
Harmonia: A Globally Coordinated Garbage
Collector for Arrays of Solid-state Drives

Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee†, David A. Dillow, and Feiyi Wang

National Center for Computational Sciences

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6016

{kimy1, oralhs, gshipman, 7o2, dillowa, fwang2}@ornl.gov

Abstract—Solid-State Drives (SSDs) offer significant perfor-
mance improvements over hard disk drives (HDD) on a number
of workloads. The frequency of garbage collection (GC) activity
is directly correlated with the pattern, frequency, and volume
of write requests, and scheduling of GC is controlled by logic
internal to the SSD. SSDs can exhibit significant performance
degradations when garbage collection (GC) conflicts with an
ongoing I/O request stream. When using SSDs in a RAID array,
the lack of coordination of the local GC processes amplifies
these performance degradations. No RAID controller or SSD
available today has the technology to overcome this limitation.
This paper presents Harmonia, a Global Garbage Collection
(GGC) mechanism to improve response times and reduce per-
formance variability for a RAID array of SSDs. Our proposal
includes a high-level design of SSD-aware RAID controller and
GGC-capable SSD devices, as well as algorithms to coordinate
the global GC cycles. Our simulations show that this design
improves response time and reduces performance variability
for a wide variety of enterprise workloads. For bursty, write
dominant workloads response time was improved by 69% while
performance variability was reduced by 71%.

I. INTRODUCTION

Hard disk drives (HDD) are the leading media in stor-

age systems. HDDs are widely deployed from embedded to

enterprise-scale systems for the last several decades. HDD

manufacturers were successful in providing a continuous im-

provement in total disk capacity by increasing the storage

density while bringing down the price-per-byte using mass

production. Perpendicular recording [29] has continued this

trend but further advances will require new technologies such

as patterned media which present significant manufacturing

challenges. On the other hand, HDD I/O performance in-

creased at a slower pace compared to the storage density.

Increasing the platter rotational speed (rotations per minute –

RPM) was key to this progress. A recent single enterprise-class

magnetic disk today can provide up to 204 MB/s at 15,000

RPMs [43]. However, we are now at a point where HDD

designers conclude it is extremely hard to increase platter RPM

beyond its current state because of power consumption and

thermal dissipation issues [12].

Solid state disks (SSD), especially NAND Flash memory-

based SSDs, are a leading media in storage systems. Re-

†He is currently a doctoral graduate student in the school of Electrical and
Computer Engineering at the Georgia Institute of Technologly.

cently several attempts have been made to employ SSDs for

enterprise-scale and HPC storage systems [3], [13], [26], [32].

Unlike magnetic rotational disks, NAND Flash memory-based

SSDs have no mechanical moving parts, such as spindles and

voice-coil motors. Therefore, NAND Flash memory technol-

ogy offers a number of benefits over conventional hard disk

drives (HDDs), such as lower power consumption, lighter

weight, higher resilience to external shocks, ability to sustain

hotter operating regimes, and lower I/O access times [8].

Additionally, since SSD Flash chips are packaged in HDD

form factors and SSDs are compatible with HDD device

drivers and I/O buses, one-to-one replacement of HDDs with

SSDs is possible. Such that, operating systems see the SSDs

as normal block devices just as HDDs. This enables to simply

replace HDDs and provide high bandwidth and lower latency,

however, SSD’s performance is highly limited by I/O access

patterns.

Unlike magnetic disk, NAND flash memory requires an

erase operation in addition to normal read and write operations

as in HDDs [34]. Each read and write operation is performed at

the granularity of a page (2-4KB) whereas an erase operation

is performed at the granularity of a block (128-256KB). In

addition to this mismatch of operational granularities, in flash,

no data can be written into a page that is not in the erased

state. Thus, SSD allows out-of-place update operations, which

eventually requires a cleaning process to collect stale data

for providing free space, known as garbage collection (GC)

process. While GC process is happening, incoming requests,

if their target is the same Flash chip that is busy with GC,

are delayed until the completion of the GC [22]. Furthermore,

fragmentation, which caused by small random writes/updates,

can significantly increase the GC overhead [4], [23], [20],

resulting in higher frequency of copy-operations for non-stale

data pages and block erase operations [20], [11].

Redundant Arrays of Inexpensive (or Independent) Disks

(RAID) [38] were introduced to increase the performance and

reliability of HDD-based storage systems. RAID provides par-

allelism of I/O operations by combining multiple inexpensive

disks thereby achieving higher performance and robustness

than a single HDD. RAID has since become the de facto

standard for building high-performance and robust HDD-based

storage systems. Similarly, we analyzed SSD-based RAID sets

978-1-4577-0428-4/11$26.00 c© 2011 IEEE

and we found that a RAID of cheap commercially-off-the-shelf

(COTS) SSDs is more cost-effective than a high-performance

and expensive PCIe based SSD [21]. However, we also

observed that SSD-based RAID configurations can exhibit

serious bandwidth variability. due to temporary bandwidth

degradations of individual SSDs and as well known, aggregate

RAID performance is dictated by the slowest drive of the array.

Further investigation provided empirical evidence that uncoor-

dinated garbage collection processes on individual SSDs are

the culprit for the overall performance degradations. Thus, in

this paper, we propose a RAID-level garbage collector, called

Harmonia that can globally coordinate local GC operations in

the array of SSDs.

This paper makes the following specific contributions:

• While synchronization of distributed processes to re-

duce performance variability has been previously dis-

cussed [35], [39], [7], there has been a lack of research

on coordinating GC processes in a RAID array of SSDs.

To our knowledge, this is the first work to address the

performance variability in a RAID set of SSDs due to

uncoordinated GC processes.

• We empirically observed that the performance of an

SSD can be highly impeded by GC processes. We term

this performance degradation pathological behavior of an

SSD. Then, we identify that such pathological behavior

can be worse in RAID configurations compared to indi-

vidual SSDs as GCs are scheduled independently by each

SSDs in an array.

• We propose a globally coordinated GC (GGC) mecha-

nism to reduce the effect of an aggregate performance

degradation. To provide such a GC synchronization mech-

anism to a RAID of SSDs, we propose designs of

SSD-aware RAID controllers and RAID-aware SSDs.

Connected to an SSD-aware RAID controller, RAID-

aware SSDs will participate in the globally coordinated

GC process. Moreover, we propose synchronized GC

algorithms in which the RAID-aware SSD controllers

can communicate with the SSD-aware RAID controller

to coordinate GC tasks.

• For evaluation of our proposed GC algorithm, we en-

hanced an SSD simulator developed by Microsoft Re-

search [1] with a globally synchronized GC mechanism

for RAID of SSDs. Our experiments with realistic work-

loads showed that a globally synchronized GC mech-

anism can improve the overall response time by up

to 69% and also significantly reduce the variability of

performance, compared to a baseline of non-synchronized

GC mechanism.

