
HybridStore: A Cost-Efficient, High-Performance
Storage System Combining SSDs and HDDs

Youngjae Kim†, Aayush Gupta‡, Bhuvan Urgaonkar‡, Piotr Berman‡, and Anand Sivasubramaniam‡

†Oak Ridge National Laboratory, ‡Pennsylvania State University

kimy1@ornl.gov, {axg354, bhuvan, berman, anand}@cse.psu.edu

Abstract—Unlike the use of DRAM for caching or buffering,
certain idiosyncrasies of NAND Flash-based solid-state drives
(SSDs) make their integration into existing systems non-trivial.
Flash memory suffers from limits on its reliability, is an order of
magnitude more expensive than the magnetic hard disk drives
(HDDs), and can sometimes be as slow as the HDD (due to
excessive garbage collection (GC) induced by high intensity of
random writes). Given these trade-offs between HDDs and SSDs
in terms of cost, performance, and lifetime, the current consensus
among several storage experts is to view SSDs not as a replace-
ment for HDD but rather as a complementary device within
the high-performance storage hierarchy. We design and evaluate
such a hybrid system called HybridStore to provide: (a) Hybrid-
Plan: improved capacity planning technique to administrators
with the overall goal of operating within cost-budgets and (b)
HybridDyn: improved performance/lifetime guarantees during
episodes of deviations from expected workloads through two
novel mechanisms: write-regulation and fragmentation busting. As
an illustrative example of HybridStore’s efficacy, HybridPlan is
able to find the most cost-effective storage configuration for a
large scale workload of Microsoft Research and suggest one MLC
SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM
HDDs only. HybridDyn is able to reduce the average response
time for an enterprise scale random-write dominant workload
by about 71% as compared to a HDD-based system.

I. INTRODUCTION

Hard disk drives (HDDs) have been the preferred media

for data storage in high-performance and enterprise-scale

storage systems for several decades. However, there are several

shortcomings inherent to HDDs. First, designers of HDDs are

finding it increasingly difficult to further improve the RPM

due to problems of dealing with the resulting increase in

power consumption and temperature [6]. Second, any further

improvement in storage density—another way to increase

the IDR—is increasingly harder to achieve and requires sig-

nificant technological breakthroughs such as perpendicular

recording [16]. Third, perhaps most serious, despite a variety

of techniques employing caching, pre-fetching, scheduling,

write-buffering, and those based on improving parallelism via

replication (e.g., RAID), the mechanical movement involved

in the operation of HDDs can severely limit the performance

that hard disk based systems are able to offer to workloads

with significant randomness and/or lack of locality.

Alongside improvements in HDD technology, significant

advances have also been made in various forms of solid-

state memory such as NAND flash, STT-RAM, phase-change

memory (PCM), and Ferroelectric RAM (FRAM). Solid-state

memory offers several advantages over hard disks: lower ac-

Media Access Time (µs) Lifetime Cost($/GB)

DRAM 0.9 N/A 125
SSD (< 45) Read , (< 200) Write 10K-1M Erase Cycles 25
HDD < 5500 MTTF=1.2Mhr 3

TABLE I: Performance, lifetime and cost comparison [13].

cess latencies for random requests, lower power consumption,

lack of noise, and higher robustness to vibrations and tem-

perature. In particular, recent improvements in the design and

performance of NAND flash memory (simply flash henceforth)

have resulted in its becoming popular in many embedded and

consumer devices.

Table I presents a comparison of the performance, lifetime,

and cost of representative DRAM, SSD, and HDD. There

are several important implications of how these properties

compare with each other. First, it is evident that there exists a

huge gap between the Cost/GB of HDDs and SSDs. Second,

unlike HDD, SSDs possess an asymmetry between the speeds

at which reads and writes may be performed. As a result,

the throughput a SSD offers for a write-dominant workload

is lower than for a read-dominant workload. Third, flash

technology restricts the locations on which writes may be

performed—a flash location must be erased before it can be

written—leading to the need for a garbage collector (GC)

for/within an SSD. Certain workload characteristics (in partic-

ular, the presence of randomness) increase the fragmentation

of data stored in flash memory, i.e., logically consecutive

sectors become spread over physically non-consecutive blocks

on flash. This exacerbates GC overheads, thereby significantly

slowing down the SSD [12]. Furthermore, this slowdown

is non-trivial to anticipate. A given set of random writes

may themselves experience good throughput, but increase

fragmentation, thereby degrading the performance of requests

(read or write) arriving much later in future. Finally, to further

complicate matters, unlike HDDs, SSDs have a lifetime that

is limited by the number of erases performed.

From the above description, it should be clear that SSDs are

fairly complex devices [1]. Their peculiar properties related to

cost, performance, and lifetime make it difficult for a storage

system designer to neatly fit them between HDD and DRAM.

As has been observed in other recent research, under certain

workload conditions, an SSD can perform worse than the

HDD [12] and in certain SSDs, read throughput can be slower

than write throughput for small random workload patterns [2].

The SSD’s lifetime limit calls for careful design to gainfully

utilize them in conjunction with HDDs in the enterprise. The

19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/MASCOTS.2011.64

227

degrading lifetime with increased write-intensity may result

in premature replacement of these devices, adding to deploy-

ment, procurement, and administrative costs. Finally, the low

throughput offered by SSDs to random write-dominated work-

loads, which are frequently encountered in enterprise-scale

systems [12], necessitates intelligent partitioning of data in

such hybrid environments while ensuring that the management

costs do not overwhelm the performance improvements.

This paper makes the following specific contributions.

• We propose a hybrid system containing HDDs and SSDs,

called HybridStore that exploits the complementary proper-

ties of these two media to provide improved performance

and service differentiation under a certain cost budget.

Besides this hardware architecture, HybridStore comprises:

(i) a capacity planner (HybridPlan henceforth) that makes

long-term resource provisioning decisions for the expected

workload; it is designed to optimize the cost of equipment

that needs to be procured to meet desired performance

and lifetime needs for the workload, and (ii) a dynamic

controller (HybridDyn henceforth) whose goal is to operate

the system in desirable performance/lifetime regimes in the

face of deviations at short time-scales in workload.

• We develop models that HybridPlan employs to find the

most economical storage configuration given devices and

workloads using Mixed Integer Linear Programming (ILP).

We expect HybridPlan to provide “rules-of-thumb” to ad-

ministrators of hybrid storage systems when making provi-

sioning decisions.

• We implement a simulator for HybridSim by combining

FlashSim [11] with Disksim [3]. An implementation of Hy-

bridDyn would have two components: (a) an enhanced block

device driver that employs online statistical performance and

lifetime models for SSD and a performance model for HDD

to dynamically partition incoming workload among the SSD

and HDD, and (b) two algorithms within the SSD controller

(specifically, within the FTL layer) called fragmentation

buster and write regulator.

