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Abstract

NAND Flash memory-based Solid-State Disks (SSDs) are becoming popular as the storage media in do-

mains ranging from mobile laptops to enterprise-scale storage systems due to a number of benefits (e.g., lighter

weights, faster access times, lower power consumption, higher resistance to vibrations) they offer over the

conventionally popular Hard Disk Drives (HDDs). While a number of well-regarded simulation environments

exist for HDDs, the same is not yet true for SSDs. This is due to SSDs having been in the storage market for

relatively less time as well as the lack of information (hardware configuration and software methods) about

state-of-the-art SSDs that is publicly available. We describe the design and implementation of FlashSim, a

simulator aimed at filling this void in performance evaluation of emerging storage systems that employ SSDs.

FlashSim is an event-driven simulator that follows the objected-oriented programming paradigm for modu-

larity. We have validated the performance of FlashSim against a number of commercial SSDs for behavioral

similarity. We have also used FlashSim to compare the performance of SSD devices employing different Flash

Translation Layer (FTL) schemes, and analyzed the energy consumption of different FTL schemes in the SSD.

FlashSim has been written to be inter-operable with the well-regarded DiskSim simulator, thus enabling the

simulation of a variety of “hybrid” storage systems employing combinations of SSDs and HDDs. Given the

current interest in such hybrid systems as opposed to systems with SSDs replacing HDDs (due to higher price),

we believe this to be an especially useful feature of FlashSim. We have made FlashSim freely available for

download with the hope that it would be of use to researchers exploring the design of SSD-based systems.

1 Introduction

Recently, NAND Flash memory has become the main storage media for embedded devices, such as PDAs and

music players. NAND Flash memory is now also being used in systems ranging from laptop and desktop com-

puters to enterprise-scale storage servers. NAND Flash memory offers a number of benefits over the conventional

hard disk drives (HDDs). These benefits include lower power consumption, lighter weight, higher resilience to

external shock, the ability to sustain hotter operating regimes, and faster access times (with some exceptions that

arise due to random writes). Unlike HDDs, NAND flash memory based Solid-State Disks (SSDs) have no me-

chanical moving parts, such as a spindle and voice-coil motors. Despite these benefits, a storage system designer
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needs to carefully consider the use of SSDs because they also have some notable weaknesses. The main weak-

nesses of SSDs include a higher price ($/GB) than HDDs, writes being 4-5 times slower than reads, slowdown

in device throughput during periods of garbage collection that are hastened by small, random writes [15], and

limited lifetime (10K-1M erase cycles per block) [4].

In order to overcome the limitations described above, a variety of complementary approaches have been

proposed. For example, Multi-level Cell (MLC) technology gives higher density and cost per GB than Single-

level Cell (SLC) [21]. The downside of MLC is that read and write times of MLC are slower. Consequently,

there are current attempts to employ combinations of SLC and MLC Flash chips in SSDs. Numerous techniques

for efficient address translation, garbage collection, and wear-leveling in the Flash Translation Layer (FTL) (more

details in Section 2) have been explored to improve the performance of the SSD devices and/or providing longer

lifetimes.

1.1 Motivation

The design and implementation of cost efficient, reliable SSDs requires faithful and accurate evaluation test-beds

for evaluating new algorithms for specific software components (such as those that constitute the FTL) within

different hardware configurations of the SSD before implementing them in the actual firmware. The fact that

significant aspects of the techniques employed within SSDs are unknown to the pubic due to technology property

issues further adds to the urgency of having such a test-bed for SSD research. With this motivation, we have

designed and developed a simulation infrastructure. Here are the salient features and contributions of our work.

1.2 Research Contributions

• The components of an SSD are can be classified as those belonging to the hardware and the software categories.

The hardware component consists of a processing unit, memory, bus, and Flash chips. The software component

(which executes on the processing unit) consists of a FTL. The price of the SSD depends on the hardware

configuration in the SSD and the software running on the hardware, but there is a lack of test infrastructure to

examine cost-effective hardware configurations and software algorithms in research environments outside those

affiliated with manufacturers of SSDs. In this work, we provide an experimental test-bed to fill this void.

• The few efforts that have attempted to provide the simulation/emulation infrastructure [14, 3] lack desirable fea-

tures, especially an object-oriented design. It is typically difficult to understand and enhance these simulators.