The reminder of this paper is organized as follows. We

first present an overview of the material and technology in

Section II followed by motivation in Section III. Section IV

introduces our proposed improved RAID and SSD controller

designs, as well as the globally synchronized garbage collec-

tion algorithm. In Section V, we present simulation results of

our proposed designs and algorithm. Then, we conclude in

Section VI, followed by future works.

II. BACKGROUND

A. Flash Memory Technology

Unlike rotating media and volatile memories, where only

read and write operations are needed, Flash memory-based

storage devices require an erase operation [34]. Erase op-

erations are performed at the granularity of a block which

is composed of multiple pages, while reads and writes are

performed at page level. Each page on Flash can be in one of

three states: (i) valid, (ii) invalid and (iii) free/erased. When

no data has been written to a page, it is in the erased state.

A write operation can only be performed on an erased page,

changing its state to valid. Erase operations are significantly

slower than reads/writes. On average an erase operation costs

1.5 ms (on average a read operation costs 0.025 ms and a write

operation costs 0.200 ms). Therefore, out-of-place writes (in

contrast to in-place writes in HDDs) are performed to existing

free pages along with marking the page storing the previous

version invalid.

B. Flash Translation Layer

The Flash Translation Layer (FTL) is a software layer within

the SSD that translates logical addresses to physical addresses

on a Flash device. FTL emulates a normal block device by

performing out-of-place updates, which in turn helps to hide

the erase operations from the host system. The mapping table

is often stored in a small, fast SRAM. FTL can be implemented

at different granularities in terms of how large an address

space a single entry in the mapping table captures. Many FTL

schemes [6], [24], [19], [25], [42], [5] and their improved

write-buffering [20] versions have been studied. A recent page-

based FTL scheme called DFTL [11] utilizes temporal locality

in workloads to overcome the shortcomings of the regular

page-based scheme by storing only a subset of mappings

(those likely to be accessed) on the limited SRAM and storing

the remainder on the Flash device itself. Also, there are several

works in progress on the optimization of buffer management

in NAND Flash based environments [36], [17].

C. Garbage Collection

While read and write operations to erased pages in SSDs

are conceptually similar to their HDD counterparts, overwrite

operations, where the destination address is not empty, are

much more complicated. For an overwrite operation to suc-

ceed, the contents of that particular block first needs to be

erased before a write operation can be performed reliably.

Therefore, a read-erase-modify-write operation is not efficient

due to the high overhead of erase operations. Alternatively,

SSDs use a copy-on-write operation in which the contents of

the target block are copied into the SSD-on-board memory,

modified, then written to a known free block. Then the original

target block for the overwrite operation is marked invalid.

Although this is more efficient compared to the read-erase-

modify-write method (since it does not require an explicit

erase operation), over time the number of available free blocks

decreases thereby requiring free blocks to be reaped from

the invalid block pool. This process is known as Garbage

Collection (GC).

Current generation SSDs use a variety of different al-

gorithms and policies for GC that are vendor dependent

(specific). It has been empirically observed that GC activity

is directly correlated with the frequency of write operations,

amount of data written, and/or the free space on the SSD [4].

This GC process can significantly impede both read and write

performance, increasing queueing delay [11].

D. Mitigating GC overheads

While GC overhead is highly dependent on workload char-

acteristics, random writes often have the most negative impact

on overall performance [23], [20]. Thus, it has been attempted

to reduce the GC overhead by increasing the sequentiality of

requests in workloads. Requests are rearranged and coalesced

to increase the sequentiality [20]. Others have attempted to

design FTLs that minimize GC overhead [6], [25], [24], [11].

In spite of these attempts, SSDs still suffer from variable

performance due to GC. Furthermore, during an ongoing GC

process incoming requests targeted for the same Flash device

that is busy with the ongoing GC process are stalled and placed

in a queue and scheduled for service following the completion

of the GC process [22]. This stalling can significantly degrade

performance when incoming requests are bursty. Other than

the degraded performance, the high variability of in terms of

I/O bandwidth and system response times makes the overall

RAID configuration less reliable as system response can not be

guaranteed. Thus, performance robustness of systems becomes

as important as providing high performance, such that a

robust system can operate with certain variations. In the next

section we present our empirical findings on overall RAID-

level performance variation for bursty and write dominant

workloads.

III. PERFORMANCE DEGRADATION DUE TO GCS IN SSDS

In this section we perform a series of experiments using

various COTS SSDs and RAID controllers in order to em-

pirically observe the effect of GC and to establish a baseline

performance of an individual SSD.

A. Experimental Setup

All experiments were performed on a single server with 24

GB of RAM and an Intel Xeon Quad Core 2.93GHz CPU [15].

The operating system was Linux with Lustre-patched 2.6.18-

128 kernel. The noop I/O scheduler that implements FIFO

queueing was used [41]. The test-bed has seven 8x PCIe slots

and two were populated with LSI MegaRAID SAS 9260-8i

KIT PCIe RAID Adapters [28], each of which can support up

to 8 SATA drives.

We examined two representative SSDs that are detailed in

Table I. We selected the Super Talent 128 GB FTM28GX25H

SSD [47] as a representative of multi-level cell (MLC)

SSDs with SATA interfaces and the Intel 64 GB SS-

DSA2SH064G101 SSD [16] as a representative of single-level

Label SSD(M) SSD(S)
Company Super-Talent Intel
Type MLC SLC
Interface SATA-II SATA-II
Capacity (GB) 120 64
Erase (#) 10-100K 100K-1M
Power (W) 1-2 1-2

TABLE I
SSD CHARACTERISTICS.

1 SSD 4 SSDs 6 SSDs
RAID 0 (No) (Yes) (Yes)
Queue depth 64 64 64
Request size 313 KB 1.25 MB 1.87 MB

TABLE II
BENCHMARK WORKLOADS – QUEUE DEPTHS AND REQUEST SIZES.

RAID Scheme 0
Device (#) 6
Write Cache Write Through
Read Ahead No
Direct I/O Yes
Stripe Size 256KB

TABLE III
SETTINGS OF THE LSI MEGARAID CONTROLLER.

cell (SLC) SSDs. We denote the SuperTalent MLC, and Intel

SLC devices as SSD(M), and SSD(S) in the remainder of this

study, respectively.

We examined the I/O bandwidth responses of individual

COTS SSD for workloads described in Table II. To measure

the I/O performance, we used a benchmark tool that uses the

libaio asynchronous I/O library on Linux [21]. The libaio pro-

vides an interface that can submit one or more I/O requests in

one system call iosubmit() without waiting for I/O completion.

It also can perform reads and writes on raw block devices. We

used the direct I/O interface to bypass the operating system

I/O buffer cache by setting the O-DIRECT and O-SYNC flags

in the file open() call.

B. Benchmark Workloads

In order to conduct a fair comparison for the performance

variability, we exercised the identical I/O loads to both SSDs.

A high queue depth (number of outstanding requests in the I/O

queue) is used to observe the impact of GC in time domain.

