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Abstract—Understanding workload characteristics is critical
for optimizing and improving the performance of current systems
and software, and architecting new storage systems based on
observed workload patterns. In this paper, we characterize the
scientific workloads of the world’s fastest HPC (High Perfor-
mance Computing) storage cluster, Spider, at the Oak Ridge
Leadership Computing Facility (OLCF). Spider provides an
aggregate bandwidth of over 240 GB/s with over 10 petabytes of
RAID 6 formatted capacity. OLCFs flagship petascale simulation
platform, Jaguar, and other large HPC clusters, in total over 250
thousands compute cores, depend on Spider for their I/O needs.
We characterize the system utilization, the demands of reads
and writes, idle time, and the distribution of read requests to
write requests for the storage system observed over a period of 6
months. From this study we develop synthesized workloads and
we show that the read and write I/O bandwidth usage as well
as the inter-arrival time of requests can be modeled as a Pareto
distribution.

I. INTRODUCTION

The current processor technology is moving fast beyond the
era of multi-core towards many-core on-chip. The Intel 80 core
chip expected in 2011 is an attempt at many-core single chip
powered data centers. The growing processing power demands
the development of memory and I/O subsystems, and in partic-
ular disk-based storage systems, which are still a problem to be
solved [1], [2]. Recent advances in semiconductor technology
have led to the development of flash-based storage devices
that are fast replacing disk-based devices. Also, the growing
mismatch between the bandwidth requirements of many-core
architectures and that provisioned through a traditional disk-
based storage systems is a serious problem.

A comprehensive understanding of system workloads will
not only aid in architecting new storage systems with enhanced
performance and capabilities but also be very useful for storage
controller, network, and disk subsystem designers. A number
of studies have characterized and analyzed I/O workloads for
server systems. Zhang et. al., conducted a comprehensive study
on synthesizing enterprise workloads, such as TPC-H I/O
workloads [3]. Alma et. al., characterized disk-level traces of
enterprise system at three different levels of time granularities
- millisecond, hour, and lifetime of the trace [4]. Kavalanekar
et. al, characterized storage traces collected from various
production servers at Microsoft. These studies characterized
enterprise-scale I/O workloads [5]. However, there has been a
lack of research on the characterization and analysis of real

workloads from large scale computing systems, specifically
scientific workloads on HPC platforms. Recently, Carns et.
al., studied application behavior with respect to I/O activities
on a petascale storage system supporting IBM BlueGene/P
system [6]. Our work is complementary to their work; we
not only study storage level workloads but also synthesized
workloads for petascale storage system.

In this paper, we characterize the workload of Spider, a
Lustre parallel file system [7]. Spider hosts data for scientific
jobs running on the world’s fastest supercomputer, Jaguar,
and a host of other compute infrastructures at the Oak Ridge
Leadership Computing Facility (OLCF) at Oak Ridge National
Laboratory (ORNL). As a center-wide storage system, Spider
is a 10 PB storage system capable of providing a bandwidth
of 240GB/s to over 26,000 compute clients. Our analysis of
scientific workloads has two main contributions:

• Our study is based on real system data that provides useful
insight on the I/O activity as well as workload requirements,
in particular I/O bandwidth requirements. Our observation
and analysis will provide invaluable design guidelines to-
wards building large-scale storage systems for scientific
workloads.

• We also synthesize workloads, finding a mathematical func-
tion that can generate similar synthetic workloads. From the
results of our workload synthesis process, we found that
workload can be modeled as a Pareto distribution.