Compared to other existing/evolving SSD simulators, FlashSim is entirely objected-oriented. Our approach

allows the developers to easily understand, use, and extend our simulator. Furthermore, our simulator has been

integrated with the well-regarded and popular DiskSim simulator [7] and validated for behavioral similarity

with real SSD devices.
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Flash Type

Data Unit Size Access Time

Page (Bytes) Block Page Page Block

Data OOB (Bytes) READ (us) WRITE (us) ERASE (ms)

Small Block 512 16 (16K+512) 41.75 226.75 2

Large Block 2048 64 (128K+4K) 130.9 405.9 2

Table 1: NAND Flash organization and access time comparison for Small-Block vs. Large-Block schemes [22].

• Energy consumption in SSDs is surprisingly higher than initially expected; energy consumption is approxi-

mately the same as mobile HDDs [19]. Thus, it is important to understand the causes of the energy consump-

tion. We have analyzed the energy consumption in SSDs with our simulator by considering a simple energy

model including various FTL schemes with real traces (Financial and TPC-H).

1.3 Road-map

The rest of this paper is organized as follows: In Section 2, we present the basics of NAND Flash memory

technology. We present the design of FlashSim and its implementation details in Section 3. We present the

experimental results in Section 4. We discuss related work in Section 5. Finally, we summarize our work and

discuss future direction in Section 6.

2 Background

2.1 Basics of NAND Flash Memory Technology

The most popular flash type for storage media is NAND flash memory due to higher density and lower cost than

NOR flash. NAND flash provides three different operations: read, write, and erase. Each operation requres

different operation time and granularity: Erase operations are performed at the granularity of a block that is

composed of multiple pages. A page is the granularity at which reads and writes are performed. In addition to its

data area, a page contains a small spare Out-of-Band area (OOB) which is used for storing a variety of information

including: (i) Error Correction Code (ECC) information used to check data correctness, (ii) the logical page

number corresponding to the data stored in the data area, and (iii) page state. Each page on flash can be in one of

three different states: (i) valid, (ii) invalid, and (iii) free/erased. When no data has been written to a page, it is in

the free/erased state. A write can be done only to a free page and changes its state to valid. An erase operation on

an entire block of pages is required to revert the pages back to the free/erased state. Out-of-place updates result

in certain written pages that are no longer valid. They are called invalid pages. Table 1 shows comparisons for

different flash types in terms of access time and data unit size [22].

As shown in Table 1, erase operations are significantly slower than reads/writes. Additionally, write latency

can be higher than read latency by up to a factor of 4-5. The lifetime of flash memory is limited by the number
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of erase operations on its cells. Each memory cell typically has a lifetime of 10K-1M erase operations [6]. Thus,

wear-leveling techniques [9, 11, 18] are used to delay the wear-out of the first flash block. The granularity at which

wear-leveling is carried out impacts the variance in the lifetime of individual blocks and also the performance of

flash. The finer the granularity, the smaller the variance in lifetime.

2.2 The Flash Translation Layer

The FTL is mainly composed of three software components (address translation, garbage collector, and wear-

leveler), but the FTL is generally thought of as the address translation layer. The address translation layer that

translates logical addresses from the file system into physical addresses on flash devices helps in emulating flash

as a normal block device; the layer performs out-of-place updates which in turn help to hide the erase operation

in the flash memory. The mapping table is stored in a small, fast on-board SSD RAM. The garbage collector is in

charge of collecting invalid pages to create free space in the flash memory. Since the lifetime of flash memory is

limited by the number of erase operations on its cells (each memory cell typically has a lifetime of 10K-1M erase

operations [6]), the wear-leveler elongates the lifetime of flash by maintaining the same level of wear for every

block in the flash memory.

2.3 State-of-The-Art FTL Scheme

FTLs can be implemented at different granularities of how large an address space a single entry in the mapping

table captures. Page-based FTLs map the logical page number of the request sent to the device from the upper

layers, such as file system, to any physical page on flash. Such translation requires a large mapping table to

be stored in RAM. At the other extreme, a block-level FTL scheme only translates the logical block number

into a physical block number; the logical page number offset within the block remains fixed, thus reducing the

mapping table. To address the shortcomings of the above two extreme mapping schemes, researchers have come

up with a variety of alternatives. Although many schemes have been proposed [5, 12, 16, 10, 17], they share

one fundamental design principle. Each scheme is a hybrid between page-level and block-level schemes. The

schemes logically partition their blocks into two groups - Data Blocks and Log/Update Blocks. Data blocks form

the majority and are mapped using a block-level mapping technique, whereas the log blocks are mapped using a

page-level mapping technique.