Also, we varied the percentage of writes in workloads between

20% and 80% in increasing steps of 20%. We measured I/O

bandwidth in one second intervals. We describe the details of

request size and queue depth settings for individual and RAID

SSDs in Table II. In order to use imbalanced I/O loads for the

tests of RAID of SSDs, we used 1.25MB of request size for

RAID of 4 SSDs while stripe size is 256KB. Note that in

this case, one of four SSDs will receive two 256KB striped

requests whereas others will have one 256KB striped request.

Taking this as a default request size in workloads, we scaled

the request size by the number of SSDs in RAID.

 140

 160

 180

 200

 220

 240

 260

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

80% Write
60% Write
40% Write
20% Write

(a) Time-series analysis for SSD(M)

 200

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

80% Write
60% Write
40% Write
20% Write

(b) Time-series analysis for SSD(S)

Fig. 1. Pathological behavior of individual SSDs.

Type Metric
Write (%) in Workload

80 60 40 20

SSD(M)
avg 176.4 184.8 207.4 249.9

(stddev) (6.37) (7.88) (6.73) (1.42)

SSD(S)
avg 223.5 239.3 257.1 285.1

(stddev) (7.96) (8.38) (5.86) (0.28)

TABLE IV
AVERAGE AND STANDARD DEVIATION FOR FIGURE 1(A)(B). stddev

DENOTES STANDARD DEVIATION.

C. Pathological behavior of individual SSDs

Figure 1 illustrates our results for individual SSDs. We

present average values and standard deviations of Figure 1

in Table IV. Figure 1 presents time-series analysis results for

workloads that have 20% or more writes. We observe that

the bandwidth fluctuates more widely due to GC activity with

respect to increasing mix of write requests in workloads.

Figure 1(a) illustrates, for the 80% write dominant I/O

workload, the SSD(M) I/O throughput dropping below the

peak performance (170 MB/s) at the 10th second. I/O through-

put drops below 166 MB/s at the 19th second and then

drops further to 152 MB/s in the next 10 seconds. Overall,

SSD(S) shows higher bandwidth than SSD(M) with a similar

variance for all workloads we examined, because SSD(S) is

an SLC, while SSD(M) is an MLC. For instance, SSD(S)’s

I/O throughput reached 210 MB/s at the peak for a workload

of 80% writes and dropped to 183 MB/s. As we increased

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

80% Write
60% Write
40% Write
20% Write

(a) Time-series analysis for RAID(M)

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

80% Write
60% Write
40% Write
20% Write

(b) Time-series analysis for RAID(S)

Fig. 2. Pathological behavior of RAID.

Type Metric
Write (%) in Workload

80 60 40 20

RAID(M)
avg 601.2 689.6 751.2 945.7

(stddev) (72.32) (110.5) (113.94) (11.14)

RAID(S)
avg 851.5 961.2 1026.1 1095.2

(stddev) (34.98) (46.37) (40.38) (11.39)

TABLE V
AVERAGE AND STANDARD DEVIATION FOR FIGURE 2(A)(B). stddev

DENOTES STANDARD DEVIATION.

the amount of reads in the workloads from 20% to 80%,

we observed that SSD(M)’s and SSD(S)’s I/O throughput

increased by 41% and 28%, respectively. Next, we extend our

experiments to arrays of COTS SSDs.

D. Pathological Behavior of Arrays of SSDs

We used two PCIe interfaced hardware RAID controllers for

each configuration. We configured RAID of SSDs as given

in Table III and experimented with workloads described in

Table II. In Figure 2 we present results of our experiments for

RAID(M) and RAID(S) arrays. And their average and standard

deviations are shown in Table V. RAID(M) and RAID(S) were

configured as level 0 arrays for a workload mix of writes and

reads by varying write percentage in time-series plot. Similar

to performance and variability tests with single SSDs, we

observe high performance variability in both RAID(M) and

RAID(S) as expected.

−5 −4 −3 −2 −1 0 1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Fitted Distribution Comparison

Single SSD

4 SSDs RAID−0

6 SSDs RAID−0

−3 −2 −1 0 1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fitted Distribution Comparison

Single SSD

4 SSDs RAID−0

6 SSDs RAID−0

(a) SSD(M) vs. RAID-0 of 4, 6 SSD(M)s (b) SSD(S) vs. RAID-0 of 4, 6 SSD(S)s

Fig. 3. Throughput variability comparison for SSD RAIDs with increasing number of drives in the array for a workload of 60% writes. Y-axis represents
normalized frequency.

E. Performance Variability with the Number of SSDs in RAID

We compare the performance variability of the SSD RAID

sets for different number of SSDs for a workload of 60%

writes. We normalized the I/O bandwidth of each configuration

with a Z-transform [18] and then curve-fitted and plotted their

density functions. Our tests were performed using workloads

described in Table V. As we observed from Table V that the

coefficient of variance1 is the highest when write percentage

is 60% in our experiments, we show analysis results for 60%

writes of workloads as representative experimental results.

In Figure 3 we see that the lines for RAIDs of 4 SSDs and

6 SSDs show both wider curves than that for single SSDs.

Note that the wider curve is shaped, the higher its performance

variability is. Or, in other words tighter the distribution is

(e.g. minimal spread at the tails with a single spike at the

center) less variability it exhibits in terms of throughput.

Thus, we observe the performance variability exhibited by

RAID of SSDs far exceeds the projected linear relationship

between single SSD and RAID of SSDs. Our conjecture is

that uncoordinated GC operations are increasing performance

variability. We see that the performance variability can further

increase as we increase the number of SSDs in RAID as

is clearly seen in Figure 3(a). Furthermore, we also observe

that performance variance increases more rapidly for RAID

arrays of MLC SSDs compared to their SLC counterparts,

with increasing number of SSDs in an array.

Moreover, we also observe that the performance variability

of RAID sets comprised of MLC SSDs does not scale as

well as that of SLC SSDs. As seen in Figure 3(b), there is

not a significance difference between 4 and 6 SLC SSDs

in the RAID set, unlike the MLC RAID sets shown in

Figure 3(a). We believe this variation to be a result of the

inherent higher variability in response times of MLC SSDs. In

1Coefficient of variation (Cv) is a normalized measure of dispersion of a
probability distribution, that is Cv=σ

µ
.

order to generalize this statement, we will further investigate

the uncoordinated GC synchronization problems for various

COTS SSDs by increasing the number of devices in the RAID

array.

We also found that a per-drive bandwidth drops as we

increase the number of SSDs in RAID. Table VI presents a

per-drive bandwidth for single SSD and RAIDs of four and

six SSDs. We calculate a per-drive bandwidth for RAID of N

SSDs (N ≥ 1) by dividing the average bandwidth observed

by N under the assumption that the I/O loads to storage are

balanced across SSDs in RAID. In Table VI, it can be seen

that there are bandwidth drops by up to 43 and 48 MB/s

respectively for 6 RAIDs of SSD(M)s and SSD(S), compared

to the bandwidths of their single SSDs.