II. THE STORAGE CLUSTER

Spider is a Lustre-based storage cluster of 96 DDN
S2A9900 RAID controllers (henceforth refered to as con-
troller) providing an aggregate capacity of over 10 petabytes
from 13,440 1-terabyte SATA drives. The overall Spider archi-
tecture is illustrated in Figure 1. Each controller has 10 SAS
channels through which the backend disk drives are connected.
The drives are RAID 6 formatted in an 8+2 configuration
requiring disks to be connected to all the ten channels. In our
current configuration we connect fourteen disks per channel,
thereby each controller is provisioned with 14 tiers and overall
each couplet has 28 RAID 6 8+2 tiers. Each controller has
two dual-port 4x DDR IB HCAs for host side connectivity.
Access to the storage is through the 192 Lustre Object Storage
Servers (OSS) connected to the controllers over InfiniBand.
Each OSS is a Dell dual-socket quad-core server with 16
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Fig. 1: Spider storage system architecture

GB of memory. Four OSSs connect to a single couplet with
each OSS accessing 7 tiers. The OSSs are also configured
as failover pairs and each OSS connects to both controllers
in the couplet. The compute platforms connect to the storage
infrastructure over a multistage InfiniBand network, referred
to as SION (Scalable I/O network), connecting all OLCF
compute resources.

For characterizing workloads we collect I/O statistics from
the DDN S2A9000 RAID controllers. The controllers have a
custom API for querying performance and status information
over the network. A custom daemon utility [8] periodically
polls the controllers for data and stores the results in a MySQL
database. We collect bandwidth and input/output operations
per second (IOPS) for both read and write operations at 2
second intervals. We measure the actual I/O workload in
terms of the number of read/write request with the size of
the requests. The request size information is captured in
16KB intervals, with the smallest request less than 16KB and
the maximum being 4MB. The request size information is
sampled approximately every 60 seconds from the controller.
The controller maintains an aggregate count of the requests
serviced with respect to size from last system boot, and the
difference between two consecutive sampled values will be the
number of requests serviced during the time period.

III. CHARACTERIZING WORKLOADS

We studied the workloads of our storage cluster using the
data collected from 48 RAID controllers over a period of six
months (January 2010–June 2010). This partition is one half
of our total capacity (where the max bandwidth is 120GB/s).
and is representative of our overall workload. We characterize
the data in terms of the following system metrics.

• I/O bandwidth distribution, helps understand the I/O uti-
lization and requirements of our scientific workloads. Un-
derstanding workload patterns will help in architecting and
designing storage clusters as required by scientific applica-
tions:
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Fig. 2: Observed I/O bandwidth usage for a week in April, 2010.

• Read to write ratio is a measure of the read to write requests
observed in our storage cluster. This information can be
used to determine the amount of partitioned area required
for read caching or write buffering in a shared file cache
design.

• Request size distribution, which is essential in understanding
and optimizing device performance, and the overall filesys-
tem performance. The underlying device performance is
highly dependent on the size of read and write requests,
and correlating request size with bandwidth utilization will
help understand device characteristics.

• Inter-arrival time distribution provides us with an estimate
of time between requests, and can be used to characterize
the arrival rate of read and write requests.

• Idle time distribution provides an estimate of idle time
between bursts of requests. This information is useful for
initiating background services such as disk-scrubbing [9],
without interfering with the foreground service.

A. Bandwidth Distribution

Figure 2 shows the filesystem usage in terms of bandwidth
for a week in the month of April 2010. This is representative of
our normal usage patterns for a mix of scientific applications
on our compute clients. The bandwidth numbers are obtained
by summing the observed usage across 48 controllers. We have
observed a maximum of around 90GB/s for reads and around
65GB/s for writes. Also, we can infer from the plot that the
arrival patterns of I/O requests are bursty and the I/O demands
can be tremendously high for short periods of time.

From the six months of performance data, we generated the
CDF (Cumulative Distribution Function) plot of the bandwidth
provided by individual controllers. From the CDF plot we
extracted the 95th, 99th, and 100th(max) percentile of read/write
bandwidth, refer to Figure 3.

We observe a large difference between 95th and 99th per-
centiles and between 99th and 100th percentile values of the
bandwidth. For example, in controller 1 we observe 115MB/s
and 153MB/s for 95th percentiles of read and write bandwidth
respectively, and for the 99th percentile we observe 508MB/s
of read and 803MB/s of write bandwidth. 99th percentile of
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Fig. 3: Percentile distribution of the observed read and write bandwidth usage recorded at 48 controllers. The number on x-axis show the
no. of controller. ‘pct’ in the legend denotes Percentile.

read is 4.41 times higher than its 95th percentile while 99th

percentile of write is 5.24 times higher than its 95th percentile.
For 100th percentile, we observe that peak read bandwidth can
reach 2.7GB/s, and for the write it peaks at 1.6GB/s. This
bandwidth distribution is representative of a heavy long-tail
distribution, and we see these trends are observed across all
our controllers.

