FlashSim: A Simulator for NAND Flash-based
Solid-State Drives

Youngjae Kii ~ Brendan Taurds Aayush Gupth Dragos Mihai Nistot Bhuvan Urgaonkar
Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
T{youkim, axg354, bhuvar@cse.psu.edd{tauras, nistof@psu.edu

Abstract enterprise-scale storage servers. NAND Flash memorysoffer
a number of benefits over the conventional hard disk drives
NAND Flash memory-based Solid-State Disks (SSDs) arfeHDDs). These benefits include lower power consumption,
becoming popular as the storage media in domains rangindighter weight, higher resilience to external shock, apili
from mobile laptops to enterprise-scale storage systemgo sustain hotter operating regimes, and faster access time
due to a number of benefits (e.g., lighter weights, fastefwith some exceptions that arise due to random writes).
access times, lower power consumption, higher resistancenlike HDDs, NAND flash memory based Solid-State Disks
to vibrations) they offer over the conventionally popular (SSDs) have no mechanical moving parts, such as a spindle
Hard Disk Drives (HDDs). While a number of well-regarded and voice-coil motors. Despite these benefits, a storage
simulation environments exist for HDDs, the same is notystem designer needs to carefully consider the use of SSDs
yet true for SSDs. This is due to SSDs having been in thkecause they also have some notable weaknesses. The main
storage market for relatively less time as well as the lack ofveaknesses of SSDs include a higher price ($/GB) than
information (hardware configuration and software methods)HDDs, writes being 4-5 times slower than reads, slowdown
about state-of-the-art SSDs that is publicly available. Wein device throughput during periods of garbage collection
describe the design and implementatiorF#shSim a sim- that are hastened by small, random writes [13], and limited
ulator aimed at filling this void in performance evaluation lifetime (10K-1M erase cycles per block) [4].
of emerging storage systems that employ SSDs. FlashSim
is an event-driven simulator that follows the objected-
oriented programming paradigm for modularity. We have
validated the performance of FlashSim against a numbe
of commercial SSDs for behavioral similarity. We have
also used FlashSim to compare the performance of SS
devices employing different Flash Translation .Layer (FTL)t employ combinations of SLC and MLC Flash chips in
schemes, and analyzed the energy consumption of dlﬁereg(}SDs Numerous techniques for efficient address translatio
FTL schemes in the SSD. FlashSim has been written t0) : q S
be inter-operable with the well-regarded DiskSim simulato ga_rbage collection, and Wear-!evgl|ng n the Flash Trans-
. . ; : “ - lation Layer (FTL) (more details in Section 2) have been
thus enabling the simulation of a variety of “hybrid” storag

systems employing combinations of SSDs and HDDs. Give?f(plored to_ 'mprove the_ pqrformance of the SSD devices
; X . and/or providing longer lifetimes.

the current interest in such hybrid systems as opposed to

systems with SSDs replacing HDDs (due to higher price), The design and implementation of cost efficient, reliable

we believe this to be an especially useful feature of FlashSi SSDs requires faithful and accurate evaluation test-beds f

We have made FlashSim freely available for download withevaluating new algorithms for specific software components

the hope that it would be of use to researchers exploring thésuch as those that constitute the FTL) within different

In order to overcome the limitations described above, a va-
riety of complementary approaches have been proposed. For
anmple, Multi-level Cell (MLC) technology gives higher
density and cost per GB than Single-level Cell (SLC) [18].
he downside of MLC is that read and write times of
LC are slower. Consequently, there are current attempts

design of SSD-based systems. hardware configurations of the SSD before implementing
them in the actual firmware. The fact that significant aspects
1. Introduction of the techniques employed within SSDs are unknown to

the pubic due to technology property issues further adds
Recently, NAND Flash memory has become the mainto urgency of having such a test-bed for SSD research.
storage media for embedded devices, such as PDAs anWiith this motivation, we have designed and developed a
music players. NAND Flash memory is how also being usedsimulation infrastructure. Here are the salient featumss$ a
in systems ranging from laptop and desktop computers taontributions of our work.

- Data Unit Size Access Time
e The components of an SSD are can be classified as thoSe| riash Type Page (Bytes) Block Page Page Block
j—iDat 00B

belonging to the hardware and the software categories. (Bytes) |READ (usWRITE (USERASE (ms)
The hardware component consists of a processing unit, I f;‘:;g Block |250142¢l 16 I((i-ggl:fiﬁﬂ nr I 22675 I 2 I
memory, bus, and Flash chips. The software component : '

(WhICh executes on the processing unit) consists of él'able 1:NAND Flash organization and access time comparison
FTL. The price of the SSD depends on the hardward®" Small-Block vs. Large-Block schemes [19].

configuration in the SSD and the software running on

the hardware, but there is a lack of test infrastructure inf _ q heck d i th
to examine cost-effective hardware configurations and=CC) information used to check data correctness, (i) the

software algorithms, in research environments outsigdogical page nurr_1_ber corresponding to the data stored in th_e
those affiliated with manufacturers of SSDs. In this work,data area, and (iii) page state. Each page on flash can be in

we provide an experimental test-bed to fill this void. one of three different states: @glid, (ii) invalid, and (iii)