Type 1 SSD 4 SSDs 6 SSDs
SSD(M) 184.8 172.4 141.2
SSD(S) 239.3 240.3 191.1

TABLE VI
PER-DRIVE BANDWITH (MB/S).

F. Performance Variability and RAID Levels

We investigated the correlation between various RAID lev-

els and performance variability. For these experiments the total

number of disks for all RAID levels were same. However, the

number of data disks changed as dictated by each specific

RAID configuration. Table VII details our results in terms

of average bandwidth (MB/s) and standard deviation of the

observed throughput. As can be seen in Table VII RAID-5 has

a lower standard deviation than RAID-0 and similarly RAID-6

has a lower standard deviation than RAID-5. However, stan-

dard deviation is not a meaningful metric by itself for assessing

the performance variability. A right metric for comparing

bandwidth variability should take into account both mean

and standard deviation values. Therefore, we calculated the

Type RAID-0 RAID-5 RAID-6

RAID(M)
847.4 644.1 479.8

(60.50) (56.16) (45.53)

RAID(S)
1147.1 793.7 686.7
(72.02) (53.14) (49.44)

TABLE VII
PERFORMANCE VARIABILITY IN TERMS OF AVERAGE BANDWIDTH (MB/S)
AND STANDARD DEVIATION OF OBSERVED BANDWIDTH (IN PARENTHESIS)

FOR VARIOUS RAID CONFIGURATIONS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

RAID(M) RAID(S)

N
o
rm

a
liz

e
d
 C

o
e
ff
ic

ie
n
t
o
f
V

a
ri
a
ti
o
n

RAID configurations w/ 6 SSDs

RAID-0 (6,0)
RAID-5 (5,1)
RAID-6 (4,2)

Fig. 4. Performance variability with respect to various RAID levels.

coefficient of variables of the values presented in Table VII and

plotted them in Figure 4. Figure 4 illustrates the normalized

coefficient of variation in bandwidth for RAID-0, RAID-5, and

RAID-6 configurations. The coefficient of variation is useful in

comparing the performance variability as it provides a method

of understanding the standard deviation relative to the mean.

Results in Figure 4 are normalized with respect to the coeffi-

cient of variation of RAID-0 results. ‘x’ and ‘y’ in (x, y) in the

legend represent the number of data drives and the number of

parity drives respectively. As illustrated in Figure 4, RAID-5

and RAID-6 configurations demonstrate higher performance

variability relative to the RAID-0 configuration. And RAID-6

configuration for both cases presented the highest performance

variability in our experiments.

As we have seen from benchmark results with real COTS

SSD and RAID components there were technology limitations

for current SSD and RAID controller technologies; GC pro-

cesses per individual SSDs are local and they are never coor-

dinated. COTS RAID controllers are not aware of any ongoing

GC processes at SSDs, therefore there is no coordination at

the RAID controller level. This lack of coordination causes

individual GC processes per SSD to execute independently,

resulting in aggregate performance degradation and response

time variability at the RAID level. In the next section we will

describe components and algorithms for our proposed high-

performance and robust SSD-based RAID storage system.

IV. HARMONIA: AN EFFICIENT SSD RAID SYSTEM

In a RAID set of SSDs, the aggregate RAID performance

is limited by the slowest component of the array. Our em-

pirical results showed that uncoordinated garbage collection

is the major culprit behind these temporary slow-downs on

individual SSDs. In this section, we present a solution to this

problem as to mitigate the performance degradations of SSD

RAID sets.

A. Coordinated Garbage Collections in SSD RAID sets

Figure 5 depicts conceptual timings of GC processes for

a given RAID array, with time on the horizontal dimension.

The time line is divided into windows – A through G – as

the array transitions from peak to degraded performance due

to local GC processes. Peak performance at the RAID level

is achieved when there is no active GC process on any SSD.

Degraded performance occurs when an I/O operation spans

even a single device with an active GC process. Assuming full

stripe operations, the RAID array in Figure 5(a) only achieves

its peak performance in time windows B and D. The array is

limited to degraded performance is windows A and G due to

multiple devices performing GC, as well as in windows C and

E due to a single device with active GC.

Figure 5(b) shows the desired benefits of our proposed

mechanism to coordinate and synchronize the local GC pro-

cesses of each SSD. In this mechanism, GC processes are

shifted in time to allow longer windows of peak performance

from the RAID array. By advancing the GC process in

Figure 5(a) window C to occur simultaneously with the other

processes in window A, we eliminate one source of degraded

performance. Similarly, delaying the GC in window E to

window G allows more opportunity for the RAID controller

to issue operations that do not span devices with active GC

processes.

B. Design

The aggregate performance degradation induced by unco-

ordinated GC processes can be resolved by providing the

following:

1) A RAID controller designed to enable global coordina-

tion of garbage collection when used with SSDs support-

ing that capability. This optimized RAID controller will

be referred to as an “SSD optimized RAID controller”

(O-RAID).

2) An SSD designed for participating in a globally coor-

dinated garbage collection process in a O-RAID. This

new SSD will be referred to as “Global GC optimized

SSD” (O-SSD).

3) A set of algorithms to perform a globally coordinated

GC process on a given SSD-based RAID set comprised

of an O-RAID and multiple O-SSD devices.

4) Extension of storage protocols such as SATA and SCSI

for controlling the additional capabilities of O-SSD

devices.

Furthermore, we observe the following conventions and

constraints in this architecture: the O-RAID operates at the

SSD1

SSD2

SSD3

SSD4

SSDn

A B C D E F G

Time

A B C

Time

Locally coordinated GC process

Aggregate degraded performance

Aggregate preferred performance

Globally coordinated GC process

(GGC)

Globally realigned single blocking GC

process (local)

(a) Locally coordinated GC (b) Globally coordinated GC

SSD RAID Array Group

SSD1

SSD2

SSD3

SSD4

SSDn

SSD RAID Array Group

Fig. 5. Effect of globally coordinated GC (GGC). (a) presents locally coordinated GC processes for an un-optimized RAID array, whereas (b) presents
globally coordinated GC processes for a GGC optimized RAID array.

global level with global knowledge obtained from all O-SSDs,

while an O-SSD only has local knowledge in the form of

internal fragmentation level, number of available free blocks,

and other similar information used to determine when to start

its GC process.

While global garbage collection can only provide maximum

effectiveness when all SSD devices in a given RAID set

support the GGC capability, reduced benefits may still be

obtained if only a subset of devices offers support.

C. GC Coordination Algorithms

1) Reactive Method: Coordination is essential to achieving

the performance benefits of GGC. There are multiple ways

to coordinate a global garbage collection process. However,

given the page limitations of this paper we present the reactive

soft-limit scheme as a case study. In the reactive soft-limit

method, an O-SSD communicates to the O-RAID that it has

reached an internal threshold and will soon need to initiate a

GC process. This communication may also provide additional

information to the O-RAID such as an estimate of how much

data can be written before a hard threshold is reached and an

uncoordinated GC process must be initiated.