3 SSD Simulator Design

We have designed and implemented a SSD simulator that is based on the hardware diagram in Figure 1. The first

version of our SSD simulator focused on software components (for instance, FTL schemes, garbage collection,
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Figure 1: Hardware diagram for the SSD Simulator. Ellipses in between two of the same components indicate

where more of the same components may be added. Only the full component break-down of the left-most package

is shown.

and wear-leveling); we considered a simplified hardware model that simulated a single Plane with a simplified

channel implementation.

Since this version of our simulator was limited by a simplified hardware model and not easy to extend due

to a highly coupled implementation with DiskSim, we re-designed and re-implemented the simulator with an

object-oriented approach. Our new simulator is entirely event-driven and written in a familiar language, C++; we

achieve modularity, low coupling, and high cohesion. Our hardware-level diagram is shown in Figure 1.

3.1 Object-Oriented Component Design

The simulator was written as a single-threaded program in C++ for simplicity. C++ could provide a compre-

hensible object-oriented scheme where each class instance represented a hardware or software component. The

UML diagram in Figure 2 and 3 contains all C++ classes used by the SSD simulator. FlashSim is integrated with

Disksim’s C code.

3.2 Component Design

3.2.1 Hardware Components

The classes in the SSD simulator for hardware components are as follows:
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• SSD: The SSD class serves to provide an interface to Disksim and provide a single class to instantiate in order

to create the SSD simulator module. The SSD class creates event objects to wrap the Disksim ioreq event

structures and returns the event time to disksim.

• Package: The package class represents a group of flash dies that share a bus channel. The package class allo-

cates its dies in its constructor and connects the dies to a bus channel. The package also facilitates addressing.

• Die: A die is a single flash memory chip that is organized into a set of planes. Dies are connected to bus

channels, but individual planes contained in the die buffer bus transfers. In future development, the highest

level at which merge operations may take place will be at the die level. The corresponding event object is

updated with the merge delay time.

• Plane: Planes are comprised of blocks and provide a single page-sized register to buffer page data for bus

transfers. The register is also used as a buffer for merge operations inside planes. The corresponding event

object is updated with merge delays for merge operations and considers register delays.

• Block: A block is comprised of pages and is the smallest component that can be individually erased. When a

block is erased, all pages in it are erased and can then be written to again. The corresponding event object is

updated with the erase delay time. A block can only be erased a finite number of times because of reliability

constraints [4].

• Page: Each page maintains its state and updates event objects with the read and write delays of the given flash

technology. Page states include free/empty after erasure, valid after a successful write, and invalid after being

copied to a new location in a merge operation.

• Controller: The controller class receives event objects from the SSD and consults the FTL regarding how to

handle each event. The controller sends the virtual data for events to the RAM for buffering before sending the

event object to the bus.

• RAM: The RAM class calculates how long it takes to read or write data to itself. The RAM buffers virtual

event data for the controller to send across the bus.

• Bus: The bus class has a number of channels that are each shared by all the dies in a package. The bus examines

addresses in events and passes the event object on to the proper channel.

• Channel: Channels must schedule usage for events and update the event time values. Each channel keeps a

scheduling table that keeps track of channel usage, and new events are scheduled at the next available free time

slot after dependencies have been met. The scheduling table size is synonymous to queue length.

3.2.2 Software Components

The classes in the SSD simulator for software components are as follows:
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Figure 2: Arrows indicate dependencies of all types, including aggregation. Most dependencies arise from one

class having references to another class, though many references are initialized by allocating a new instance of

the aggregate class in the constructor.
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Figure 3: Arrows indicate dependencies of all types, including aggregation. Most dependencies arise from one

class having references to another class, though many references are initialized by allocating a new instance of

the aggregate class in the constructor.

• Event: First, the event class keeps track of its corresponding Disksim ioreq event structure. Second, the event

class holds methods and attributes to do all the record-keeping for the SSD simulator’s state, including SSD

addresses. Simulator objects pass event class objects and update the event objects statistics.

• Address: Addresses are comprised of a separate field for each hardware address level from the package down

to the page. We provide an address class instead of a struct to help make a clear interface to assign and validate

addresses.

• FTL: The FTL provides address translation from logical addresses to physical addresses. It determines how to

process events that involve many pages by producing a list of single-page events to be processed in-order by

the controller. The FTL is responsible for taking advantage of hardware parallelism for performance. The FTL

also has a wear leveler and garbage collector to facilitate its tasks.