« The few efforts that have attempted to provide the simulaffé€/érasedWhen no data has been written to a page, it is

tion/emulation infrastructure [12], [3] lack desirableate N the free/erased state. A write can be done only to a free
tures, especially an object-oriented design. It is typjcal page and changes its state to valid. An erase operation on an

difficult to understand and enhance these simulators. Come_ntire block of pages is required to revert the pages back to

pared to other existing/evolving SSD simulators, FIashSimth(? freeferased state. Out-of-place_ updates result ||a_|nert
is entirely objected-oriented. Our approach allows theWritten pages that are no longer valid. They are called idval

developers to easily understand, use, and extend olpages. Table 1 shows comparisons for different flash types

simulator. Furthermore, our simulator has been integratelfl 1rms of access time and data unit size [19].
with the well-regarded and popular DiskSim simulator [7])

and validated for behavioral similarity with real SSD 2.2. The Flash Translation Layer

devices.

e Energy consumption in SSDs is surprisingly higher than The FTL is mainly composed of three software com-
initially expected; energy consumption is approximatelyPonents (address translation, garbage collector, and-wear
the same as mobile HDDs [16]. Thus, it is importantleveler), but the FTL is generally thought of as the address
to understand the causes of the energy consumption. Wéanslation layer. The address translation layer thastedes
have analyzed the energy consumption in SSDs with outogical addresses from the file system into physical adeeess
simulator by Considering a Simp]e energy model inc|udingon flash devices helps in emulating flash as a normal block

various FTL schemes with real traces (Financial and TPCdevice; the layer performs out-of-place updates whichiin tu
H). help to hide the erase operation in the flash memory. The

mapping table is stored in a small, fast on-board SSD RAM.

The rESttOIr:hT) paper '? ﬁrgﬁgzgld aﬁ follows: IT Sﬁcu?n 2The garbage collector is in charge of collecting invalid ggg
we present the basics o asnh memory technology,, . eate free space in the flash memory. Since the lifetime of

we pre_sent th? design of FlashSim and 'tTQ‘ |mplementat|q|ﬂash memory is limited by the number of erase operations
details in Section 3. We present the experimental results

L : e

. . .) . n its cells (each memory cell typically has a lifetime of

\/Sveelczzrr]ni{a\r/i\;ee d(;iiu\?vsorrlflgfs ;‘.’;);ESIQ ifgrt_fn di?éclt:i?r?”iyn,loK_lM erase operations [6]), the wear-leveler elongdtes t
lifetime of flash by maintaining the same level of wear for

Section 6. every block in the flash memory.
2. Background 2.3. State-of-The-Art FTL Scheme
2.1. Basics of NAND Flash Memory Technology FTLs can be implemented at different granularities of how

large an address space a single entry in the mapping table
The most popular flash type for storage media is NANDcaptures. Page-based FTLs map the logical page number of
flash memory due to higher density and lower cost than NORhe request sent to the device from the upper layers, such as
flash. NAND flash provides three different operations: readfile system, to any physical page on flash. Such translation
write, and erase. Each operation requres different operati requires a large mapping table to be stored in RAM. At
time and granularity: Erase operations are performed at ththe other extreme, a block-level FTL scheme only translates
granularity of ablock that is composed of multiplpages the logical block number into a physical block number; the
A page is the granularity at which reads and writes are perogical page number offset within the block remains fixed,
formed. In addition to its data area, a page contains a smathus reducing the mapping table. To address the shortcom-
spare Out-of-Band area (OOB) which is used for storing angs of the above two extreme mapping schemes, researchers
variety of information including: (i) Error Correction Ced have come up with a variety of alternatives. Although many

schemes have been proposed [5], [10], [14], [9], [15], they Controler P
share one fundamental design principle. Each of these is e % _ [t | || Loveer | | Catector
a hybrid between page-level and block-level schemes. They ‘ :

logically partition their blocks into two groupData Blocks e R ; r"k*p;;ka;;*k”‘,
. . " - |
and Log/Update BlocksData blocks form the majority and 1 o - v - E i oe oo |t
are mapped using the block-level mapping scheme, whereas | | | [Regser]| | [Regsier] [Rogsier]| | [Rogiter] i 3 E
. . |
- Block Block Block Block [|
the log blocks are mapped using a page-level mapping style. 1 : i E
| : : : |
| - - . I i
- H age -a e age age [|
3. SSD Simulator Design | - rrrrr - - rrrrr (el | | e |
| : : : ‘ !
X i) 1 Block Block Block Block : i E
We have designed and implemented a SSD simulator that | L ;
. | : : H H
is based on the hardware diagram in Figure 1. The first | L E
version of our SSD simulator focused on software compo- 1 I [O o
I} L |

nents (for instance, FTL schemes, garbage collection, and

wear-leveling); we considered a simplified hardware model_]]]
that simulated a singl®lane with a simplified channel Figure 1: Hardware diagram for the SSD Simulator. Ellipses
implementation. in between two of the same components indicate where

Since this version of our simulator was limited by a MOre of the same components may be added. Only the full

simplified hardware model and not easy to extend due tGomPonent break-down of the left-most package is shown.

a highly coupled implementation with DiskSim, we re-

designed and re-implemented the simulator with an object-

oriented approach. Our new simulator is entirely event- .])

driven and written in a familiar language, C++; we achieve Merge operations may take place will be at the die level.
modularity, low coupling, and high cohesion. Our hardware- The corresponding event object is updated with the merge

level diagram is shown in Figure 1. delay time. _ _
e Plane: Planes are comprised of blocks and provide a

single page-sized register to buffer page data for bus
transfers. The register is also used as a buffer for merge
operations inside planes. The corresponding event object

3.1. Object-Oriented Component Design

The simulator was written as a single-threaded program is updated with merge delavs for merge onerations and
in C++ for simplicity. C++ could provide a comprehensible IS up Wi 9 y ge operafl

. . . considers register delays.
object-oriented scheme where each class instance repre-) : : .
e Block: A block is comprised of pages and is the smallest

sented a hardware or software component. The UML di- N

agram in Figure 7 of the Appendix contains all C++ classes component that can_bg individually erased. When a bl(.)Ck

used by the SSD simulator. FlashSim is integrated with IS eras_ed, all pagesiin it are erased anq can then be wrl'gten

Disksim’s C code. to again. The cor_respondmg event object is updated _vv!th

the erase delay time. A block can only be erased a finite
number of times because of reliability constraints [4].

e Page: Each page maintains its state and updates event
objects with the read and write delays of the given flash
technology. Page states include free/empty after erasure,
valid after a successful write, and invalid after being

e SSD: The SSD class serves to provide an interface to copied to a new location in a merge operation.