Once the O-RAID has been notified, it will ask each GGC-

capable device in the RAID set to initiate a GC cycle. The

O-RAID can optionally delay this initiation in order to allow

more O-SSDs to register their need of GC, or to potentially

find a more optimal point in the request stream for the GC

cycle to begin. If the O-RAID chooses to delay the GC cycle,

it can use the additional information from the notification to

avoid triggering uncoordinated GC. In this method, the O-SSD

will delay its GC cycle until it reaches an hard threshold where

it must begin a GC cycle. The O-SSD’s communication to the

O-RAID of the need for GC is advisory in nature, and the lack

of a response from the O-RAID will not prevent the O-SSD

from performing needed GC.

2) Proactive Method: However, one can implement proac-

tive soft-limit, and proactive idle. All of reactive and proactive

schemes are non-exhaustive; multiple methods may be used

concurrently. In the proactive soft-limit method, the O-RAID

periodically collects GC state information from each O-SSD.

This information collection can be initiated by the O-RAID via

a pull mechanism, or each O-SSD can periodically push the

information to the O-RAID. A combination of both methods

may also be used. The O-RAID uses the collected information

to determine when each O-SSD has reached a state in which

a GGC cycle would be beneficial, and will attempt to find an

optimal point in the I/O stream to initiate it. State information

useful for determining the need for a GC cycle includes, but

is not limited to:

• Internal fragmentation level (ratio of free to used erase

blocks)

• Number of free erase blocks available

• ECC correctable error rate on reads

In the proactive idle method, the O-RAID identifies points in

the IO stream that are expected to have extended idle periods,

and initiates a GGC cycle during those lulls in activity.

For the remainder of this paper we will focus on the

reactive scheme to explain our proposed design. In our reactive

algorithm, the initiator SSD in the array is set as the GGC

global coordinator. Unless individual SSDs receive an event

of FORCE GC, they operate as normal (without a global GC

coordination). Otherwise they are forced to start GGC process.

V. EXPERIMENTAL RESULTS

We extended the SSD simulator developed by Microsoft

Research (MSR) [1] to evaluate our proposed GGC-optimized

RAID array. The MSR SSD simulator is an enhancement of

DiskSim [2] from the CMU Parallel Data Lab. The MSR

SSD simulator has been recently released to the public and

widely used in several studies to evaluate SSD based storage

systems [37], [27], [40]. The DiskSim simulator has been

also widely used for research and development and has been

extensively validated [9], [2].

A. GGC Simulator Design

To explore our proposed design, we extended the baseline

DiskSim and MSR SSD environment to implement the re-

active soft-limit coordination method. In this algorithm, the

initiator SSD in the array is set as the GGC global coordinator.

Unless individual SSDs receive an event of FORCE GC,

they operate as normal (without a global GC coordination).

Otherwise they are forced to start GGC process. The O-

RAID receives a GGC request message from the initiator SSD

(Scoordinator). Upon receiving this message, O-RAID prepares

to schedule a GGC event. It iterates over all connected devices

and for each device and every stale/invalid element issues a

Forced GC event. Regardless of the source of the GC event, a

local garbage collection process will be triggered to clean the

stale/invalid elements until the number of free blocks exceeds

an internal threshold.

B. Baseline Simulation Environment

For the baseline COTS RAID environment, we configured

SSD RAID simulator to analyze a RAID-0 array described in

Table VIII. The SSD simulator was configured such that each

SSD presented the specifications shown in Table IX. In the

baseline configuration, there is no coordination of the internal

garbage collection for each SSD.

RAID model

of SSDs 8
Stripe unit 4KB

TABLE VIII
RAID-0 CONFIGURATION.

Simulation “Warm-up”: Prior to collecting performance

data from the simulator, we fill the entire space on each SSD

with valid data. This ensures that GC is required on the SSD

devices as new write requests arrive during the experimental

run.

SSD model

Total capacity 32GB
Reserved free blocks 15 %
Minimum free blocks 5 %

Cleaning policy greedy
Flash chip elements 64
Planes per package 4
Blocks per plane 512
Pages per block 64

Page size 4 KB

Page read latency 0.025 ms
Page write latency 0.200 ms
Block erase latency 1.5 ms

TABLE IX
SSD MODEL PARAMETERS.

Workloads
Avg. Req. Size Read Arrival Rate

(KB) (%) (IOP/s)

HPC(W) 510.53 20.12 476.50
HPC(R) 510.53 80.08 476.50

TABLE X
HPC-LIKE SYNTHETIC WORKLOADS.

Workloads
Avg. Req. Size Read Arrival Rate

(KB) (%) (IOP/s)

TPC-C [48] 7.06 20.50 388.32
Openmail [14] 9.49 63.30 846.62

TPC-H [50] 31.62 91.80 172.73
Financial [46] 7.09 18.92 47.19

Cello [45] 7.06 19.63 74.24

TABLE XI
ENTERPRISE-SCALE REALISTIC WORKLOADS.

C. Workload Descriptions and Metrics

We use a wide spectrum of workloads from industry and

research sources to evaluate the performance of our GGC

method. We use a mixture of HPC-like workloads and realistic

enterprise-scale workloads to study the impact of our proposed

Harmonia, globally coordinated garbage collection in RAID

of SSDs. This broad spectrum was chosen to obtain a more

realistic view of the benefits of coordinated garbage collection.

As described in Table X and XI, these workloads include both

read and write dominated traces.

For HPC-like workloads, we chose read and write and

bursty workloads whose characteristics are described in Ta-

ble X. HPC(W) is a write-dominated (80%) workload that

represents I/O patterns in HPC systems as they periodically

write checkpoint states and large result files during their

calculations [44], [10], [33]. HPC(R) is a read-dominated

(80%) workload that represents heavy read patterns of HPC

environments [49].

For enterprise-scale realistic workloads, five commercial I/O

traces are used, details of which are shown in Table XI. We

used write dominant I/O traces from an OLTP application

running at a financial institution made available by the Storage

Performance Council (SPC), referred to as the Financial trace,

and from Cello99, which is a disk access trace collected from

a time-sharing server exhibiting significant writes which was

running the HP-UX operating system at Hewlett-Packard Lab-

oratories. Also, we examined two read-dominant workloads.

TPC-H is a disk I/O trace collected from an OLAP application

examining large volumes of data to execute complex database

queries. Also, we consider e-mail server workloads referred as

Openmail.