• Wear Leveler: The wear leveler class helps spread the block erasures over all blocks in the SSD. The wear

leveler is responsible for keeping as many blocks functional for as long as possible because blocks of pages can

only be erased for reuse a finite number of times.

• Garbage Collector: The garbage collector is activated when a write request cannot be satisfied because the

selected block is not writable or there is not enough free space in the selected block. The garbage collector

seeks to merge partially-used blocks and free up blocks by erasing them. Any other algorithm for GC can also

be simulated.
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Figure 4: Interleaving for read/write requests

3.3 Bus Channel Interleaving

Figure 4 shows the interleaving of processing events for one bus channel. As per Figure 1, each bus channel

connects to several flash dies that are grouped in a package. Each bus channel functions independently and in

parallel; operations on different channels are not dependent on each other.

The read interleaving for one bus channel is shown in Figure 4-(a). First, the control time signifies when the

bus channel is locked for control signals that request a flash die to prepare data from a specific page. Next, the

flash die processes the request for the data to be read. The bus channel is free to handle other requests at this time.

Finally, the bus channel is locked for control signals that request the flash die to send data from a specific page

and sending the data. The interesting part of this figure is the bus channel idle time period between the end of the

control time for request two (R2) and the beginning of the second control time period for request one (R1). A

control time period for request three cannot fit; request three (R3) must be delayed until after request two finishes.

The write for one bus channel is shown in Figure4-(b). First, the bus channel must be locked for control

signals to inform the proper flash die that it will receive data. Second, the bus remains locked to send the data.

Finally, the flash die writes the data; the bus channel is free to handle other requests at this time. Since write

requests only require one contiguous time block of bus channel time, write request happen in FIFO.

3.4 Event Flow

The SSD simulator is instantiated as a SSD object designed to accept ioreq event structures from Disksim. Its

functionality is described in detail in Algorithm 1. The SSD controller uses the FTL software module to create

a list of events for a multi-page request. The controller issues each event in the list to the data hardware through

corresponding bus channels. The bus channels handle the scheduling and interleaving of events for the controller;

this simplifies our controller implementation.

In Algorithm 2, events continue through the package and are handled starting at the die level; merge events

can be handled inside flash dies or planes. Erase events are handled inside blocks, and read and write events are
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handled inside pages. The SSD and package components are included in the call stack after consulting the bus

channel because these components also keep track of wear statistics. Wear statistics stored in the SSD, package,

die, plane, and block are updated every time an erase event occurs to keep a simple interface with lower algorithmic

complexity for the FTL.

Input: Disksim’s I/O Request Structure (ioreq event)

Output: Device Service Time

foreach ioreq event do
begin SSD process ioreq event

wrap in event object;

begin controller, FTL process event
consult wearleveler and garbagecollector;

create page-sized list of event objects;

foreach e in event list do
begin SSD, bus, channel process e

lock for next available transfer time;

etime ← etime + channel delay;
end
Package(e);

end
if etype = erase then

update SSD wear stats;

end
begin inform bus, channel: e finished

channel update scheduling table for event dependencies;

end
end

end
end

Algorithm 1: SSD simulator functionality
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Input: Event object (e)

Output: NULL

begin package, die process e

/* Merge event e in die */
if etype = mergeandeaddr.plane 6= eaddr merge.plane then

foreach valid page v in eaddr.block x do
foreach empty page t in eaddr merge.block y do

t← v;

vstate ← invalid;

tstate ← valid;
end
etime ← etime + die merge delay;

end
end
/* Merge event e in plane */
else plane process e

planeregister ← edata;

if etype = merge then
foreach valid page v in eaddr.block x do

foreach empty page t in eaddr merge.block y do
t← v;

vstate ← invalid;

tstate ← valid;
end
etime ← etime + die merge delay;

end
end
/* etype = read or write or erase */
else

begin block process e

if etype = erase then
for each page in block x do

pagestate ← empty;

end
etime ← etime + erase delay;

update wear stats;
end
/* etype = read or write */
else page process e

if etype = read then
etime ← etime + read delay;

end
else if etype = write then

etime ← etime + write delay;

end
end

end
if etype = erase then

update plane, die, package wear stats;

end
end

Algorithm 2: Package (event object) - SSD hardware functionality inside a package. This function is being

called in Algorithm 1.
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4 Experimental Results

We validated our simulator by comparing it to real SSDs for behavioral similarity; we compared the performance

of different FTL schemes for realistic workload traces. We used the simplified version of the simulator that

simulates a single Plane with with a simplified channel implementation for various software implementations,

such as the FTL, garbage collector, and wear-leveler. More thorough evaluation that also considers interleaving

with parallelism effects is left for future work.