Disksim and provide as a single class to instantiate ime Controller: The controller class receives event objects
order to create the SSD simulator module. The SSD class from the SSD and consults the FTL regarding how to
creates event objects to wrap the Disksioneq event handle each event. The controller sends the virtual data
structures and returns the event time to disksim. for events to the RAM for buffering before sending the

e Package: The package class represents a group of flash event object to the bus.
dies that share a bus channel. The package class allocalesRAM: The RAM class calculates how long it takes to read
its dies in its constructor and connects the dies to a bus or write data to itself. The RAM buffers virtual event data
channel. The package also facilitates addressing. for the controller to send across the bus.

e Die: A die is a single flash memory chip that is organizede Bus: The bus class has a number of channels that are each
into a set of planes. Dies are connected to bus channels, shared by all the dies in a package. The bus examines
but individual planes contained in the die buffer bus addresses in events and passes the event object on to the
transfers. In future development, the highest level at twvhic proper channel.

3.2. Component Design

3.2.1. Hardware Components. The classes in the SSD
simulator for hardware components are as follows:

3.2.2. Software Components. The classes in the SSD sim-
ulator for software components are as follows:

B [Cwl Ra Tcu] Data | 3.3. Bus Channel Interleaving

R2 [cn] Rd] Wait [cun] Data]
R3 | Es‘;g:‘t‘ Figure 2 shows the interleaving of processing events for
(a) Read Interleaving one bus channel. As per Figure 1, each bus channel connects
to several flash dies that are grouped in a package. Each bus
Rt [cti] Data | wr | channel functions independently and in parallel; openatio
R2 [Cul] Data] Wr | on different channels are not dependent on each other.
(b) Write Interleaving The read interleaving for one bus channel is shown in

Figure 2-(a). First, the control time signifies when the bus
channel is locked for control signals that request a flash
die to prepare data from a specific page. Next, the flash die
processes the request for the data to be read. The bus channel
is free to handle other requests at this time.

Channel: Channels must schedule usage for events and Finally, the bus channel is locked for control signals that
update the event time values. Each channel keeps request the flash die to send data from a specific page and
scheduling table that keeps track of channel usage, ansending the data. The interesting part of this figure is thee bu
new events are scheduled at the next available free timehannel idle time period between the end of the control time
slot after dependencies have been met. The schedulifgr request two R2) and the beginning of the second control
table size is synonymous to queue length. time period for request ongrf). A control time period for
request three cannot fit; request thrég Y must be delayed
until after request two finishes.

The write for one bus channel is shown in Figure2-(b).
First, the bus channel must be locked for control signals to
inform the proper flash die that it will receive data. Second,
Event: First, the event class keeps track of its correspondthe bus remains locked to send the data. Finally, the flash
ing Disksimioreq_eventstructure. Second, the event classdie writes the data; the bus channel is free to handle other
holds methods and attributes to do all the record-keepingequests at this time. Since write requests only require one
for the SSD simulator’s state, including SSD addressescontiguous time block of bus channel time, write request
Simulator objects pass event class objects and update ti@ppen in FIFO.
event objects statistics.

Address: Addresses are comprised of a separate field fOE3 4. Event Elow

each hardware address level from the package down to" ™

the page. We provide an address class insteadstriuat

to help make a clear interface to assign and validate The SSD simulator is instantiated as a SSD object de-
addresses. signed to accepioreq_eventstructures from Disksim. Its
FTL: The FTL provides address translation from logical functionality is described in detail in Algorithm 1. The SSD
addresses to physical addresses. It determines how tmntroller uses the FTL software module to create a list of
process events that involve many pages by producing avents for a multi-page request. The controller issues each
list of single-page events to be processed in-order by thevent in the list to the data hardware through corresponding
controller. The FTL is responsible for taking advantage ofbus channels. The bus channels handle the scheduling and
hardware parallelism for performance. The FTL also hadnterleaving of events for the controller; this simplifiegro

a wear leveler and garbage collector to facilitate its taskscontroller implementation.

Wear Leveler: The wear leveler class helps spread the In Algorithm 2, events continue through the package and
block erasures over all blocks in the SSD. The wear levare handled starting at the die level, merge events can be
eler is responsible for keeping as many blocks functionahandled inside flash dies or planes. Erase events are handled
for as long as possible because blocks of pages can onlyside blocks, and read and write events are handled inside
be erased for reuse a finite number of times. pages.

Garbage Collector: The garbage collector is activated The SSD and package components are included in the
when a write request cannot be satisfied because theall stack after consulting the bus channel because these
selected block is not writable or there is not enough freecomponents also keep track of wear statistics. Wear statist
space in the selected block. The garbage collector seeks tored in the SSD, package, die, plane, and block are updated

merge partially-used blocks and free up blocks by erasingvery time an erase event occurs to keep a simple interface
them. Any other algorithm for GC can also be simulated.yith lower algorithmic complexity for the FTL.