While the device service time captures the overhead of

garbage collection and the device’s internal bus contention,

it does not include queuing delays for requests pending in

the I/O driver queues. Additionally, using an average service

time loses information about the variance of the individual

response times. In this study, we utilize (i) the response time

measured at the block device queue and (ii) the variance

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

HPC(W) HPC(R)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
N

o
rm

a
liz

e
d

 a
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Baseline
GGC

Baseline(stddev)
GGC(stddev)

Average Response Times (ms) for baseline

= {1.57, 0.48}

Fig. 6. Baseline and GGC normalized response time statistics for write and
read dominant workloads. Average response time is plotted against the left
y-axis and normalized standard deviation is plotted against the right y-axis.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0 1 2 3 4 5 6 7 8 9 10
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Request Arrival Rate (K IOPs)

Baseline(stddev)
Baseline(resp)

GGC(stddev)
GGC(resp)

(a) Write-dominant (80% Write)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0 1 2 3 4 5 6 7 8 9 10
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4
 3.6
 3.8
 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Request Arrival Rate (K IOPs)

Baseline(stddev)
Baseline(resp)

GGC(stddev)
GGC(resp)

(b) Read-dominant (20% Write)

Fig. 7. Average response times (left y-axis) and standard deviations (right
y-axis) with respect to request arrival rates for baseline and GGC for write-
dominant (a) and read-dominant (b) workloads.

in these measurements. This captures the sum of the device

service time and the additional time spent waiting for the

device to begin to service the request.

D. Performance Analysis for HPC-like Workloads

We analyzed the response times of the GGC-enhanced

RAID compared and the baseline schemes. The average

response time for GGC was normalized with the respect

to the baseline configuration in Figure 6, We note a 55%

improvement for the HPC(R) read-dominated load and a 70%

improvement for the HPC(W) write-dominated load. A system

can be said to be robust if the response time can be predictable

and it is capable of working with minimal variances. We

observed the variance of response times for each workload

in our experiments. Figure 10 presents standard deviations for

each workload. GGC improves the response time by 73.8% on

average. Also we observe GGC improves the robustness and

predictability of the storage system.

E. Exploiting a Wide Range of Workload Characteristics

We have seen the improvement in response time and its

variance for different realistic workloads with the GGC. In this

experiment, we exploit a wide range of workloads in particular

by varying the requests arrival rates. Figure 7(a) shows that

the baseline configuration has high response times when the

workload is write intensive (80% writes). In addition, there

is a very large gradient in the response time and variability

as the arrive rate quickens. This behavior does not provide a

robust system response. In contrast, our GGC method exhibits

lower average response times than the baseline, and a more

gradual increase in variability. This confirms that GGC can

help deliver a robust and stable system. For read-dominated

workloads such as Figure 7(b), GGC continues to deliver

improved performance and system robustness.

F. Scalability

 0

 1

 2

 3

 4

 5

 6

2 4 6 8 10 12 14 16 18
 0

 1

 2

 3

 4

 5

 6

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

R
e

s
p

o
n

s
e

 T
im

e
 R

a
ti
o

 o
f

B
a

s
e

lin
e

 o
v
e

r
G

G
C

Number of SSDs

Baseline
GGC

Baseline over GGC

Fig. 8. Average response times (left y-axis) and standard deviation (right y-
axis) of baseline and GGC schemes with respect to varying number of SSDs
in a RAID array.

While experiments presented in previous sections were

performed with eight SSDs in the RAID set, we also in-

vestigated how the number of devices in the array affected

0
0.5
1.0
1.5

2
2.5

3
3.5

R
e

s
p

.
T

im
e

 (
m

s
) Read

0
0.5
1.0
1.5

2
2.5

3
3.5

R
e

s
p

.
T

im
e

 (
m

s
) Read

0
0.5
1.0
1.5

2
2.5

3
3.5

R
e

s
p

.
T

im
e

 (
m

s
) Write

0
0.5
1.0
1.5

2
2.5

3
3.5

R
e

s
p

.
T

im
e

 (
m

s
) Write

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD0 Read

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD0 Read

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD0 Write

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD0 Write

OFF

ON

G
C

 o
n

-o
ff GC

OFF

ON

G
C

 o
n

-o
ff GC

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD1 Read

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD1 Read

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD1 Write

0
0.5
1.0
1.5

2
2.5

3
3.5

D
e

v
.

T
im

e
 (

m
s
) SSD1 Write

OFF

ON

0 50 100 150 200 250 300

G
C

 o
n

-o
ff

Elapsed Time (ms)

GC

OFF

ON

0 50 100 150 200 250 300

G
C

 o
n

-o
ff

Elapsed Time (ms)

GC

(a) Baseline (without GGC) (b) GGC

Fig. 9. Microscopic analysis for non-GGC vs. GGC. The first two rows show system response times of overall RAID for read and write requests. The 3rd
to 5th rows show device service times for read and write and garbage collection duration for SSD-0. The 6th to 8th rows, similar to 3rd to 5th rows, show
device service times and GC duration for SSD-1. We just present the timeseries analysis plots of 2 SSDs out of 8 SSDs used for RAID-0 in our evaluation.

the performance. Figure 8 compares the average response

time under the HPC(W) workload as the number of SSDs

configured in the RAID set is varied. As expected, both

configurations improved their performance as number of SSDs

increased. However, GGC maintains a performance edge over

the baseline throughout the experiment. At two SSDs, the

baseline response time was 2.7 times longer than GGC, and

the margin grew to 3.2 times as we expanded the RAID set

to 18 SSDs. It is interesting that the baseline requires eighth

SSDs to provide a response time equivalent to that delivered

by two devices using GGC. Even with 18 devices, the baseline

performs 184% worse than GGC using only 4 devices.

While we believe the results presented in Section V present

a strong case for coordination of garbage collection in a

RAID set, we note some constraints on this effort. Microsoft

Research’s SSD simulator has been used in several stud-

ies [27], [37], but has not yet been validated against a hardware

RAID set of SSDs. This effort is on-going, and has already

demonstrated the performance degradation from uncoordinated

GC events with actual hardware, indicating that this problem

is not hypothetical.

G. Microscopic Analysis

We perform a microscopic analysis of the impact of GGC

on device response times and garbage collection invocations

of individual SSDs in the RAID set. Figure 9 describes a set of

consecutive requests serviced by two of the eight SSD devices

in our simulated RAID.

The response time for each request was captured during a

300ms interval in the HPC(W) workload by both the baseline

and our GGC method. As clearly indicated by Figures 9,

baseline incurs more larger and more frequent overhead from

GC collection which results in larger latencies than GGC.

The overall RAID response latency is a function of the

convolution of the response time of each SSD in the array,

and is determined by the slowest device. In Figure 9(b),

we clearly see the less number of spikes than the baseline

without GGC. The total number of GC invoked from GCs

are unchanged, however, many GC operations are called all

at once, so those spikes are visible one. And we found that

each SSD is composed of multiple packages. When GC is

not coordinated, inside of SSD, each package can call the GC

independently. By further forcing GC coordination across the

packages, we could achieve significantly less number of GC

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

TPC-C Openmail TPC-H Financial Cello
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
N

o
rm

a
liz

e
d

 a
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Baseline
GGC

Baseline(stddev)
GGC(stddev)

Average Response Times (ms) for baseline

= {0.17, 0.23, 0.18, 0.30, 0.33}

Fig. 10. Normalized average response times (left y-axis) and normalized
standard deviation (right y-axis) for baseline and GGC configured RAID
arrays under various enterprise-scale workloads.

spikes in GGC-enabled SSD RAID set.