The rest of this paper is organized as follows. Section II pro-

vides a bird’s eye-view of the overall HybridStore architecture

and how its two components, HybridPlan and HybridDyn, in-

teract and discuss relevant related work. In Section III and IV,

we describe the capacity planner and dynamic controller for

HybridStore. Then we extensively evaluate HybridPlan and

HybridDyn in Section V and VI respectively. Finally, we

present concluding remarks in Section VII.

II. OVERVIEW OF HYBRIDSTORE

Figure 1 depicts the interaction between various components

of HybridStore. Besides the storage hardware (HDDs, SSDs,

and I/O buses) shown in the figure, HybridStore consists of

two major software components. The first of these is a long-

term resource provisioner called HybridPlan. We envision Hy-

bridPlan to be a tool that would enable storage administrators

to provision both kinds of devices in cost-effective ways. The

decision-making of HybridPlan would occur at coarse time-

Estimators

Requirement
Lists:
-Available Budget
-Performance
...

Optimal
SSDs

Performance

Lifetime

Capacity
Planner

PerformancePredictor

Fragmentation Buster
(Front)

Dynamic Controller

Monitor

Dispat-
cher

FLASH

Client's Requests

 Capacity Planner

(HybridPlan)

Dynamic Controller

(HybirdDyn)

Clients

!"#$%&'()*$##&#+

Re-Capacity Planning

HybridPlan

P

R

F

Capacity Planning

Performance Predictor

Write Regulator

Dynamic Flushing
Events

Operating System

HybridPlan

Expected
lifetime

decreasing

Expecting
sustained
throughput

HybridPlan

Re-Capacity
Planning

R FPP P P P PPP P

Capacity
Planning

Dynamic Perf.
Predictor

Requests

Time

P

Short Term Dynamic Controller (HybridDyn)

Long Term Dynamic Planning (HybridPlan)

HybridDyn

Fragmentation
Buster (Back)

Migration

Write Regulator

SSDs HDDs

P

Fig. 1: Depiction of various components of HybridStore and how
they interact.

scales (months to years) corresponding to when procurement

and deployment decisions are made. HybridPlan employs a

ILP solver engine based on mathematical formulations to make

its provisioning decisions. HybridPlan is intended to cost-

effectively provision devices to allow HybridStore to (i) adhere

to the performance needs of hosted workloads and (ii) meet

useful lifetime requirements specified by the administrator,

under these workload assumptions.

The second component of HybridStore is a dynamic con-

troller (HybridDyn) that operates at significantly finer time-

scales (milliseconds to hours). HybridDyn employs statis-

tical models for performance of SSD and HDD to make

dynamic request partitioning decisions—these decisions are

made at request-level granularity (milliseconds to seconds).

Additionally, it employs novel techniques for data management

within the SSD (write regulation, and fragmentation busting

) that operate at the granularity of several minutes to hours.

Intuitively, the components of HybridDyn operate collectively

to take corrective data management decisions in HybridStore

to adhere to desired performance and lifetime needs despite

(i) provisioning errors made by HybridPlan and (ii) deviations

in workload characteristics and device behavior.

A. Related Work

In a recent work from Microsoft Research, Narayanan et

al. [15] examined the role of SSDs in enterprise storage

systems using a number of real data center traces available

to them. Their work explores the cost-benefit trade-offs of

various SSD and HDD configurations flash and disk capac-

ities/configurations for these real traces. However, there are

several key differences between our contributions. First, our

work, in particular HybridPlan, is much more general and can

be used to target any type of devices including STT-RAM and

228

PCM. In this work, we focus only on flash since it is the only

mature technology with concrete and meaningful numbers for

cost and performance. Second, we have developed a data

classification strategy which can be used to decide partitioning

of workloads amongst the chosen devices. Third, while they

admit that flash wear-out needs to be considered while using

it as a write buffer, they do not explore any specific ways of

doing this. We incorporate this in the form of lifetime budgets

in HybridPlan and our dynamic workload partitioning (Hy-

bridDyn) employs a variety of techniques to adhere to these

budgets. Finally, our study goes beyond capacity planning—

HybridDyn employs a combination of model-driven as well

as reactive techniques to operate our hybrid system under

given performance/lifetime budgets despite varying workloads.

Closest to our work is a recent paper by Guerra et al. [4] and

we consider it highly complementary with similar results and

insights. There are differences in our performance modeling

approaches. Additionally, we consider lifetime constraints and

include power costs in our formulation.

III. HYBRIDPLAN: CAPACITY PLANNING

A. Problem Formulation: Objective and Constraints

For the purpose of our study, we try and minimize the

deployment and operation cost (in terms of $) subject to

a combination of both performance and re-deployment con-

straints (due to lifetime of flash memory). We use IOPS as

a metric of HybridStore’s performance and term this metric

as the system’s Performance Budget. In addition, we need

to consider lifetime issues in the flash because the blocks

in SSDs become unreliable beyond 10K-1M erase cycles.

This poses a significant challenge for a system administrator

whose objective is to keep system re-deployment frequency

and costs under control. We capture these objectives in terms

of a Lifetime Budget (years) for the system, which is the time

between successive capacity planning decisions and equipment

procurement/installation.

We formulate our capacity planning problem as a means of

minimizing the cost of acquiring/installing HybridStore while

meeting the workload-specified performance (PerfBudget) and

useful lifetime budget (LifeBudget). CostInstallation indicates

the installing cost of devices. Apart from these, costs associ-

ated with power consumption, thermal consumption (cooling),

other maintenance and management activity form the recurring

costs denoted by CostRecurring . However, information in the

academic domain about the management/maintenance costs

of these devices (- HDDs and SSDs) is still sparse and

inconclusive. Furthermore, management costs vary with legal

contracts and are highly subjective. Hence, we only consider

electricity cost of operation due to power consumption as

recurring cost in this study. In sum, the total HybridStore

cost is the sum of these individual costs (CostHybridStore =

CostInstallation + CostRecurring).

B. Workload Requirements and Device Characteristics

We can extract workload requirements (space or bandwidth

requirement) by analyzing their IO traces.

1) Data Classification: We describe the data classification

methodology used to partition a workload into smaller subsets.

A workload can be characterized on the basis of certain

features such as total size, read/write ratio, request arrival

rate etc. Furthermore, each workload is a collection of sub-

workloads which exhibit similar features. Each of these sub-

workloads are called as classes. Classes help in determining

commonality within workload streams and are essential for

accurately mapping workloads to devices for an effective

capacity planning framework.

2) Finding workload attributes: The entire logical address

space of the workload is divided into fixed-size chunks, then

mapped to different classes. These fixed-size chunks are called

as records. We use 1MB as record size roughly corresponds to

the granularity of data prefetching done by HDDs/SSDs. As

described above, we need to find the attributes for describing

workloads. We capture temporal locality in workloads using

the total number of accesses to the records. We use average

read volume to describe the read/write ratio of each record.

Similarly, we use the median of request sizes to ascribe the

request size to each record. This parameter captures the spatial

locality in workloads. The reason for using median instead of

average request size is because our experimental evaluation

showed that median proved to be a better metric as it negated

the impact of outliers (very small or very big requests) and

helped in distributing records across classes appropriately.