Figure 2: Interleaving for read/write requests

Input: Disksim’s I/O Request Structurédreq_event)
Output: Device Service Time
foreach ioreq_event do
begin SSD processioreq_event
wrap in event object;
begin controller, FT L processevent
consultwearleveler and garbagecollector;
create page-sized list efvent objects;
foreach e in event_list do
begin SSD, bus, channel processe
lock for next available transfer time;
€time < €time + channel_delay;

end
Packagef);
end
if etype = erase then
updateSS D wear stats;
end
begin inform bus, channel: e finished

channel update scheduling table for event dependencigs;

end
end end
end

Algorithm 1. SSD simulator functionality

Input: Event object €)
Output: NULL
begin package, die processe
/+* Merge event e in die */
if Ctype = meTgeandeaddr.plane # €addr_merge.plane then
foreach valid page v in eqqdr.plock © dO
foreach emptypage ¢ in €addr_merge.block ¥ dO
t — v;
Vstate — nvalid;
tstate < valid,

€time — €time + die_merge_delay;
end
end
/+ Merge event e in plane */
else plane processe
planercgister < €datas
if etype = merge then
foreach valid page v in €addr.plock © dO
foreach emptypage t in eaddr_merge.block y dO
t — v;

Vstate — tnvalid,
tstate — valid;

€time < €time + die_merge_delay;
end
end
| * etype = Tead Of write Or erase */
else
begin block processe
if etype = erase then
for eachpage in block = do
pagestate < empty;
end
€time < €time + erase_delay;
update wear stats;
end
[* etype = readorwrite */
else page processe
if etype = read then
€time < €time + read_delay;
end
eseif eyype = write then
€time < €time + write_delay,;
end
end
end
if etype = erase then
updateplane, die, package wear stats;
end
end

Algorithm 2: Package (event object) - SSD hardware

functionality inside a package. This function is being
called in Algorithm 1.

4. Experimental Results

We validated our simulator by comparing it to real SSDs
for behavioral similarity; we compared the performance of
different FTL schemes for realistic workload traces. Weduse
the simplified version of the simulator that simulates alging
Plane with with a simplified channel implementation for
various software implementations, such as the FTL, garbage
collector, and wear-leveler. More thorough evaluatiort tha
also considers interleaving with parallelism effects ift le
for future work.

4.1. Evaluation Setup

The specifications available for commercial SSDs are
insufficient for modeling them accurately. For example, the
memory cache size for FTL mappings and the exact FTL
scheme used are not disclosed. Hence, it is difficult to
simulate these commercial devices. We made assumptions
for flash devices as described in Table 2 and configured our
simulator accordingly. Table 3 presents the salient festur
of our workloads.

[Default simulation parameters |

Flash Type Large Block i
Page (Data) 2KB [Real SSD Device |
Page (OOB) 64B [Real SSD1I [Real SSD 2 |
Block (128KB+4KB) MSP-7000 FSD32GB25M
Page Read (130.9 us, 4.72ud) MTron Super Talent
Page Write (405.9 us, 38.04uJ 25in 25in
Block Erase | (1.5 ms, 527.68uJ) 4-way SLC SLC
Interface SATA Read: 120 MB/s 60 MB/s
GC Yes Write: 90 MB/s 45 MB/s
Wear-leveling Implicit/Explicit
FTL Type Page/DFTL

Table 2: Simulation parameters and real SSD device ob-
served specifications.

Avg. Req. Read | Seq. | Avg. Req. Inter- | Simulated

Workloads ‘ Size (KB) | (%) | (%) | arrival Time (ms) | Time (sec)

[Financial [17] 438 [9.0 [2.0] 133.50 43,712 |
[TPCH[20] | 12.82 | 95.0 | 18.0 | 155.56 | 37,058 |

Table 3: Enterprise-scale workload characteristics.

4.2. Validation of SSD Simulator

Using the parameters from Table 2, we validated our
flash device simulator against commercial SSDs (MTron’s
SSD [1] and Super-Talent's SSD [2]) foehavioral similar-
ity. For this purpose, we sent raw I/O requests to real SSDs
and similar traces to our flash device simulator to measure
device performance. As shown in Figure 3, our simulator
is able to capture the performance trends exhibited by the
real SSDs. With increasing sequentiality of writes (Figd+e
(a)), the performance of real SSDs improved, and our flash

Write Read 20% Sequentiality, 80% Writes 80% Sequentiality, 20% Writes
20.00 1

£ Feal SSD1 & g s Real SSD1 & 00 ’ o 5

E 1600 FlashSim2 E 400 FlashSim2 - 2 080 / Z 080 s

2 14.00 A 8 2 J 100 E

S 1200 b S s00 8 o060 ose 8 os0

o - .. [= - f = -

a
§ 10.00 x x " § "}, 4 0% %
. 2 2

£ 800 & o e £ 200 S o40f [n/ 0% g 040

2 e 2 El I 0s0 LI =

G 6.00 e A x 23 £ /] 5 o 2 8w s £

~ a 5 / p 5 1

D 400 2 - e a 2 100 : O 020 [/ goras Real SSD1 -4 O 020 (f Real SSD1 &

<) B o N > Real SSD2 —o— Real SSD2 —o—

© 200 B o - I FlashSim1 —&-— FlashSim1 &

:% 000 =g :% 000 - < - ° 000& FlashSim2_—>x— 000 FlashSim2 —-x-—
00 02 04 06 08 10 00 02 04 06 08 10 0 1 2 4 8 16 32 64 9 128128+ 0 1 2 4 8 16 32 64 96 128128+
Sequentiality (in Block Accesses) Sequentiality (in Block Accesses) Svstem Response Time (ms), Loa-scale Svstem Response Time (ms). Loa-scale