4.1 Evaluation Setup

The specifications available for commercial SSDs are insufficient for modeling them accurately. For example, the

memory cache size for FTL mappings and the exact FTL scheme used are not disclosed. Hence, it is difficult to

simulate these commercial devices. We made assumptions for flash devices as described in Table 2 and configured

our simulator accordingly. Table 3 presents the salient features of our workloads.

Default simulation parameters

Flash Type Large Block

Page (Data) 2KB

Page (OOB) 64B

Block (128KB+4KB)

Interface SATA

GC Yes

Wear-leveling Implicit/Explicit

FTL Type Page/FAST/DFTL

Access Time

Page Read 130.9 us

Page Write 405.9 us

Block Erase 1.5 ms

Energy Consumption

Page Read 4.72uJ

Page Write 38.04uJ

Block Erase 527.68uJ

Real SSD Device

Real SSD1 Real SSD 2

MSP-7000 FSD32GB25M

MTron Super Talent

2.5 in 2.5 in

4-way SLC SLC

Read: 120 MB/s 60 MB/s

Write: 90 MB/s 45 MB/s

Table 2: Simulation parameters and real SSD device observed specifications.

Workloads
Avg. Req. Size Read Seq. Avg. Req. Inter- Simulated Time

(KB) (%) (%) arrival Time (ms) (sec)

Financial [20] 4.38 9.0 2.0 133.50 43,712

TPC-H [23] 12.82 95.0 18.0 155.56 37,058

Table 3: Enterprise-scale workload characteristics.
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Figure 5: Validation of our SSD Simulator. Note that in the legends, Real SSD1, Real SSD2, FlashSim1, and

FlashSim2 denote Mtron’s SSD, SuperTalent’s SSD, a SSD using a page-based FTL, and a SSD using DFTL.

4.2 Validation of SSD Simulator

Using the parameters from Table 2, we validated our flash device simulator against commercial SSDs (MTron’s

SSD [1] and Super-Talent’s SSD [2]) for behavioral similarity. For this purpose, we sent raw I/O requests to real

SSDs and similar traces to our flash device simulator to measure device performance. As shown in Figure 5, our

simulator was able to capture the performance trends exhibited by the real SSDs. With increasing sequentiality of

writes (Figure 5-(a)), the performance of real SSDs improved, and our flash simulator with various FTLs was able

to provide similar characteristics. When examining reads (Figure 5-(b)), real SSDs showed much less variation;

the same was observed with our simulator. With a high degree of randomness in writes (80% random in Figure 5-

(c)), real SSDs demonstrated long-tailed response time distribution (due to larger GC overhead); our simulator
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Figure 6: Cumulative Distribution Function of the average system response time for different FTL schemes.

exhibited a similar trend.

4.3 Evaluation

We conducted a comparison of performance and energy consumption according to different FTL schemes, in-

cluding a page-based FTL, FAST [16], and DFTL [8]. We assumed the memory was just sufficient to hold the

address translations for FAST. Since the actual memory size is not disclosed by device manufacturers, our estimate

represents the minimum memory required for the functioning of a typical hybrid FTL. We allocated extra space

(approximately 3% of the total active region [10]) for use as log-buffers by the hybrid FTL (FAST).

4.3.1 Performance Analysis

The Cumulative Distribution Function of the average system response time for different workloads is shown in

Figure 6. DFTL is able to closely match the performance of the page-based FTL for the Financial trace. In

comparison with the page-based FTL, DFTL reduces the total number of block erases as well as the extra page

read/write operations by about 3 times. This results in improved device service times and shorter queuing delays;

this improvement in turn improves the overall I/O system response time by about 78% as compared to FAST.

For read-oriented workloads, DFTL incurs a larger additional address translation overhead, and its performance

deviates from the page-based FTL. When considering TPC-H (in Figure 6(b)), however, FAST exhibits a long

tail primarily because of the expensive full merges and the consequent high latencies seen by requests in the I/O

driver queue. Hence, even though FAST services about 95% of the requests faster, it suffers from long latencies

in the remaining requests, resulting in a higher average system response time than DFTL.
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Figure 7: Energy consumption by different FTL schemes.