Lastly, we use the total number of IOs in a record in the

workload as a measure of the number of IO arrivals to the

record over the entire life of the workload. Note that there may

be other attributes which can be used for data classification.

However, our empirical analysis binds these parameters to be

effective in partitioning workloads across classes.

3) Hierarchical data classification: Now that we have de-

fined the parameters for characterizing workloads, we develop

a mechanism to segregate records across classes. Temporal

locality of a class is defined using hot/cold regions. The

records which are accessed at least once in the workload

are considered hot whereas records which are never accessed

are treated as cold records. Classes are further divided based

on request sizes. Records with request size less than 16KB

are part of highly-random request classes whereas records

with request sizes greater than 64KB are part of highly-

sequential data classes. We also have intermediate data classes

depending on whether request sizes are greater than 32KB

(partially sequential) or not (partially random). We use the

lower(25th), middle(50th) and upper(75th) quartiles of the

overall distribution of total IOs across the records to further

segregate these records. The readers should note that all the

data points for creating classes as described above are based

on empirical evaluation as well as qualitative intuition. In this

study we have considered 33 data classes. The number of data

classes can be further optimized using merging and reduction

techniques and is part of our future work.

The device characteristics can be obtained not only from

their data sheets but also from performance tests.

229

Variable Description

General Variable

K$ Electricity Cost ($/KWH)
T Total trace time
LIFE Lifetime: The threshold (in years) for which provisioning

is being done

Device

i (i=1, 2, 3, ..., I) Device Type
Ci Capacity of device of type i
Ui Utilization of device of type i
RBi Read bandwidth of device of type i
WBi Write bandwidth of device of type i
ITi Initiation time of device of type i i.e the time for initiating

each IO (1/IOPS)
Pi Average Power consumption of device of type i
Li Lifetime of device of type i
D$i Cost of device of type i
E − UNITi Block size of a device of type i (only for SSDs)
W − UNITi Size of each write on a device of type i

Data Class

j (j=1, 2, 3, ..., J) Data Class
Sj Volume of data class j in terms of KB of records
IOj Total IO count of data class j
Rj Read volume of data class j (in KB)
Wj Write volume of data class j (in KB)

Decision Variable

xij Data of class j on yi devices of type i in KB
yi The number of devices of type i

TABLE II: Declaration of Variables.

C. HybridPlan Formulation

We formulate our provisioning problem as a Mixed Integer

Program. We describe a tool which finds the most cost-

effective storage configuration using available devices for the

provisioned workloads by reducing our optimization problem

to a Mixed ILP problem. Table II shows declaration of each

variable for problem formulation of HybridPlan.

As described earlier, we consider installation cost and

electricity cost for the total cost of the storage systems. Given

the properties of I different types of devices, the overall

installation cost of storage systems is highly dependent on the

numbers of each device type i ∈ I , and its individual device

cost is D$i: CostInstallation =
∑I

i=1 D$i × yi
Given the electricity cost per time (= K$) and the power

consumption of device type i (= P (i)), the energy consumption

of overall storage system (= E) over time followed by the

overall electricity cost of operation by the energy consumption

can be calculated as: EOperation =
∑I

i=1 yi ×
∫
t Pidt,

CostRecurring = K$ × EOperation

Putting these together, we get the dollar cost of in-

stalling storage system and its operation. The objective func-

tion to minimize is: CostHybridStore = CostInstallation +

CostRecurring =
∑I

i=1 D$i × yi + (K$ ×
∑I

i=1 yi ×
∫
t
Pidt)

The constraints as shown in Table III, are related to (i) data

groups, (ii) devices capacity, (iii) devices bandwidth, and (iv)

life- time of the SSD.

• Equation 1 is the capacity constraint for the data classes

and states that the sum of all the data belonging to class j

partitioned across all I devices should be the same as the

size of data class.

• Equation 2 is the capacity constraint for devices and states

that the sum of data belonging to J classes on devices of

type i should be less than the effective capacity of all the

yi devices.

• Equation 3 is the performance constraint for devices and

∑

i

xij = Sj (∀ j ∈ J) (1)

∑

j

xij ≤ (Ui × Ci) × yi (∀ i ∈ I) (2)

∑

j

Diffij × xij ≤ yi (∀ i ∈ I),

where Diffij =
(ITi × IOj +

Rj

RBi
+

Wj

WBi
)

(Sj × T)
(3)

Li ≥ LIFE (∀ i ∈ I) (4)
∑

j

(Wearij × LIFE × xij) ≤ Li × yi (∀ i ∈ SSDI),

where Wearij =
(Wj/Sj)

(α × E − UNITi)/T
(5)

TABLE III: Constraints of optimization formulation. Each equation
in the above constraints illustrates different constraints: The declara-
tion of variables used in the equations are described in Table II.

states that yi devices of type i should be capable of handling

the performance needs of J data classes placed on these

devices. Diffij refers to a difficulty factor which essentially

computes the read bandwidth, write bandwidth and IOPS

needs for data class j.

• Equation 4 is the lifetime constraint for devices and states

that each device of type i should last at least the specified

LIFE for which provisioning is being undertaken. Generally,

storage re-provisioning is carried out every 3-5 years in a

typical data center. HDDs are known to have more lifetime

than this specified value and hence, this constraint typically

degenerates into provisioning for SSDs which have limited

erase cycles.

• Equation 5 specifies this lifetime constraint for SSDs.

Wearij represents the wear-out factor for SSDs i.e. the

erase rate of blocks on a SSD. It is a function of the

rate at which writes are done on a SSD and the amount

of free space (pages) available after each erase. Amount

of free space reclaimed depends on the amount of frag-

mentation prevalent on a SSD and α is used to capture

this phenomenon. In the worst case, each block erase can

result in only 1 free page whereas in the best case, we can

reclaim all pages in a block. Thus the value of α varies

from (W − UNITi/E − UNITi) to 1.

IV. HYBRIDDYN: DYNAMIC CONTROLLER

HybridDyn consists of several components; a performance

prediction module (the core of HybridDyn), Fragmentation

Buster and Write Regulator.

A. Performance Prediction Model for SSD

The performance of the SSD is highly dependent on the

workload incident on it. Since out-of-place updates are per-

formed on the flash, GC resulting from fragmentation has an

important impact on response time. We build upon our learning

from capacity planning and try to develop short time-scale

performance models suitable for the HybridDyn. Although the

large-body of work on modelling disk performance is of use,

there are certain salient novel aspects of flash operation that

HybridDyn’s SSD model must capture. Perhaps the most im-

portant such feature is that unlike a disk, an SSD performance

230

model needs to incorporate a much longer history, since a

large enough number of random writes (that might themselves

experience good performance) might cause fragmentation over

time and the resulting GC invocation would then degrade the

performance of requests that arrive much later.

Again we start with identifying the crucial workload char-

acteristics which play a major role. We used a sliding window

of requests; this sliding window acts as a short term history

of requests and enable us to make fair short term decisions.

