of throughput and
energy efficiency of random writes as evidenced by microbench-
marks, its varmail performance on Ext2 is better than that of
OLD and HDD. The performance is boosted by using a large amount
of spare free blocks, as explained in Fig. 9. With these results, we
are assured that preparing a large amount of free blocks during idle
time is a better solution for improving random write performance
in comparison to using a large amount of write buffer when idle
power is important.

As shown in these results, SSDs benefits from employing LFS in
terms of energy efficiency and performance, because SSDs are not
affected by random read requests transformed from sequential
read requests at the file level, which is a critical weak point of
LFS. In fact, many modern LFS variants including nilfs [20], which
is supported by the Linux kernel, are expected to be widely used
with SSDs in the near future.
5. Conclusion

For their performance, robustness, and low power consumption,
storage systems using flash memory are rapidly becoming popular
in diverse computing systems, from embedded systems equipped
in consumer electronics to enterprise-scale server systems. Flash-
based SSDs are the most common form of the flash-based storage
systems. Because they employs FTLs, SSDs can replace the existing
hard disks without any modification of software or hardware
systems.

Yet, despite its value, the FTL generates significant computa-
tional and spatial overhead, which increases power consumption
significantly. This paper analyzed the overhead of the three classic
FTLs as well as a cutting-edge FTL algorithm in terms of
performance and energy efficiency. Also, we empirically analyzed
the performance and energy efficiency characteristics of the com-
modity flash-based SSDs with different hardware configurations
at both the block-device level and filesystem level.



S. Park et al. / Journal of Systems Architecture 57 (2011) 354–365 365
We believe that this work will provides valuable insights into
devising smarter ways to utilize flash-based SSDs for better energy
efficiency and performance than blindly using existing filesystems.
References

[1] Oltp trace from umass trace repository, 2002. Available from: <http://
traces.cs.umass.edu/index.php/Storage/Storage>.

[2] Tn-46-03: Calculating memory system power for ddr, Technical report, Micron
Technology Inc., 2005.

[3] Solid State Drive MSP-SATA7000 Datasheet, MTRONStorage Technology Co.,
LTD, 2008.

[4] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M., Panigrahny,
R., 2008. Design tradeoffs for ssd performance, in: Proceedings of USENIX ’08
Annual Technical Conference, pp. 57–70.

[5] A. Birrell, M. Isard, C. Thacker, T. Wobber, A design for high-performance flash
disks, SIGOPS Operating Systems Review 41 (2) (2007) 88–93.

[6] J.S. Bucy, G.R. Ganger, Contributors, The disksim simulation environment
version 3.0 reference manual, Technical Report CMU-CS-03-102, Carnegie
Mellon University, 2003.

[7] R. Card, T. Ts’o, S. Tweedie, Design and implementation of the second extended
filesystem, in: Proceedings of the First Dutch International Symposium on
Linux, 1994.

[8] L.-P. Chang, Hybrid solid-state disks: combining heterogeneous nand flash in
large ssds, ASP-DAC ’08: Proceedings of the 2008 conference on Asia and South
Pacific design automation, IEEE Computer Society Press, Los Alamitos, CA, USA,
2008.

[9] F. Chen, D.A. Koufaty, X. Zhang, Understanding intrinsic characteristics and
system implications of flash memory based solid state drives (2009) 181–192.

[10] Corporation, I., Intel Application Note, AP-684, chapter Understanding the
Flash Translation Layer (FTL) Specification, Intel Corporation, 1998.

[11] M. Greenberg, How much power will a low-power sdram save you? Denali
Software White Paper (2009).

[12] A. Gupta, Y. Kim, B. Urgaonkar, DFTL: a flash translation layer employing
demand-based selective caching of page-level address mappings, ASPLOS ’09:
Proceeding of the 14th International conference on Architectural support for
programming languages and operating systems, ACM, New York NY, USA, 2009.

[13] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke, Reducing disk
power consumption in servers with drpm, IEEE Computer 36 (12) (2003) 59–66.

[14] J. Zhang, A. Sivasubramaniam, H.F.N.G.Y.Z. Nagar, S. Synthesizing
representative I/O workloads for tpc-h, in: Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), 2004.

[15] M. Jambor, T. Hruby, J. Taus, K. Krchak, V. Holub, Implementation of a linux
log-structured file system with a garbage collector, SIGOPS Oper. Syst. Rev. 41
(1) (2007) 24–32.

[16] A. Kawaguchi, S. Nishioka, H. Motoda, A flash-memory based file system, in:
Proceedings of the Winter 1995 USENIX Technical Conference, 1995.

[17] H. Kim, S. Ahn, BPLRU: a buffer management scheme for improving random
writes in flash storage, in: Sixth USENIX Conference on File and Storage
Technologies, 2008.

[18] H. Kim, E.H. Nam, K.S. Choi, Development platforms for flash memory solid
state disks, in: Proceedings of ISORC 2008, 2008, pp. 527–528.

[19] J. Kim, J.M. Kim, S. Noh, S.L. Min, Y. Cho, A space-efficient flash translation layer
for compactflash systems, IEEE Trans. Consumer Electron. 48 (2) (2002) 366–
375.