(a) Write Behavior (b) Read Behavior (c) Random Write Domir@) Sequential Read Dominant

Figure 3: Validation of our SSD Simulator. Note that in thgdads, Real SSD1, Real SSD2, FlashSim1, and FlashSim2
denote Mtron’s SSD, SuperTalent's SSD, a SSD using a pagedb@lL, and a SSD using DFTL.

simulator with various FTLs was able to provide similar [Ft o+ b R

characteristics. When examining reads (Figure 3-(b)), rea, ox > 080 %

SSDs showed much less variation; the same was observedl s 2w =

with our simulator. With a high degree of randomness ing ol S e

writes (80% random in Figure 3-(c)), real SSDs demon-£ ** ol g oo -

strated long-tailed response time distribution (due tgdar 3 ,,, e e | O o P ——

GC overhead); our simulator exhibited a similar trend. i i

0.00 Page-based FTL —s— 0.00 Page-based FTL —s—
0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+

| . Response Time (ms) Response Time (ms)

4.3. Evaluation (a) Financial Trace (b) TPC-H

We conducted a comparison of performance and energ?igure 4: Cumulative Distribution Function of the average
consumption according to different FTL schemes, includ-system response time for different FTL schemes.
ing a page-based FTL, FAST [14], and DFTL [8]. We
assumed the memory was just sufficient to hold the addres
translations for FAST. Since the actual memory size is N0 || EErsia
disclosed by device manufacturers, our estimate represer /B i wio
the minimum memory required for the functioning of a o Pagerass”
typical hybrid FTL. We allocated extra space (approximatel ecpuee
3% of the total active region [9]) for use as log-buffers by
the hybrid FTL (FAST).

IS
S

Il Page read
Il Page write

[l Address Translation (Read)
[Address Translation (Write)
[GC Block erase

[C]GC Page read

[]GC Page write

W
S

N
=]

N
=)

Energy Consumption (J)
Energy Consumption (J)

0 0
Page-based DFTL FAST Page-based DFTL FAST

4.3.1. Performance Analysis. The Cumulative Distribution (a) Financial Trace (b) TPC-H

Function of the average system response time for different_ i _

workloads is shown in Figure 4. DFTL is able to closely Figure S: Energy consumption by different FTL schemes.
match the performance of the page-based FTL for the Finan-

cial trace. In comparison with the page-based FTL, DFTL

reduces the total number of block erases as well as the extda3.2. Analysis of Energy Consumption. Power consump-
page read/write operations by about 3 times. This results ition of the flash memory in the SSD may not be significant
improved device service times and shorter queuing delaysyhen compared to other components (CPU and Memory),
this improvement in turn improves the overall 1/0 systembut as shown in Table 2, erase operations consume signif-
response time by about 78% as compared to FAST. For readcant power. Unlike individual read and write operations,
oriented workloads, DFTL incurs a larger additional addres erase operations have a greater impact on the overall SSD’s
translation overhead, and its performance deviates fram thenergy consumption, and the number of erase operations
page-based FTL. When considering TPC-H (in Figure 4(b))for a given workload varies according to the current FTL
however, FAST exhibits &ng tail primarily because of the scheme. Figure 5 shows the energy consumption by op-
expensive full merges and the consequent high latencies seerations for different FTL scheme in the Financial trace
by requests in the I/O driver queue. Hence, even thougland TPC-H. The Financial trace is mostly random-write-
FAST services about 95% of the requests faster, it sufferdominant, while TPC-H is read-dominant (see Table 3).
from long latencies in the remaining requests, resulting in Thus, the energy consumption for the Financial trace is much
higher average system response time than DFTL. higher than that for TPC-H due to the power consumed

. s 5. Related Work

°
3

Search count

Other research has been conducted to develop a simulator
for NAND flash-based SSDs [3], [12]. Microsoft Research’s
simulator [3] is one of the first available SSD simulators;
however, it is highly coupled with DiskSim. The strengths
of their simulator include the implementation of parateti
effects across multiple channels and interleaving across
T T R T different components within a single plane, but only a page-

Fato ol search operatons 0 complete inear seareh based FTL scheme is available. J. Lee et. al have developed

Figure 6: Tradeoff between performance and search opef Simple flash based SSD simulator [12]. This simulator is a
ation energy consumption. This experiment has been COI.F_tand-alone _5|mulat0r that is limited by a single FTL scheme
ducted with DFTL for the Financial trace. We varied the ImPlementation, and they do not simulate I/O queueing
number of search operations. Note that 0.0 on the X-axi€ffects: _ _ _
means that the victim block is selected randomly without Compared to the above simulators, our simulator has abil-
any search, and 1.0 means the victim block with the leasy to Simulate multiple FTL schemes, including page-based

number of invalid pages is selected after a complete lineaplock-based, FAST [14], and DFTL [8]. Our simulator is
search. integrated with DiskSim to simulate queuing effects, and ou
simulator module can be instantiated multiple times within
Disksim. Our single-threaded, event-driven, objectiued
approach is comprehensible and modular to allow for future

by GCs. DFTL requires additional page read and erteextensions. Furthermore, we have validated FlashSim sigain

operations due to mapping table entry misses in the memor . . S
causing additional energy consumption in both traces. Azéal SSD devices for behavioral similarity.

expected, FAST FTL consumes significantly more energy
than other FTL schemes due to more erase and writ6. Summary and Future Work
operations during GC.