The main workload characteristics used in the model are:

(i) Average Read to write ratio of a window of requests,

(ii) Spatial locality—average sequentiality of a window of

requests, (iii) Request inter-arrival time, and (iv) Current

request size. Since this performance model needs to make

predictions about the performance of requests in the immediate

future, and as seen how performance depends on long-term

history, we need to capture and preserve certain aspects of the

current state of the flash device. However, this information

about state of the flash device might require information about

SSD internals that may not be feasible (e.g., in the SSD that

HybridStore assumes).

We developed a performance prediction model for SSDs;

we use the history of previous device service times of SSDs

as an indicator of flash device state. For simplicity, we use

the average of the service times (Savg). Moreover, we use

system response time (Rcurr) as a measure of flash device

performance. Thus, our multiple linear regression model can

be represented as

Rcurr = c0 + c1 ·Ww + c2 · Savg + ǫ, Savg =

(
∑w

j=1
S(j)

)

w
(6)

where ǫ is a small error and Ww is the workload during

window w. The coefficients (c0, c1, c2) are estimated during

a learning/training phase of our experiment which consists of

half of the workload.

B. Fragmentation Busting

Small random writes increase data fragmentation on flash,

thus exacerbating garbage collection overhead. We demon-

strate this impact in Figure 2 by alternating sequential and

small random write requests for synthetic workloads using

FlashSim [11]. Both “A” and “C” are regions with sequential

write activity. However, the presence of random writes in

region “B” leads to data fragmentation on flash, thus increasing

the average response time for requests in “C”. In order

to prevent such fragmented zones on flash, we develop a

flushing methodology called Fragmentation Busting. As shown

in Figure 2, flushing some portion of these small random

writes to disk (periodically moving 25% of random writes

for this experiment), we can reduce the variation in response

times and improve the performance.

Flushing requires co-operation from the device since the

effective mapping tables are present within the device and

are not exposed to outer systems. Thus, only a part of

the flushing mechanism, specifically the scheduler, can be

implemented with HybridDyn. In order to decide which data

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

 0 5 10 15 20 25 30 35 40 45 50A
v
e
ra

g
e
 F

la
s
h
 D

e
v
ic

e
 S

e
rv

ic
e
 T

im
e
 (

m
s
)

Request Count x 12000

S R S R S R S R

(R: Random Stream, S: Sequential Stream)

Flush Flush

A

B C

HybridPlan
HybridPlan+Fragmentation Buster

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

 0 5 10 15 20 25 30 35 40 45 50A
v
e
ra

g
e
 F

la
s
h
 D

e
v
ic

e
 S

e
rv

ic
e
 T

im
e
 (

m
s
)

Request Count x 12000

S R S R S R S R

(R: Random Stream, S: Sequential Stream)

Flush Flush

A

B C

Fig. 2: Performance degradation due to fragmentation on flash and
subsequent improvement with fragmentation buster. “Flush” indicates
periods of migration activity from flash to disk.

needs to be flushed, the device controller needs to pin the

pages causing this fragmentation. We maintain a LRU (Least

Recently Used) list of the valid pages using the logical page

number of the requests. This represents the cold data on flash

and its migration to disk does not have any major impact on

HybridStore’s performance. When the idle period kicks in,

the fragmentation buster directs the flash controller to start

flushing the data fragments. In this work we consider it a pure

background activity that does not interfere with the servicing

of requests and hence we ignore its possible degrading effects

on overall performance.

C. Write Regulation

One of the challenges in capacity planning is the unpre-

dictability in workloads. A prolonged and/or recurring period

of unanticipated random writes detrimentally impact on life-

time of flash. In this sub-section, we develop techniques for

handling sudden unanticipated bursts in requests.

The projections made by HybridPlan are dictated by normal

workload characteristics and are subject to violations during

operation. The write regulator monitors the erase rate of

blocks and comes into action if sustained violations (due to

unanticipated write activity) are observed. This is essential

to preserve the lifetime budget requirements. On detecting

violations, it starts to regulate the writes being sent to flash

by over-riding the decisions made by the performance model

in HybridDyn. Currently, we use a policy which randomly

picks the requests being sent to flash and diverts them to disk

instead.

V. EVALUATING HYBRIDPLAN

We developed the solver of HybridPlan using CPLEX,

a well-regarded Integer Linear Programming (ILP) solver

written in C. Also, we have written the trace analyser for

data classification in C. The source codes are less than 500

lines of code. The Solver execution time is extremely short

(in seconds), however the execution time of trace analyser for

data classification is dependent on the trace size and can run

into minutes for large traces. We use a variety of synthetic

and real-world enterprise scale storage traces to evaluate the

231

Index
Read Size Inter-Arrival I/O Bandwidth
(%) (KB) Time (ms) MB/s IOPs

Sequential Read
SR1 80 128 100 (L) 1.25 -
SR2 80 128 2 (M) 62.5 -
SR3 80 128 0.1 (H) 1,250 -

Random Read
RR1 80 4 100 (L) - 10
RR2 80 4 2 (M) - 500
RR3 80 4 0.1 (H) - 10,000

Sequential Write
SW1 20 128 100 (L) 1.25 -
SW2 20 128 2 (M) 62.5 -
SW3 20 128 0.1 (H) 1,250 -

Random Write
RW1 20 4 100 (L) - 10
RW2 20 4 2 (M) - 500
RW3 20 4 0.1 (H) - 10,000

TABLE IV: Description of synthetic workloads. The letter in
parentheses denotes intensity of request’s arrival rate, Low, Medium,
and High.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

SR1 15K HDD Only

SR2 SR3

N
u

m
b

e
r

o
f

D
e

v
ic

e
s
 (

#
)

7.2K HDD

15K HDD

7.2K HDD

M-SSD

7.2K HDD

M-SSD

15K RPM HDD
7.2K RPM HDD

SLC SSD
MLC SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

SR1 15K HDD Only

SR2 SR3

T
o

ta
l
C

o
s
t

($
)

15K RPM HDD (I)
7.2K RPM HDD (I)

SLC SSD (I)
MLC SSD (I)

15K RPM HDD (R)
7.2K RPM HDD (R)

SLC SSD (R)
MLC SSD (R)

(a) Devices (#) (b) Total Cost ($)
Fig. 3: Study the impact of I/O intensity in the read dominant
workloads. In (b) “I” and “R” respectively denote Installation Cost
and Recurring Cost.

effectiveness of our solver and the data classification process

in provisioning storage.

Table IV describes the characteristics of the synthetic

workloads generated using Disksim [3], a well-regarded disk

simulator capable of generating workloads based on certain

input parameters. The synthetic workloads are divided into 4

categories, Sequential Read (SR), Sequential Write (SW), Ran-

dom Read (RR) and Random Write (RW) with varying inter-

arrival times. We used exponential distribution for varying

the inter-arrival times and request sizes between subsequent

requests. These workloads help in capturing the variations in

the overall workload spectrum which is not possible using

a limited number of real-world traces. However, in order to

present the application of our solver in a realistic setting,

we use the MSR Cambridge traces [14] and MSR Enterprise

Traces [15].