[20] J.B. Layton, Nilfs: a file system to make ssds scream, Linux Magazine (2009).
[21] H.G. Lee, N. Chang, Low-energy heterogeneous non-volatile memory systems

for mobile systems, J. Low Power Electron. 1 (1) (2005) 52–62.
[22] S. Lee, D. Shin, Y.-J. Kim, J. Kim, Last: locality-aware sector translation for nand

flash memory-based storage systems, SIGOPS Oper. Syst. Rev. 42 (6) (2008)
36–42.

[23] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, H.-J. Song, A log buffer-
based flash translation layer using fully-associative sector translation, ACM
Trans. Embed. Comput. Syst. 6 (3) (2007) 18.

[24] S.-P. Lim, S.-W. Lee, B. Moon, Faster ftl for enterprise-class flash memory ssds,
in: Proceedings of the Sixth IEEE International Workshop on Storage Network
Architecture and Parallel I/Os, 2010.

[25] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, A. Rowstron, Migrating
server storage to ssds: analysis of tradeoffs, in: Proceedings of the 4th ACM
European Conference on Computer Systems, 2009, pp. 145–158.

[26] M. Rosenblum, J.K. Ousterhout, The design and implementation of a log-
structured file system, ACM Trans. Comput. Syst. 10 (1) (1992) 26–52.

[27] D. Schmidt, N. Wehn, Dram power management and energy consumption: a
critical assessment., SBCCI ’09: Proceedings of the 22nd Annual Symposium on
Integrated Circuits and System Design, ACM, New York, NY, USA, 2009.

[28] E. Seo, S. Maeng, D. Lim, J. Lee, Exploiting temporal locality for energy efficient
memory management, Journal of Circuits, Systems, and Computers 17 (5)
(2008) 929–941.

[29] T. Shinohara, Flash memory card with block memory address arrangement,
United States Patent, No. 5,905,993.

[30] Transaction Processing Performance Council, Tpc-h, 2009. Available from:
<http://www.tpc.org/tpch>.
[31] A. Wilson, The new and improved FileBench, in: Proceedings of Sixth USENIX
Conference on File and Storage Technologies, 2008.

[32] J.H. Yoon, E.H. Nam, Y.J. Seong, H. Kim, B. Kim, S.L. Min, Y. Cho, Chameleon: a
high performance flash/FRAM hybrid solid state disk architecture, IEEE
Comput. Archit. Lett. 7 (2008) 17–20.

Seonyeong Park received the B.S. degree in computer
science from Chungnam National University and the
M.S. degree in computer science from Korea Advanced
Institute of Science and Technology in 2001. From 2001
to 2003, she was a researcher at ETRI. Currently she is a
Ph.D. candidate in the Computer Science Division at
KAIST. Her research interests include flash memory
filesystems, embedded systems and power-aware
computing.
Youngjae Kim received the B.S. degree from Sogang
University in 2001 and the M.S. degree from the Korea
Advanced Institute of Science and Technology in 2003.
He earned his Ph.D. degree from the Pennsylvania State
University in 2009. From 2003 to 2004, he was a
research at ETRI Korea. Currently he is a researcher at
Oak Ridge National Lab. His research interests include
operating systems and power and thermal management
of storage systems.
Bhuvan Urgaonkar received his B. Tech in computer
science and engineering at the Indian Institute of
Technology Kharagpur in 1999, M.S. in computer sci-
ence at the University of Massachusetts in 2002, and his
Ph.D. in computer science at the University of Massa-
chusetts in 2005. He is an assistant professor in the
Department of Computer Science and Engineering at the
Pennsylvania State University. His research interests
include operating systems, storage systems, virtual
machines, performance evaluation, and distributed
computing.
Joonwon Lee received the B.S. degree in computer sci-
ence from Seoul National University in 1983 and the
M.S. and Ph.D. degrees from the Georgia Institute of
Technology in 1990 and 1991, respectively. Until 2008,
he had been a professor at Korea Advanced Institute of
Science and Technology. Currently, he is a professor at
Sungkyunkwan University. His current research inter-
ests include low power embedded systems, system
software, and virtual machines.
Euiseong Seo received his B.S., M.S., and Ph.D. degree in
computer science from Korea Advanced Institute of
Science and Technology in 2000, 2002, and 2007,
respectively. He is currently an assistant professor at
Ulsan National Institute of Science and Technology,
Korea. Before joining UNIST in 2009, he had been a
research associate in the department of computer sci-
ence and engineering at the Pennsylvania State Uni-
versity. His research interests are in power-aware
computing, real-time systems, embedded systems, and
virtualization.

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://www.tpc.org/tpch

	A comprehensive study of energy efficiency and performance of flash-based SSD
	Introduction
	Background
	Flash memory storage
	Flash translation layer

	Analysis of FTL overhead
	Simulation environment
	Run-time overhead
	Memory space usage

	Empirical analysis
	Experimental setup
	Microbenchmark
	Macrobenchmark

	Conclusion
	References