In addition to power consumption by flash operations, we have developed a flexible and robust simulator for
the processor power consumption can be considerably higgsps. Using an object-oriented design approach. We have
during GC. GC involves victim block searching overhead,ygjidated our simulator with real SSD devices by demon-
which aims at finding the block with the least numberstrating behavioral similarity and compared performance
of valid pages in order to reduce page copying overheadesyits for various FTL schemes. We also have analyzed the
Figure 6 shows the tradeoff between normalized averaggnpact of various FTL schemes on performance and power
response time and the number of FTL search operation&)nsumption in the SSD.
during GC for the Financial trace. Higher search operations This project is a work in progress. Since the simulator
decreases the response time while consuming more energys only been validated with a simple behavioral model
because (i) blocks with fewer valid pages require fewefior 5 single plane and simplified channel implementation,
copy operations, and (ii) the search operations induceggner e wijl continue with more thorough validation methods,
consumption by processor and system bus usage. Thus, ig,ding bus channel interleaving effects. Caching a@ I/
energy consumption during GC can be reduced by balancingeheduling effects will be added and examined. Since our
fewer search operations with a greater number of COPYimylator module can have multiple instances in Disksim, we
operations. Fewer search operations will slightly inceeas can simulate disk arrays that contain a combination of both
response time because an incomplete search may sele§ps and HDDs. In addition to performance simulation, our
blocks with more valid pages that must be copied. simulator is able to incorporate power models and other

On-board RAM is another considerable factor in theextensions. We plan to combine our thermal-performance
power consumption in the SSD. Since the page-based FTkimylator of disk drives [11] with our future work involving

requires more memory as compared to the block-based FTlyyprid disk arrays that contain a combination of both SSDs
the idle power consumption of the additional memory will be 3nd HDDs.

larger. FAST maintains block-level mapping for data region

and page-level mapping for log regions; the on-board RAM’s

energy consumption is as close to that of the bIock—IeveI7' Download

FTL. DFTL requires the same memory as the block-level

FTL; the idle power consumption is the same as that of the Source-code is available for download from http://csl.cse
block-level FTL. psu.edu/hybridstore.

S
o

*. Response time

\
14 *
\
\

S5 = o
® © o @
Normalized Search Count

S
<

Normalized Average Response Time

S
>

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

2.5” MTron SATA Solid State Drive - MSP 7000. http://www.
mtron.net/English/Product/emsp7000.asp.

2.5" Super-Talent SATA Solid State Drive.
supertalent.com/products/ssd-commercial.php?typ@ASA

AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DavIs,
J. D., MANASSE, M. S., AND PANIGRAHY, R. Design
tradeoffs for ssd performance. Rroceedings of the USENIX
Annual Technical Conferengdune 2008), pp. 57-70.

(16]

CHANG, Y.-H., HsIEH, J.-W.,AND KuoO, T.-W. Endurance
enhancement of flash-memory storage systems: An efficient
static wear leveling design. Proceedings of the 44th Annual
Conference on Design AutomatidiNew York, NY, USA,
2007), ACM, pp. 212-217.

(17]

CHUNG, T., PRK, D., PARK, S., LEE, D., LEE, S.,AND
SONG, H. System Software for Flash Memory: A Survey. In

Proceedings of the International Conference on Embedded18]

and Ubiquitous ComputingAugust 2006), pp. 394-404.

E. GAL AND S. TOLEDO. Algorithms and Data Structures for
Flash MemoriesACM Computing Survey 32 (June 2005),
138-163.

GANGER, G., WORTHINGTON, B., AND PATT, Y. The
DiskSim Simulation Environment Version 3.0 Reference Man-
ual.

GUPTA, A., KIM, Y., AND URGAONKAR, B.
Flash Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. Pmoceedings

of the International Conference on Architectural Suppant f
Programming Languages and Operating System (ASPLOS)
(March 2009), pp. 229-240.

KANG, J., b, H., Kim, J., AND LEE, J. A Superblock-
based Flash Translation Layer for NAND Flash Memory. In
Proceedings of the International Conference on Embedded
Software (EMSOFT{October 2006), pp. 161-170.

Kim, J., KiM, J., NOH, S., MIN, S.,AND CHO, Y. A Space-
Efficient Flash Translation Layer for Compactflash Systems.
IEEE Transactions on Consumer Electronics, 48 (May
2002), 366-375.

KiIM, Y., GURUMURTHI, S., AND SIVASUBRAMANIAM , A.
Understanding the Performance-Temperature Interaciions
Disk 1/0 of Server Workloads. InProceedings of the
International Symposium on High-Performance Computer
Architecture (HPCA)Febuary 2006).

LEE, J., BruN, E., BRK, H., CHOI, J., LEE, D., AND NOH,

S. H. CPS-SIM: Configurable and accurate clock precision
solid state drive simulator. IfProceedings of the Annual
ACM Symposium on Applied Computing (SA@arch 2009),

pp. 318-325.

LEE, S.,AND MoOON, B. Design of Flash-based DBMS:
An In-Page Logging Approach. IProceedings of the
International Conference on Management of Data (SIGMOD)
(August 2007), pp. 55-66.

http:/Aww. [15]

(19]

DFTL: A [20]

[14] LEeE, S., RRK, D., CHUNG, T., LEE, D., PARK, S., AND

SONG, H. A Log Buffer based Flash Translation Layer Using
Fully Associative Sector TranslatiolEEE Transactions on
Embedded Computing Systems3§2007), 18.

LEE, S., $HIN, D., KiM, Y., AND KiM, J. LAST: Locality-
Aware Sector Translation for NAND Flash Memory-Based
Storage Systems. IRroceedings of the International Work-
shop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability (SPEED20@BEburary
2008).