We used four devices to evaluate HybridPlan. The details

of devices are described in Table V. Device utilization ratio

(ratio of amount of actual data stored in the device to its entire

storage capacity) needs to be properly set in capacity planning.

We set the expected utilization ratio of flash device as 50%

while that of hard disk drive is set as 80%. This is based on the

observation of Kgil et al. that garbage collection overhead in

flash dramatically increases if the utilization exceeds 50% [10].

Also, we have a similar observation in experiment using our

flash simulator. The expected disk utilization is set as 50% to

provide sufficient storage space. For hard disk drive, since it

is much cheaper in $/GB than flash device and most of cold

data (rarely accessed) will be stored in the hard disk drive by

HybridPlan, we set it as 80%. Moreover, we need to consider

device use duration in order to consider the recurring cost

of the storage system. We used this period as 5 years for our

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

SW1
SW2

SW3

N
u

m
b

e
r

o
f

D
e

v
ic

e
s
 (

#
)

7.2K HDD 7.2K HDD
M-SSD

7.2K HDD

S-SSD

15K RPM HDD
7.2K RPM HDD

SLC SSD
MLC SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

SW1
SW2

SW3

T
o

ta
l
C

o
s
t

($
)

15K RPM HDD (I)
7.2K RPM HDD (I)

SLC SSD (I)
MLC SSD (I)

15K RPM HDD (R)
7.2K RPM HDD (R)

SLC SSD (R)
MLC SSD (R)

(a) Devices (#) (b) Total Cost ($)

 0.1

 1

 10

 100

 1000

C
0

C
2

C
4

C
6

C
8

C
10

C
12

C
14

C
16

C
18

C
20

C
22

C
24

C
26

C
28

C
30

C
32

D
is

tr
ib

u
io

n
 (

G
B

) 7.2K RPM HDD
MLC SSD

(c) Data Class Dist. for SW2

 0.1

 1

 10

 100

 1000

C
0

C
2

C
4

C
6

C
8

C
10

C
12

C
14

C
16

C
18

C
20

C
22

C
24

C
26

C
28

C
30

C
32

D
is

tr
ib

u
io

n
 (

G
B

) 7.2K RPM HDD
SLC SSD

(d) Data Class Dist. for SW3
Fig. 4: Study the impact of I/O intensity in the write dominant
workloads. (c) and (d) show data class distributions in SW2 and
SW3 synthetic workloads.

evaluation. Note that 10 cents per kilowatt-hour (kWh) is used

to estimate electricity cost in our evaluation.

A. Impact of I/O Intensity

Figure 3 and 4 show the impact of change in request arrival

rate on the storage configurations provided by the solver. With

increased I/O intensity, the number of devices increases as

well as the type of devices needed to meet the I/O bandwidth

requirements changes.

1) Read dominant workloads: In Figure 3(a), SR1 (se-

quential read only workload with low I/O intensity) only

requires 2 slow HDDs. For fast 15K RPM HDDs, it needs

nine HDDs to satisfy the capacity demand, which requires

much higher cost than 7.2K RPM HDDs only (refer to the

cost plot in Figure 3(b). As we increase the I/O intensity,

we observe the need for MLC SSDs to satisfy the bandwidth

requirements with increased I/O intensity. The choice of only

slow HDD in SR1 clearly demonstrates that some workloads

merely require storage for capacity and IOPS requirements

for them are satisfied trivially. The same is corroborated by

Narayanan et al. [15]. However, we contend that even in these

situations our solver plays the critical role of determining the

right devices to meet the capacity needs. This is demonstrated

in Figure 3(b) (workload SR1) where choosing fast HDDs

to meet the storage needs instead of slow ones would have

resulted in 10 times increase in cost even though the system

would have met the bandwidth requirements and not been

over-provisioned. Furthermore, we observe that the recurring

costs (in terms of power consumption by the storage devices)

over the lifetime of the system are quite small as compared

with the procurement costs of the devices. Thus, we observe

that at least the direct power consumption by the devices

is quite minuscule compared with other costs. The readers

should note that we have not taken into account the indirect

232

Device Type Capacity (GB) Per-GB ($) Utilization Read (MB/s) Write (MB/s) Latency (ms) Erase (#) Power (W)

Seagate Cheetah [18] 15K HDD 146 1.80 0.8 171 171 3.6 - 12.92

Seagate Baracuda [17] 7.2K HDD 750 0.17 0.8 125 125 4.2 - 9.4

Intel X25-E [8] SLC SSD 32 11.96 0.5 230 200 0.125 100K 2

Intel X25-M [9] MLC SSD 80 3.22 0.5 220 80 0.25 10K 2

TABLE V: Storage device characteristics. SLC and MLC are denoted by Single-Level Cell and Multi-Level Cell respectively.

power consumption costs such as those due to cooling needs

and other storage appliances (e.g: RAID controllers, SAN

controllers etc).

2) Write dominant workloads: Similar to the read-dominant

workloads, we again observe the need for SSDs for write-

intensive workloads to service the IOPS needs of the work-

loads in Figure 4. However, there are certain subtle differences

between the outputs for two workload categories. For write-

dominant SW3, we observe the solver including an SLC SSD

instead of the MLC ones for its read-intensive counterpart

(SR3). This is because SLC SSDs are about 2.5 times faster

than the MLC ones (refer to Table V) and hence more suitable

for write-intensive workloads with high IOPS. Furthermore,

we also observe a sharp increase in the number of slow HDDs

with increased write intensity (SW3) in contrast to the rising

number of MLC SSDs (SR3). This can be attributed to the vast

$/GB difference between SLC SSDs and slow HDDs as shown

in Table V. Figure 4(c) and (d) show data class distributions

for write dominant workloads (SW2 and SW3)

B. Impact of Sequentiality

In this subsection, we explore the role of sequentiality on

the decision making process of the solver for iso-intensity

workloads. HDDs are known to perform better for sequential

workloads because of reduced seek overhead as compared

to the random workloads whereas SSDs are deemed to be

primarily random access devices with good performance for

both cases (especially for reads as random writes have been

shown to have poorer performance comparatively [12], [5]).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

SR2 RR2 SW3
RW3

D
e

v
ic

e
 (

#
)

7.2K HDD

M-SSD

7.2K
HDD

M-SSD

7.2K HDD

M-SSD

7.2K HDD

S-SSD

M-
SSD

15K RPM HDD
7.2K RPM HDD

SLC SSD
MLC SSD

 0

 500

 1000

 1500

 2000

 2500

SR2 RR2 SW3
SW3

T
o

ta
l
C

o
s
t

($
)

15K RPM HDD (I)
7.2K RPM HDD (I)

SLC SSD (I)
MLC SSD (I)

15K RPM HDD (R)
7.2K RPM HDD (R)

SLC SSD (R)
MLC SSD (R)

(a) Devices (#) (b) Total Cost ($)
Fig. 5: Study the impact of sequentiality in the workloads.