Interestingly, we observe the 95th and 99th percentile values
of the write bandwidth is higher than read bandwidth, however,
for the 100th percentile values the read bandwidth is higher
than write bandwidth.

B. Modeling I/O Bandwidth Distribution

We provide a mathematical model for the bandwidth usage
for synthesizing workloads. The gradient of the slope indicates
that the distribution is mostly likely to be a power law
distribution or a long tailed distribution. The Pareto model is
one of the simplest long tailed distribution models, and we use
it as the model for our bandwidth distribution. The cumulative
distribution function of a Pareto random variable is defined as

FX(x) =

{
1−

x
α

m

x
, for x ≥ xm

0, for x < xm

(1)

where xm is the minimum positive value for x and α is
referred to as the shape parameter.

Figure 4 plots the observed data and modeled data for
controller 1. Due to the page limit, we could only present the
results for one controller, which is representative of our overall
workloads. For the current read bandwidth distribution α is
1.24. The measure of fit is evaluated using the R2 goodness-
of-fit coefficient. It was found to be 0.98 for read bandwidth.
Similarly, the write bandwidth distribution was matched to a
Pareto model with a α value of 2.6, giving a fitness coefficient
of 0.99.
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Fig. 4: Pareto Model - I/O Bandwidth for controller 1.

C. Aggregate Bandwidth

We see the aggregate I/O bandwidth usage of multiple
controllers. Figure 5 shows the aggregate bandwidth of 48
controllers for different percentile values and is compared
against a sum of bandwidths individually observed from
48 controllers. From the figure, we see that the aggregate
bandwith is much lower than simple summation of individual
controller’s bandwidth at 99th and 100th percentiles. We infer
peak bandwidths of every controller is unlikely to happen at
the same time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

95th Read 95th Write 99th Read 99th Write 100th Read 100th Write

B
an

dw
id

th
 (

G
B

/s
)

Aggregate
Individual Sum

Fig. 5: Aggregate bandwidth. In the legend, aggregate denotes the
aggregate bandwidth of 48 controllers and individual denotes a sum
of bandwidths individually observed from 48 controllers.



D. Read to Write Ratio

Typically scientific storage systems are thought to be write
dominant; this could be attributed to the large number of
checkpoints for increased fault tolerance and journaling re-
quests. However in our observation we see a significantly high
percentage of read requests.
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Fig. 6: Percentage of write requests observed at the controllers. The
number on x-axis show the no. of controller.

Figure 6 presents the percentage of write requests with
respect to the total number of I/O requests in the system. The
plot is derived by calculating the total read and write requests
observed during the six month period. We observe that the
write requests are over 50 percent across all controllers,
the remainder being read requests. We see the difference is
marginal, this could be attributed to the center-wide shared
file system architecture of Spider, hosting an array of com-
putational resources such as Jaguar XT4/XT5, visualization
systems, and application development.

E. Request Size
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Fig. 7: Distribution of the request size. (a) Probability Density
Function (PDF) and (b) Cumulative Density Function (CDF).

Figure 7 shows the distribution of request sizes. In Fig-
ure 7(a), we observe three peak points at less then 16KB,
512KB and 1MB. These three request sizes account for more
than 95% of total requests. If we look at the details of
Figure 7(b), we observe that requests smaller than 16KB are
about 50% for writes while they are about 20% for reads.
Different from the observation in small requests, for mid-size
requests such as 512KB, we observe that the reads are more
than the writes by around two times. However, for 1MB we
see around 25% reads and 30% writes. Also, we observe large
requests of 2 to 4MB are only a small fraction of the total
requests.