NARAYANAN, D., THERESKA, E., DONNELLY, A., EL-
NIKETY, S., AND ROWSTRON A. Migrating enterprise
storage to ssds: Analysis of tradeoffs. Rnoceedings of the
ACM European Conference on Computer Systems (Eurosys)
(March 2009), pp. 145-158.

OLTP Trace from UMass Trace Repository. http://traces
umass.edu/index.php/Storage/Storage.

PARK, S., RRK, J., EONG, J., Kim, J., AND KiM, S.

A Mixed Flash Translation Layer Structure for SLC-MLC
Combined Flash Memory System. Rroceedings of the
1th International Workshop on Storage and I/O Virtualiza-
tion, Performance, Energy, Evaluation and Dependability
(SPEED2008)2008).

Technical Report (TN-29-07): Small-Block vs. LargéeBk
NAND Flash Devices. http://www.micron.com/products/
nand/technotes.

ZHANG, J., SVASUBRAMANIAM , A., FRANKE, H., GAu-
TAM, N., ZHANG, Y., AND NAGAR, S. Synthesizing Rep-
resentative 1/0 Workloads for TPC-H. IRroceedings of
the International Symposium on High Performance Computer
Architecture (HPCA)2004).

APPENDIX: SSD Simulator UML Diagram

Page |<- - - - Block < - -4 Plane Address
-state: int -size: uint -size: uint +package: ui nt
-parent: Block & -data: Page * -data: Block * +die: uint
-read_del ay: doubl e -parent: Plane & -parent: Die & +pl ane: uint
-wiite_delay: double -state: int -least_worn: uint +bl ock: ui nt
+Page(par ent : const Bl ock & -last_erase_tinme: double - erases_remai ni ng: ul ong +page: uint
-erases_remai ni ng: ul ong -last_erase_time: doubl e +val i d:_char
feadoelay sounle-rice rero peLy, . i doun e e
—Page() -erase_delay: doubl e -reg_read_del ay: doubl e +Addr ess()
+ read(event: Event &: int *EocK(parentconet PAne & -reg_write_del ay duub\e +Addr ess(addr ess: const Address &)
+_write(event: Event &: int erases_reni ni ng: ul ong=BLOCK_ERASES) +Pl ane(parent: O e +Addr ess(addr ess: const Address *)
.51 z6: i nt =PLANE sl 28, +Addr ess(package: i nt ,
+get _parent(): const Block & +~Bl ock() reg_read_del ay: doubl e=PLANE_REG READ_DELAY, fack Ig‘ Plane:int,
get_state(): int +read(event: Event &: int reg_writé_ del ay: doubl e=l "U‘NE REG_VRI TE_DELAY) b ook vn({, page int,
+set_state(state:int): void +urite(event: Event &: int +~Pl ane() valid:
+_erase(event: Event &: int +read(event: Event &: int +~Addr ess ()
+get_parent(): const Plane & write(event: Event &: int *s, Va"d(“dks'éesf'zg'fﬁ?—gixcms sI ZE,
Bus L - - - +get _state(page:int): int Ferase(event: Event &: int e s'28 ui nt=DI E_SI 2
[+get_state(address: const Address &: int +_merge(event: Event &: int plane sizetuin it
- channel's: Channel * 1 +get_last_erase_time(): double *get_parent(): const Die & +print(stream FILE *)
- num channel s: _uint 1 +get _| ast_erase_ti me(address: const Address &: double P
X +get _erases_remmi ning(): ul ong . Cor=(rh * add & Add o
FBus(num channel s ui nt, I gt _size(): uint +get _erases_r enai ni ng(addr ess: const Address & : ul ong operator=(rhs: cons ress &) ress
Gir T —del'ay: doubl eBUS CTRL_CELAY, U [siacetpagerin +get I east_vor n(addr ess: Address & : void A
tabl i ze: ui nt =BUS_TABLE_SI ZE, 1 state:int): void +get _size(): uint I
max_connect i ons: ui nt=BUS_VAX_CONNECT) | +set _state(address: const Address & +get_state(address: const Address &: int 1
+~Bus() ' staterint): void +set_state(address: const Address &: void Event
+connect (channel :uint): void | -update_wear _stats(): void - updat e_vear _stat s(address: const Address &: void
+di sconnect (channel : uint): void h -start_time: double
+1 ock(channel : ui nt, start_ti me: doubl e, A -time_taken: double
ati on: doubl e, ! ! -type: int
event: Event &): void 1 L address: Address
+get _channel (channel : uint): Channel & - = > Channel r - Die
| -address_nerge: Address
-ctrl_delay: double 1 [sizer uint -size: uint
- -data_del ay: doubl e y |-data: Prane * -bus_vai t _time: double
1 -channel s: uint 1 |rehannel: cnannel & -ioreq: ioreq_event *
- num connect ed: ui nt | |-parent: Package & -next: Event *
friends: Controller 1 |-mex_connections: uint | [reast_vorn: uint +Event (addr ess: const Address &
| |-table_size: uint | |-erases_remining: ulong . q:ioreq_event *)
-size: uint 1 |-table: double ** | |tlast_erase time: double +~Event ()
-data: Package * | |-table_entries: uint | [Forelparent: Package & ‘+commi t_to_joreq(): void
_contol: Controller * 1 |-selected entry: wint nei : Channel & +get_address(): const Address &
] die_si ze: ui nt =Di E_SI ZE) +get _nerge_address(): const Address &
-ram Ram * | [FChannel (ctrl_del ay: doubl e=BUS_CTRL_DELAY, s |+-0ie) get_merge_
bus: Bus * d a_del ay: doubl S_DATA_DELAY, +get _event _type(): int