This is confirmed in Figure 5(a) where we clearly observe

the need for larger number of SSDs with increased randomness

in requests even though the arrival rates remain the same.

For read-dominant workloads, we see a 3-fold increase in

the number of MLC SSDs to meet the IOPS requirements.

This directly translates into a large increase in the overall

cost of the storage system (Figure 5(b)). As a consequence,

even though the performance constraints for both iso-intensity

sequential and random workloads are the same, the cost as well

as the type of devices required for provisioning storage are

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

RW3(A)
RW3(B)

SW3(A)
SW3(B)

N
u

m
b

e
r

o
f

D
e

v
ic

e
s
 (

#
)

7.2K
HDD

M-SSD

7.2K HDD

S-SSD
M-SSD

7.2K HDD
S-SSD

M-SSD

7.2K HDD

M-
SSD

15K RPM HDD
7.2K RPM HDD

SLC SSD
MLC SSD

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000

RW3(A)
RW3(B)

SW3(A)
SW3(B)

T
o

ta
l
C

o
s
t

($
)

15K RPM HDD (I)
7.2K RPM HDD (I)

SLC SSD (I)
MLC SSD (I)

15K RPM HDD (R)
7.2K RPM HDD (R)

SLC SSD (R)
MLC SSD (R)

(a) Devices (#) (b) Total Cost ($)
Fig. 6: Study the impact of lifetime constraints taken into account.
“A” and “B” in the parenthesis denote “without lifetime constraint”
and “with lifetime constraint” respectively.

quite different. Hence, as a storage administrator it is highly

advisable to increase the sequentiality of incoming workloads.

C. Impact of Lifetime Constraint

We have already established the importance of the lifetime

constraint in capacity provisioning since its a long term

decision made by a storage administrator. Figure 6 shows the

difference in decision making with and without the lifetime

constraint for both sequential and random write dominant

workloads. The readers should note that we have only used

write-intensive workloads because the lifetime of SSDs is

directly dependent on block erases which are caused by writes.

Without the lifetime constraint, we see a greater proportion of

SSDs being used than with the lifetime constraint enforced.

As shown in Figure 6(a) for SW3, an MLC SSD is used

along with 2 SLC SSDs when the lifetime constraint is

removed. However, as soon as the constraint is applied, the

solver outputs only 1 SLC SSD since MLC SSDs have lower

erase count (lower lifetime for same number of writes) than

SLC SSDs (Table V) and would not be suitable in such an

environment. Interestingly, the total number of devices as well

as the overall costs (Figure 6(b)) are much lower without

the lifetime constraint. This is because a relatively cheaper

MLC SSD is able to meet the IOPS needs whereas a large

number of slow HDDs are needed to meet the performance

guarantees when the lifetime constraint is obeyed. However,

the cheaper configuration with MLC SSD may not have the

needed longevity and the storage administrator might need to

re-provision prematurely, thus increasing the overall costs over

the initial estimated provisioning period.

D. HybridPlan Study with Real World Traces

We use the MSR Cambridge traces [14] and Microsoft

Exchange Server Traces [15] for realistic experiments. The

MSR Cambridge traces are composed of several sub-traces

that have been collected in different directory for 7 days.

Since each of these sub-traces show very low I/O bandwidth

demands, we consolidated the traces for aggregated bandwidth

taken into account. Since the traces are too huge to run in

233

0

1

10

100

1000

15K HDD Only

7.2K HDD Only

SLC SSD Only

MLC SSD Only

HybridStore

N
u

m
b

e
r

o
f

D
e

v
ic

e
s
 (

#
)

50

14

364

146

10

1

15K RPM HDD
7.2K RPM HDD

SLC SSD
MLC SSD

 1

 10

 100

 1000

 10000

 100000

 1e+06

15K HDD Only

7.2K HDD Only

SLC SSD Only

MLC SSD Only

HybridStore

T
o

ta
l
C

o
s
t

($
) 11.3K

2.8K
1.8K

576

139.4K

3.2K

37.7K

1.0K
1.3K
258412

7

15K HDD (I)
7.2K HDD (I)
SLC SSD (I)

MLC SSD (I)
15K HDD (R)
7.2K HDD (R)

SLC SSD (R)
MLC SSD (R)

(a) Devices (#) (b) Total Cost ($)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

C
0

C
2

C
4

C
6

C
8

C
10

C
12

C
14

C
16

C
18

C
20

C
22

C
24

C
26

C
28

C
30

C
32D

a
ta

 C
la

s
s
 D

is
tr

ib
u
ti
o
n
 (

G
B

)

7.2K RPM HDD MLC SSD

(c) Data Class Distribution
Fig. 7: Results of MSR Cambridge Trace.

the solver, the day of the highest I/O arrival rate – 6th day

trace has been run by the solver. Table VI summarizes the

characteristics of these real workloads used.

Workload
Size Read Request Size

IOPS
(TB) (%) (KB)

MSR Trace 5.7TB 68.1 23.32 823
Exchange Server 750GB 38.3 16.54 3,692

TABLE VI: Description of realistic traces.

1) Can SSDs replace HDDs?: We examine if SSDs can

actually replace HDDs at current price points and if not, then

at what price points does it become viable to use a SSD only

storage system. Consider a storage system composed of only

a single type of HDD. From the results in Figure 7(b), we

see that employing 7.2K RPM HDDs is more economically

efficient than employing 15K RPM HDDs in the MSR Cam-

bridge traces (Refer to Figure 7(b)). 7.2 K RPM HDD only

system requires lesser HDDs than when we consider 15K

RPM HDD only system (Refer Figure 7(a)). It is because I/O

bandwidth requirement of this trace is not much higher than

the I/O bandwidth that HDDs can provide. In Figure 7(c),

more than 99% data are classified into C32, a data class storing

data rarely accessed. In case of SSD only system, it requires

several hundreds of SSDs to satisfy the capacity requirement.

we see again that a bounding factor for decision-making of

HybridPlan is not I/O bandwidth requirement but storage

capacity requirement. A similar observation can be found

in [15]. that SSD only system is not an economically viable

solution under current market prices of devices. We have

similar observation for Microsoft Exchange Server Traces,

however, their results are not shown because of lack of pages.

2) Efficacy of HybridStore: From Figure 7(a) we see that

HybridPlan can find the most economic storage composition

for a workload, given the available device characteristics and

their prices. In Figure 7(a), HybridStore is composed of 10 x

7.2K RPM HDDs and 1 MLC SSD by HybridPlan. This is

much more cheaper configuration than any of single device

only systems See the total cost of HybridStore with those of

other storage configurations in Figure 7(b). Total cost saving

of HybridStore s about 85(%) compared to high-end HDD

only system. HybridStore of this trace is composed of 2 7.2K

RPM HDDs and 1 MLC SSD by HybridPlan. It also saves

around 69% compared to the 15K RPM HDD only system.