4.3.2 Analysis of Energy Consumption

Power consumption of the flash memory in the SSD may not be significant when compared to other components

(CPU and Memory), but as shown in Table 2, erase operations consume significant power. Unlike individual

read and write operations, erase operations have a greater impact on the overall SSD’s energy consumption, and

the number of erase operations for a given workload varies according to the current FTL scheme. Figure 7

shows the energy consumption by operations for different FTL schemes in the Financial and TPC-H traces. The

Financial trace is mostly random-write-dominant, while TPC-H is read-dominant (see Table 3). Thus, the energy

consumption for the Financial trace is much higher than that for TPC-H due to the power consumed by GCs.

DFTL requires additional page read and write operations due to mapping table entry misses in the memory,

causing additional energy consumption in both traces. As expected, FAST FTL consumes significantly more

energy than other FTL schemes due to more erase and write operations during GC.

In addition to power consumption by flash operations, the processor power consumption can be considerably

high during GC. GC involves victim block searching overhead, which aims at finding the block with the least

number of valid pages in order to reduce page copying overhead. Figure 8 shows the tradeoff between normalized

average response time and the number of FTL search operations during GC for the Financial trace. Higher search

operations decreases the response time while consuming more energy because (i) blocks with fewer valid pages

require fewer copy operations, and (ii) the search operations induce energy consumption by processor and system

bus usage. Thus, the energy consumption during GC can be reduced by balancing fewer search operations with

a greater number of copy operations. Fewer search operations will slightly increase response time because an

incomplete search may select blocks with more valid pages that must be copied.

On-board RAM is another considerable factor in the power consumption in the SSD. Since the page-based
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Figure 8: Tradeoff between performance and search operation energy consumption. This experiment has been

conducted with DFTL for the Financial trace. We varied the number of search operations. Note that 0.0 on the

X-axis means that the victim block is selected randomly without any search, and 1.0 means the victim block with

the least number of invalid pages is selected after a complete linear search.

FTL requires more memory as compared to the block-based FTL, the idle power consumption of the additional

memory will be larger. FAST maintains block-level mapping for data regions and page-level mapping for log

regions; the on-board RAM’s energy consumption is as close to that of the block-level FTL. DFTL requires the

same memory as the block-level FTL; the idle power consumption is the same as that of the block-level FTL.

5 Related Work

Other research has been conducted to develop a simulator for NAND flash-based SSDs [3, 14]. Microsoft Re-

search’s simulator [3] is one of the first available SSD simulators; however, it is highly coupled with DiskSim.

The strengths of their simulator include the implementation of parallelism effects across multiple channels and

interleaving across different components within a single plane, but only a page-based FTL scheme is available. J.

Lee et. al have developed a simple flash based SSD simulator [14]. This simulator is a stand-alone simulator that

is limited by a single FTL scheme implementation, and they do not simulate I/O queueing effects.

Compared to the above simulators, our simulator has ability to simulate multiple FTL schemes, including

page-based, block-based, FAST [16], and DFTL [8]. Our simulator is integrated with DiskSim to simulate queuing

effects, and our simulator module can be instantiated multiple times within Disksim. Our single-threaded, event-

driven, object-oriented approach is comprehensible and modular to allow for future extensions. Furthermore, we

have validated FlashSim against real SSD devices for behavioral similarity.
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6 Summary and Future Work

We have developed a flexible and robust simulator for SSDs that features an object-oriented design. We have

validated our simulator with real SSD devices by demonstrating behavioral similarity and compared performance

results for various FTL schemes. We also have analyzed the impact of various FTL schemes on performance and

power consumption in the SSD.

This project is a work in progress. Since the simulator has only been validated with a simple behavioral

model for a single plane and simplified channel implementation, we will continue with more thorough validation

methods that include bus channel interleaving effects. Caching and I/O scheduling effects will be added and

examined. Since our simulator module can have multiple instances in Disksim, we can simulate disk arrays that

contain a combination of both SSDs and HDDs. In addition to performance simulation, our simulator is able to

incorporate power models and other extensions. We plan to combine our thermal-performance simulator of disk

drives [13] with our future work involving hybrid disk arrays that contain a combination of both SSDs and HDDs.

Source-code is available for download from http://csl.cse.psu.edu/hybridstore.
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