The request sizes cluster near 512KB boundaries due to
an issue in the Linux block layer. DM-Multipath is a virtual
device driver that provides link redundancy and aggregation
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Fig. 8: Correlation between I/O bandwidth and request size.

features. To ensure it never sends requests that are too large
for the underlying devices, it uses the smallest maximum
request size from those devices. If all of those devices support
requests larger than 512KB, it uses that size as its maximum
request size. The lower lever devices are free to merge the
512KB into larger requests, but that generally requires queue
pressure, i.e., having more outstanding requests for the device
than it can process concurrently. Lustre tries to send 1MB
requests to storage when possible, thus providing frequent
merge opportunities under load.

F. Correlating Request Size and Bandwidth

In addition to understanding I/O bandwidth demands in
terms of read and write operations, it is important to investigate
the correlation of request size to I/O bandwidth. Figure 8 is a
scatter plot relating request size and the observed bandwidth
for write and read operations individually. Each point is
represented by a combination of (request size, bandwidth)
based on data collected from 2010-04-20 to 2010-05-24 on
controller 1. We used the 99th percentile of each X and Y value
in the plot. Since the sampling rate of bandwidth data was 2
seconds while that of request size distribution was around 60
seconds, each point shown in Figure 8 is a value obtained
from 99th percentile of each data every 60 seconds. Under the
assumption that larger request sizes are more likely to lead to
higher bandwidth during a time interval, we see that the peak
bandwidth would be attained at 1MB large requests.

G. Inter-arrival Time

In our analysis of inter-arrival time, every controller shows
very similar arrival patterns. In Figure 9, for read and write
we observe peaks at different inter-arrival time. For reads, 2ms
period has the highest probability measure, which implies that
we have a high read request rate with each request arriving
every 2ms. For writes, we observe requests are placed at 4ms
intervals. However, from Figure 9 we observe that about 90%
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Fig. 9: Distribution of inter-arrival time for three different controllers.
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Fig. 10: Pareto Model - Inter-arrival for controller 1.

of write requests have around 10-11ms of inter-arrival time
while that of read requests do have around 13-14ms of inter-
arrival time. Overall the arrival rates of read and write requests
are very intense.

Similar to the bandwidth distributions, we see that the
inter-arrival time distribution also follows a long tailed Pareto
distribution, as shown in Figure 10. The read inter-arrival
distribution can be modeled as a Pareto distribution with an
α of 1.17, similarly the write idle time distribution can be
modeled with an α of 1.72 respectively. The R2 goodness-
of-fit coefficient being 0.98 and 0.99 for read and write inter-
arrival distributions respectively.

H. Idle Time

We define idle time as the period when there is no user
I/O request and the controller performs background services
such as verify and rebuild operations. Our calculation is
limited by the 2 second sampling interval. Figure 11 shows
the distribution of idle time for reads and writes. Similarly
the inter-arrival time distribution, we present data for a few
controllers representative of our entire data set. In particular,
from Figure 11, we see that approximately 10% of read
requests have more than 10 seconds of idle time period
between requests while about 10% of write requests have more
than 16 seconds of idle time period. Moreover, we do observe
there are idle time periods of more than 20 seconds between
bursts of requests.

We see that the idle time distribution also follows a long
tailed Pareto model. Figure 12 plots the observed data and
modeled data with a correlation coefficient of 0.98 for both
read and write distributions for controller 1. The read idle time
distribution can be modeled as a Pareto distribution with an
α of 1.36, similarly the write idle time distribution can be
modeled with an α of 1.43 respectively.
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Fig. 11: Distribution of the idle time process.
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Fig. 12: Idle time - Pareto model.

IV. CONCLUSION AND FUTURE WORK

We characterized and analyzed the I/O workloads of a
leadership class storage cluster, Spider, from I/O stats data
collected over a period of 6 months. Our findings from
the workload characterization are summarized as: (i) max
bandwidth is much higher than 99th percentile bandwidth,
(ii) peak bandwidth occurs at 1MB of request size, (iii) read
requests are not small, (iv) inter-arrival time and bandwidth
usage follow a Pareto distribution.

We shall extend the study by collecting block-level and
RPC(remote procedure call) trace information from the OSS
servers. The analysis of the block level traces and RPC logs
will help infer individual applications behavior and help profile
applications I/O access patterns.
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