We see the data distribution of each data class for both traces

respectively in Figure 7(c).
3) What if device prices fluctuate?: To allow price fluctua-

tion, we varied the price of each device. Under current market

price, 15K RPM HDD and SLC SSD are relatively more

expensive than 7.2K RPM HDD and MLC SSD respectively,

Thus, we conducted hypothetical experiments by reducing the

device prices of 15K RPM HDD and SLC SSD from their

prices in Table V and see how the HybridPlan operates for the

Microsoft Exchange Server trace. Table VII show the results

of HybridPlan in case of price variation. We consider the

following cases for price variation of devices.

• “Base (Baseline)” is when we use current market prices for

devices as shown in Table V.

• “A” is for when the price of SLC SSD becomes half while

• “B” is for when the price of 15K RPM HDD becomes 35%

from their current market prices.

• “C” is for when both SLC SSD and 15K RPM HDD become

50% and 35% from the current market prices.

As clearly shown in Table VII, the price variation of each

device can impact on the decision of HybridPlan. In case

of “A”, we see that SLC SSD is employed instead of MLC

SSD. In case of “B”, the price-down, 50% of 15K RPM HDD

doesn’t change the result of HybridPlan from the baseline,

however, in cse of “C”, we see that it completely changes it

employs 1 15K RPM HDD in addition to 1 7.2K RPM HDD

and 1 MLC SSD.

HDD SSD

15K 7.2K SLC MLC

Base 0 2 0 1
A 0 2 1 0
B 0 2 0 1
C 1 1 0 1

TABLE VII: Price fluctuation
of device.

HDD SSD

15K 7.2K SLC MLC

Base 0 2 0 1
A 0 2 1 0
B 3 1 0 0
C 3 1 0 0

TABLE VIII: Recurring cost is
not taken into account.

4) Impact of recurring costs: We study its impact on

HybridPlan’s decision making in Table VIII when the recurring

cost is not considered in HybridPlan, comparing Figure VII

which includes the recurring cost along with the installation

cost, Table VIII which only includes the installation cost

clearly demonstrates that recurring cost can play a significant

role in the capacity planning process. In cases of “B” and “C”,

HybridPlan decides to use more 15K RPM HDDs that those

results in VII. It is primarily because the recurring cost due

to power consumption in HDDs is not taken into account by

the decision-making of HybridPlan.

VI. EVALUATING HYBRIDDYN

We develop a simulation framework for integrated disk and

flash based storage systems, called HybridSim. It is built by

234

integrating Disksim [3] (a well-regarded HDD simulator) and

SSD simulator [11]. HybridSim is able to simulate different

storage sub-system components including device drivers, con-

trollers, caches, flash devices, disks, and various interconnects.

It is capable of simulating multiple HDDs and SSDs. However,

for our evaluation we consider a simple system consisting of

a single HDD and SSD. Table IX illustrates the characteristics

of enterprise-scale workloads used in our evaluation.

Workloads
Request Size Read Sequentiality Inter-arrival

(KB) (%) (%) Time (ms)

Financial (OLTP) [19] 4.38 9.0 2.0 133.50

Cello99 [7] 5.03 35.0 1.0 41.01

TPC-H (OLAP) [20] 12.82 95.0 18.0 155.56

TABLE IX: Enterprise-Scale Workload Characteristics.

We evaluate the performance of prediction models in Hy-

bridDyn along with our novel mechanisms such as (i) frag-

mentation busting and (ii) write-regulation.

A. Dynamism-Aware Performance Prediction Model for SSD

We use the Financial trace and TPC-H workloads in Ta-

ble IX to validate our model. Our empirical evaluation suggests

a simpler multiple linear regression to be satisfactory. For

Financial trace, we observe the measured R-square value to be

98%. We compare the accuracy of our model with a simple

baseline—a last value-based prediction model for SSD which

uses the last service time value as its prediction. Figure 8

demonstrates the superior prediction quality of our model for

both TPC-H and Financial trace. Our model is able to predict

the state of the flash better than the last value predictor and

hence shows much smaller error rate.

-10

-5

 0

 5

 10

 300 320 340 360 380 400

R
e
s
id

u
a
ls

 (
in

 m
s
)

Request Count x 10

Dynanism-Aware Prediction Model
Last Value Prediction Model

-5

 0

 5

 300 320 340 360 380 400

R
e
s
id

u
a
ls

 (
in

 m
s
)

Request Count x 10

Dynanism-Aware Prediction Model
Last Value Prediction Model

(a) Financial (b) TPC-H
Fig. 8: Comparison of our dynamic SSD performance prediction
model with a simple last value-based prediction model.

B. Evaluation with Our Dynamism-aware Model

We integrate our SSD prediction model with an admittedly

simple disk performance predictor. We use a model based

on the average response time observed during the training

phase to predict disk performance. The dynamic controller

(HybridDyn) partitions write requests depending on the least

response times predicted by the SSD and HDD models.

HybridDyn maintains a table to store information about the

current location of data (device id) and updates it whenever

some data is migrated from one device to the other. Read

requests are always serviced from the device which contains

the data.

Figure 9(a) illustrates the performance of HybridStore in-

corporating the prediction models in HybridDyn with respect

to a disk-only and flash-only system for the random write

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 128+

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

System Response Time (ms), Log-scale

HDD Only
SSD Only

HybridStore

0.95

0.96

0.97

0.98

0.99

1.00

2 4 8 16 32 64

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 256 256+

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

System Response Time (ms), Log-scale

HDD Only
SSD Only

HybridStore

0.80

0.84

0.88

0.92

0.96

1.00

2 4 8 16 32

(a) Log-scale (b) Log-scale
Fig. 9: Performance of HybridStore compared with a disk-only and
a flash-only system. (a) and (b) show the CDF of system response
time for Financial Trace and Cello99.

dominant Financial trace. Although we observe good perfor-

mance from flash device for servicing most requests, but some

requests suffer from extensive GC overhead thus exhibiting

high response time on flash. Our prediction model is able to

move these requests to the disk and achieve better performance

for HybridStore. Moreover, HybridStore reduces the average

system response time by about 71% as compared to a disk-

only system. Similar performance improvement is observed

for Cello. However, the limitation of simplistic disk prediction

model is observed for Cello in Figure 9(b) where flash-only

system improves response time by about 20% as compared

to HybridStore. The disk prediction model (in HybridStore) is

unable to capture the high intensity of random writes resulting

in incorrect prediction by HybridDyn since some high latency

requests are now inevitably wrongly serviced from disk.

C. HybridDyn at Work: A Microscopic Look

Figure 10 shows HybridDyn at work for parts of the

financial trace. (a) compares the performance of hybrid system

along with dynamism-aware data partioner(dyn.) with a static

data partitioning policy and a SSD only system. Region B

represents a period of intense, large, sequential write requests

requiring GC on SSD and degrading the performance in a SSD

only system. In regions “A” and C”, the dynamism-aware data

partitioner is able to make better performance predictions than

a static policy, thus reducing the response time. (b) Hybrid-

Dyn observes degradation in SSD performance and invokes

Fragmentation buster (Frag. Buster) during idle periods, thus

providing sustained improved performance. (c) HybridDyn

observes violation in lifetime guarantees made by HybridPlan

and invokes the write regulator causing small degradation in

response time since some requests which could have been

serviced from flash are now sent to disk. However, this helps in

reducing the erase rate and meeting lifetime budget while still

meeting performance guarantees. Red25 and Red50 represent

different write-regulation policies.