H. Results for Enterprise-scale Realistic Workloads

So far in this paper we presented the impact of GGC for

HPC-like workloads. We further analyzed GGC for enterprise-

scale workloads. In the enterprise-scale workloads, different

from the HPC-like workloads, the requests are smaller and

more random (Refer to Table X and XI). Although less com-

pared to HPC-like workloads, we observe GGC can not only

improves average response times by 10% but also enhances

the robustness and predictability of the RAID set of SSDs in

Figure 10 for enterprise-scale workloads. The improvement

is smaller compared to HPC-like workloads, as in the HPC

domain the workloads are much more bursty and heavy in

terms of request arrival’s intensity.

VI. CONCLUDING REMARKS

RAIDs of SSDs exhibit high performance variability due to

uncoordinated garbage collection (GC) processes performed

by individual SSDs within the RAID set. We propose a novel

idea to significantly reduce this overhead, Harmonia, a global

garbage collector, that coordinates the local GC process of

the individual SSDs. We enhanced DiskSim and the Microsoft

Research SSD simulator to implement one of GC coordination

algorithms that we proposed. We evaluated the impact of GGC

using this simulation environment against realistic workloads

and observed the system response times and performance

variability. Response time and performance variability were

improved for all workloads in our study. In particular, for

bursty workloads dominated by large writes, we observed

a 69% improvement in response time and a 71% reduction

in performance variability when compared to uncoordinated

garbage collection.

We have identified several avenues for future study:

• In this paper, we have evaluated the reactive-method

for Harmonia algorithm. However, we expect that the

Harmonia will better perform by exploiting idle time

between I/O requests. Several on-line algorithms for

detecting idle time have been suggested [31], [30]. We

believe our proposed proactive methods (described in

Section IV – proactive soft-limit and proactive idle) will

be able to take advantage of such algorithms to further

improve the efficiency of Harmonia.

• Our experiments with Harmonia are limited to synthetic

HPC and realistic enterprise-scale workloads. Based on

these experiments we conclude that Harmonia will per-

form better for workloads with large and bursty I/O

requests. As a future work, we plan to exercise Harmo-

nia with block-level traces gathered from a large-scale

production HPC file system and analyze its performance.

• We empirically showed that uncoordinated local GC

processes in RAID-5 or 6 configurations can hinder

the overall performance and increase the performance

variability. We plan to implement Harmonia for RAID-5

and 6 configurations in our simulation environment for

further evaluation.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

detailed comments which helped us improve the quality of

this paper. Also we would like to thank Jason J. Hill for

his technical support on the testbed setup. This research used

resources of the Oak Ridge Leadership Computing Facility,

located in the National Center for Computational Sciences at

Oak Ridge National Laboratory, which is supported by the

Office of Science of the Department of Energy under Contract

DE-AC05-00OR22725.

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for ssd performance. In
USENIX 2008 Annual Technical Conference on Annual Technical Con-

ference, pages 57–70, Berkeley, CA, USA, 2008. USENIX Association.
[2] Jiri Bucy, John S.and Schindler, Steven W. Schlosser, and Gregory R

Ganger. The DiskSim Simulation Environment Version 4.0 Reference
Manual, May 2008.

[3] Sandiego Supercomputer Center. Supercomputer uses flash to solve data-
intensive problems 10 times faster, 2010. http://www.sdsc.edu/News%
20Items/PR110409 gordon.html.

[4] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding
intrinsic characteristics and system implications of flash memory based
solid state drives. In SIGMETRICS ’09: Proceedings of the eleventh in-

ternational joint conference on Measurement and modeling of computer

systems, pages 181–192, New York, NY, USA, 2009. ACM.
[5] Siddharth Choudhuri and Tony Givargis. Performance improvement

of block based NAND flash translation layer. In Proceedings of the

5th IEEE/ACM international conference on Hardware/software codesign

and system synthesis, CODES+ISSS ’07, pages 257–262, New York, NY,
USA, 2007. ACM.

[6] Dong-Joo Chung, Tae-Sun Park, Dong-Ho Park, Sangwon Parkand Lee,
Sang-Won Lee, and Ha-Joo Song. System software for flash memory:
A survey. In Proceedings of the International Conference on Embedded

and Ubiquitous Computing, pages 394–404, August 2006.
[7] Kurt B. Ferreira Ferreira, Patrick Bridges, and Ron Brightwel. Char-

acterizing application sensitivity to OS interference using kernel-level
noise injection. In SC ’08: Proceedings of Supercomputing, pages 1–
12, 2008.

[8] Eran Gal and Sivan Toledo. Algorithms and data structures for flash
memories. ACM Computing Survey, 37(2):138–163, 2005.

[9] Gregory R. Ganger. Generating representative synthetic workloads: An
unsolved problem. In International Conference on Management and

Performance Evaluation of Computer Systems, page 12631269, 1995.

[10] Gary Greider. HPC I/O and file systems issues and perspectives, 2006.
http://www.dtc.umn.edu/disc/isw/presentations/isw46.pdf.

[11] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a
flash translation layer employing demand-based selective caching of
page-level address mappings. In ASPLOS ’09: Proceeding of the
14th international conference on Architectural support for programming

languages and operating systems, pages 229–240, New York, NY, USA,
2009. ACM.

[12] Sudhanva Gurumurthi, Anand Sivasubramaniam, and Vivek K. Natara-
jan. Disk drive roadmap from the thermal perspective: A case for
dynamic thermal management. In Proceedings of the 32nd annual

international symposium on Computer Architecture, ISCA ’05, pages
38–49, Washington, DC, USA, 2005. IEEE Computer Society.

[13] Jiahua He He, Arun Jagatheesan, Sandeep Gupta, Jeffrey Bennett,
and Allan Snavely. DASH: a recipe for a flash-based data intensive
supercomputer. In SC ’10: Proceedings of Supercomputing), November
2010.

[14] HP-Labs. The Openmail Trace. http://tesla.hpl.hp.com/opensource/
openmail/.

[15] Intel. IntelXeon Processor X5570 8M Cache, 2.93 GHz, 6.40 GT/s Intel
QPI. http://ark.intel.com/Product.aspx?id=37111.

[16] Intel. Intel X25-E Extreme 64GB SATA Solid-State Drive SLC. http:
//www.intel.com/design/flash/nand/extreme/index.htm.

[17] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and
Joonwon Lee. FAB: Flash-aware buffer management policy for portable
media players. IEEE Transactions on Consumer Electronics, 52(2):485–
493, 2006.