1 abl e_si ze: ui nt =BUS_TABLE_SI ZE, +read(event: Event &): int +get_bus_wait_time(): double
- erases_remai ning: ul ong 1 axConneci | onS. ui nTBUS WAX GONNECTI ONS) . get _bus _vait |
+urite(event: Event &: int get _ioreq(): const ioreq_event *
-1 east _worn: uint 1 [+~cnannel () . get_i or eq q_
+erase(event: Event &: int +get ioreq_time(): double
-l ast_erase_time: double | |+ ock(start_time: doubl e, smerge(event : Event &: int get_ a
TSSD(ssd_sT ze U nT) duration: doubl e, 9 : +get _start_time(): double
ssn() : event: Event &): void +get _parent (): const Package & Lget_time_taken(): double
+connect (): Bus * +get_last_erase_time(): double .
vevent_arrive(event: i oreq event -, | 0 . get | ast | time(): +get _next(): Event
stream FILE *): void . +di sconnect (): Bus +get_erases_remining(): ul ong +set _addr ess(address: const Address &: int
_read(event: Event &: int ' -unl ock(start _tine: doubl e): void +get _| east_worn(addr ess: Address &: void et mer ge_addr ess(addr ess: const Address & : i nt
_write(event: Event &: int ' +get _stat e(address: const Address &: int set_bus(bus: Bus *): void
- erase(event: Event &: int ' +set_state(address: const Address &: void et _i or eq(i or eq: const i oreq_event *): void
- mer ge(event : Event &): int ' 1 - updat e_vear _st at s(addr ess: const Address &: void et next (next: Event &: void
- get _erases_r emai ni ng(addr ess: const Address &: ulong [| 1 A +i ncr _bus_wai t _time(time_incr: double): double
- updat e_wear _st at s(addr ess: const Address &: void h L i 1 +incr_time_taken(time_incr:doubl e): double
- get_I east_wor n(Addr ess: Address &): void . 1 +commi t_to_ioreq(): void
-get_l ast_erase_time(address: const Address &: double | Package +print (stream FILE &: void
-get_data(): Package & | +oper at or =(rhs: const ioreq_event & : ioreq_event &
-get _state(address: const Address & : int Controller -size: uint T
et _state(address: const Address & b ontrolle -data: Die * '
;oo oonst A friends: Ft -parent: SSD & !
T Tssd: Ssd & -1 east_worn: uint V
Nl ftl: PTL & -last_erase_tine: double Toreq_event
Ram -erases_r emai ni ng: _ul ong — EE’“’“ ”:"9 ul ong struct foreq_ev
ackage(par en -
FControl ler(parent: Ssd & 9e(p “hannel &
-read_del ay: doubl e +~Controller() packageis\ ze: ui nt =PACKAGE_SI ZE) +time: doubl e
_wite delay: double +event _arrive(event: Event &: int +~Package() +type: int
—+3ran(reau GeT ay” doubl -issue(event list:Event &: int +read(event: Event &: int ‘+next: struct ioreq_ev *
te_del ay: doubl e) -get_erases_remaining(): ul ong +write(event: Event &: int +prev: struct ioreq_ev *
+~Sran() - get _I east _wor n(addr ess: Address & : void +erase(event: Event &: int +bcount: int
+read(event: Event &: int -get_| ast_erase_ti me(address: const Address &) : double +merge(event: Event &): int +bl kno: i nt
+write(event: Event &: int - get _state(address: const Address &): int +get _parent (): const SSD & +flags: u_int
-set_state(address: const Address &: void +get_last _erase_time(): double +busno: u_int
T +get _erases_remining(): ul ong +slotno: u_int
YoTTT T Tmmmmmmmmmmmmmoee - +get _| east_worn(addr ess: Address &: void +devno: int
+get _st at e(addr ess: const Address &): int +opi d: int
Ftl +set _stat e(addr ess: const Address &): void +buf : void *
friends: Garbage_collector, F > Garbage_collector - updat e_wear _st at s(addr ess: const Address &: void +cause: int
Wear_leveler +tenpint1: int
Iler: Controller * N ETTRTI +tenpint2: int
'CD"L’O e nt 1 o S ! [FGarbage_colTector (TTTTFIT © +tenpptrl: void *
- gar ag\em I’ ag‘ef“" ector V' |+-carbage_col I ector () +tempptr2: void *
-wear: Wéar_| evel er Vo fscoltect (event: Event &): int +mems_sl ed: void *
-free_list: Address * 1 remsreqinfo: void *
-valid_list: Address * 1 - y
o P . +start_time: double
-inva ; _list: ress =] Wear_leveler +bat chno: i nt
_map: long * M
STl (control ControlTer & il Rl & +Z::z:f:‘°:‘_e“:t int
+~Ftl () FVear Teveler (T FIT & -
+batch_next: struct ioreq_ev *
+read(event: Event &: int +-Wear _| evel er () ot ol ey otruet ioree ow +
write(event: Event &: int +i nsert (addr ess: const Address & : void P 9
+get _er ases_r emmi ni ng(addr ess: const Address &: ul ong
+get _I| east_worn(addr ess: Address & : const Package *
-erase(event: Event & : int
- mer ge(event : Event &)@ int
- gar bage_col ect (): void
-get_state(address: const Address &: int
set_state(address: const Address &
ate:int):

Figure 7: Arrows indicate dependencies of all types, iniclgcaggregation. Most dependencies arise from one clasadav
references to another class, though many references &isdized by allocating a new instance of the aggregate érasise
constructor.