Our dynamic data partitioner is able to intelligently partition

the incoming requests, thus improving the system response

time as compared to the static data partitioner (Figure 10-

(b)). The fragmentation buster is able to reduce the tail of

the CDF of response time (Figure 10-(b)), thus reducing

the number of requests that experience high response time.

We experiment with a write regulator that detects increased

235

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81R
a
ti
o
 o

f
R

e
q
u
e
s
ts

 S
e
rv

ic
e
 b

y
 F

la
s
h

0

2

4

6

8

10

12

14

16

1 21 41 61 81

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

H ybPlan+Dyn. H ybPlan+Static SSD Only

0

0.2

0.4

0.6

0.8

1

0 1 2 4 8 16 32 64 96 128

Response Time (ms)

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
il
it

y

HybPlan+Dyn.

HybPlan+Dyn.+Frag. 1.980.400.09HybPlan(Red50)

1.560.540.12HybPlan(Red25)

1.150.690.16HybPlan (Dyn.)

Average

System

Response

Time (ms)

Ratio of Requests

Serviced by Flash

(Flash/(Flash+Disk)

Average

Erase Rate

(Erase/Sec.)

Technique

1.980.400.09HybPlan(Red50)

1.560.540.12HybPlan(Red25)

1.150.690.16HybPlan (Dyn.)

Average

System

Response

Time (ms)

Ratio of Requests

Serviced by Flash

(Flash/(Flash+Disk)

Average

Erase Rate

(Erase/Sec.)

Technique
Dynamism-Aware

Static Partitioning

(a) (b) (c)

Event1: Degradation in flash device performance detected

Action1: Fragmentation buster invoked (Background)

Event2: Violation in lifetime budget detected

Action2: Write regulator invoked

0

1

2

3

4

5

6

2080 2090 2100

Request Count X 100

HybPlan+Dyn. HybPlan+Dyn.+Frag.Buster

0.9

0.92

0.94

0.96

0.98

1

1 2 4 8 16 32 64 96A B C

A B C

0

0.5

1

1.5

10 12 14
0

2

4

70 72 74

Static

0

0.5

1

1.5

2

2.5

3148 3168 3188 3208 3228 3248 3268

HybPlan+Dyn. !"Plan+Dyn.+Write Regulator(Red25)

Fig. 10: Various HybridDyn mechanisms acting in concert with HybridPlan. X-axis represents the progression of requests in Financial trace.

I/O activity and consistently monitors the expected flash life

through the lifetime model of HybridPlan.
We experiment with two models of a static write rate

regulator that pick 25% or 50% (uniformly at random) of the

requests being sent to flash and redirect them to HDD during

periods of higher-than-expected I/O intensity. Let us call these

policies Red25 and Red50, respectively. Figure 10-(c) shows

that we are able to reduce the flash block erase rate by about

25% while reducing the requests being serviced by flash by

about 21% using Red25. An additional 19% reduction in the

erase rate is observed using Red50. However, it results in an

increase of 0.83ms in average system response time. Thus,

the rate of write regulation must be chosen judiciously so as

to meet the performance budget while ensuring that lifetime

guarantees are satisfied.

VII. CONCLUDING REMARKS

This research was based on the emerging consensus among

several storage experts that in the foreseeable future, with

the exception of certain specialized domains, SSDs should

be used as complementary devices to HDDs in problems

in such a hybrid system employing HDDs and SSDs. We

developed an on-line capacity planner called HybridPlan that

used an ILP technique to provide storage administrators with

guidelines on provisioning a hybrid system in a cost-effective

manner. HybridPlan tool can be used for systems that employ

heterogeneous devices (not just limited to SSDs and HDDs).

We then developed a dynamic controller, HybridDyn, that used

shorter time-scale SSD and HDD models along with regulation

of write-rate to the SSD. We demonstrated the efficacy of

HybridDyn acting in concert with HybridPlan.

ACKNOWLEDGMENT

Most of this work was done during Youngjae Kim’s gradu-

ate studies at Penn State. We would like to thank the anony-

mous reviewers for their detailed comments which helped us

improve the quality of this paper. This research was funded in

part by NSF grant CCF-0811670.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for SSD performance. USENIX ATC,
2008.

[2] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic
characteristics and system implications of flash memory based solid state
drives. SIGMETRICS, 2009.

[3] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The DiskSim Simulation

Environment Version 3.0 Reference Manual, 2003.
[4] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami. Cost

effective storage using extent based dynamic tiering. FAST, 2011.
[5] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation

layer employing demand-based selective caching of page-level address
mappings. ASPLOS, 2009.

[6] S. Gurumurthi, A. Sivasubramaniam, and V. K. Natarajan. Disk drive
roadmap from the thermal perspective: A case for dynamic thermal
management. ISCA, 2005.

[7] HP-Labs. HP Labs. Tools and Traces. http://tesla.hpl.hp.com/public
software/.

[8] Intel. Intel X25-E Extreme SATA Solid-State Drive. http://www.intel.
com/design/flash/nand/extreme/index.htm.

[9] Intel. Intel X25-M and X18-M Mainstream SATA Solid-State Drives.
http://www.intel.com/design/flash/nand/mainstream/index.htm.

[10] T. Kgil, D. Roberts, and T. Mudge. Improving NAND flash based disk
caches. ISCA, 2008.

[11] Y. Kim, B. Taurus, A. Gupta, and B. Urgaonkar. Flashsim: A simulator
for NAND flash-based solid-state drives. SIMUL, 2009.

[12] S. Lee and B. Moon. Design of flash-based DBMS: An in-page logging
approach. SIGMOD, 2007.

[13] A. Leventhal. Flash Storage Memory. Communications of the ACM,
51(7):47–51, 2008.

[14] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. ACM Trans. Storage,
4(3):1–23, 2008.

[15] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.
Migrating server storage to SSDs: analysis of tradeoffs. EuroSys, 2009.

[16] N. Schirle and D. F. Lieu. History and trends in the development
of motorized spindles for hard disk drives. IEEE Transactions on
Magnetics, 32(3):1703–1708, May 1996.

[17] Seagate. Seagate Baracuda 7.2K. http://www.seagate.com/www/en-us/
products/desktops/barracuda hard drives/.

[18] Seagate. Seagate Cheetah 15K.5. http://www.seagate.com/www/en-us/
products/servers/cheetah/.

[19] Storage-Performance-Council. OLTP Trace from UMass Trace Reposi-
tory. http://traces.cs.umass.edu/index.php/Storage/Storage.

[20] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, and
S. Nagar. Synthesizing representative I/O workloads for TPC-H. HPCA,
2004.

236