[18] Eliahu Ibrahim Jury. Theory and Application of the Z-Transform Method.
Wiley-Interscience, 1964.

[19] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A
superblock-based flash translation layer for NAND flash memory. In
Proceedings of the 6th ACM & IEEE International conference on

Embedded software, EMSOFT ’06, pages 161–170, New York, NY,
USA, 2006. ACM.

[20] Hyojun Kim and Seongjun Ahn. BPLRU: A buffer management scheme
for improving random writes in flash storage. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), pages
1–14, Feburary 2008.

[21] Youngjae Kim, Sarp Oral, Dave A Dillow, Feiyi Wang, Douglas Fuller,
Stephen Poole, and Galen M. Shipman. An empirical study of redundant
array of independent solid-state drives (RAIS). In Technical Report,

ORNL/TM-2010/61, Oak Ridge National Laboratory, National Center

for Computational Sciences, March 2010.

[22] Junghee Lee, Youngjae Kim, Galen M Shipman, Sarp Oral, Jongman
Kim, and Feiyi Wang. A semi-preemptive garbage collector for solid
state drives. In Proceedings of the International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), April 2011.

[23] Sang-Won Lee and Bongki Moon. Design of flash-based dbms: an in-
page logging approach. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, SIGMOD ’07, pages
55–66, New York, NY, USA, 2007. ACM.

[24] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sang-
won Park, and Ha-Joo Song. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Trans. Embed. Comput.
Syst., 6(3):18, 2007.

[25] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST:
Locality-aware sector translation for NAND flash memory-based storage
ssystems. SIGOPS Oper. Syst. Rev., 42(6):36–42, 2008.

[26] Min Li, Sudharshan S. Vazhkudai, Ali R. Butt, Fei Meng, Xiaosong Ma,
Youngjae Kim, Christian Engelmann, and Galen M. Shipman. Func-
tional partitioning to optimize end-to-end performance on many-core
architectures. In SC ’10: Proceedings of Supercomputing, November
2010.

[27] Teng Li, Tarek El-Ghazawi, and H. Howie Huang. Reconfigurable
active drive: an FPGA accelerated storage architecture for data-intensize
applications. In 2010 Symposium on Application Accelerators in High

Performance Computing (SAAHPC’10), 2010.

[28] LSI. MegaRAID SAS 9260-8i RAID Card. http://www.lsi.com/channel/
products/megaraid/sassata/9260-8i/index.html.

[29] M. Mallary, A. Torabi, and M. Benakli. One Terabit Per Square Inch

Perpendicular Recording Conceptual Design. IEEE Transactions on
Magnetics, 38(4):1719–1724, July 2002.

[30] Ningfang Mi, Alma Riska, Evgenia Smirni, and Erik Riedel. Enhancing
data availability in disk drives through background activities. In
DSN ’08:Proceedings of f the Symposium on Dependable Systems and
Networks, pages 492–501, June 2008.

[31] Ningfang Mi, Alma Riska, Qi Zhang, Evgenia Smirni, and Erik Riedel.
Efficient management of idleness in storage systems. Trans. Storage,
5:4:1–4:25, June 2009.

[32] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,
and Antony Rowstron. Migrating server storage to SSDs: analysis
of tradeoffs. In EuroSys ’09: Proceedings of the 4th ACM European
conference on Computer systems, pages 145–158, New York, NY, USA,
2009. ACM.

[33] Henry Newman. What is HPCS and how does it impact I/O, 2009.
http://wiki.lustre.org/images/5/5a/NewmanMayLustreWorkshop.pdf.

[34] H. Niijima. Design of a solid-state file using flash eeprom. IBM Journal

of Research and Developement, 39(5):531–545, 1995.
[35] Sarp Oral, Feiyi Wang, David A. Dillow, Ross Miller, Galen M.

Shipman, and Don Maxwell. Reducing application runtime variability
on Jaguar XT5. In CUG ’10: Proceedings of Cray User’s Group (CUG)

Meeting, May 2010.
[36] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and

Joonwon Lee. CFLRU: a replacement algorithm for flash memory.
In Proceedings of the 2006 international conference on Compilers,

architecture and synthesis for embedded systems, CASES ’06, pages
234–241, New York, NY, USA, 2006. ACM.

[37] Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and
Joonwon Lee. Exploiting internal parallelism of flash-based SSDs. IEEE

Comput. Archit. Lett., 9(1):9–12, 2010.
[38] David Patterson, Garth Gibson, and Randy H. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In Proceedings of ACM

SIGMOD Conference on the Management of Data, pages 109–116, June
1988.

[39] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of
the missing supercomputer performance: achieving optimal performance
on the 8,192 processors of ASCI Q . In SC ’03: Proceedings of
Supercomputing, pages 1–12, 2003.

[40] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. Transac-
tional flash. In Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 147–160, Berkeley,
CA, USA, 2008. USENIX Association.

[41] Steven L. Pratt and Dominique A. Heger. Workload dependent perfor-
mance evaluation of the Linux 2.6 I/O schedulers. In Linux Symposium,
July 2004.

[42] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. Block
management in solid-state devices. In Proceedings of the USENIX
Annual Technical Conference, June 2009.

[43] Seagate. Seagate Cheetah 15K.7 Disc Drive. http://www.seagate.com/
docs/pdf/datasheet/disc/ds cheetah 15k 7.pdf.

[44] Eric Seppanen, Matthew T. O’Keefe, and David J. Lilja. High per-
formance solid state storage under Linux. In IEEE 26th Symposium

on Mass Storage Systems and Technologies (MSST) 2010, pages 1–12,
2010.

[45] Prashant Shenoy and Harrick M. Vin. Cello: A Disk Scheduling
Framework for Next Generation Operating Systems. Real-Time Syst.,
22(1/2):9–48, 2002.

[46] Storage-Performance-Council. OLTP Trace from UMass Trace Reposi-
tory. http://traces.cs.umass.edu/index.php/Storage/Storage.

[47] Super Talent. Super Talent 128GB UltraDrive ME SATA-II
25 MLC. http://www.supertalent.com/products/ssd detail.php?type=
UltraDrive%20ME.

[48] Transaction-Procesing-Perforamnce-Council. TPC-C, an OLTP Bench-
mark. http://www.tpc.org/tpcc/.

[49] Andrew Uselton. Deploying server-side file system monitoring at
NERSC. In CUG ’09: Proceedings of Cray User’s Group (CUG)

Meeting, 2009.
[50] Jianyong Zhang, Anand Sivasubramaniam, Hubertus Franke, Natarajan

Gautam, Yanyong Zhang, and Shailabh Nagar. Synthesizing representa-
tive I/O workloads for TPC-H. In HPCA ’04: Proceedings of the 10th

International Symposium on High Performance Computer Architecture,
page 142, Washington, DC, USA, 2004. IEEE Computer Society.

