
Practical Schemes using Logs for Lightweight Recoverable DSM †

 Youngjae Kim Soyeon Park Seung Ryoul Maeng

Computer and Software Technology Laboratory Department of Electrical Engineering and Computer Science
Electronics and Telecommunications Research Institute Korea Advanced Institute of Science and Technology (KAIST)

 Gajeong-dong Yusong-gu, Taejeon, 305-350, Korea Kusong-dong Yusong-gu, Taejeon, 305-701, Korea
kimyj@etri.re.kr {sypark, maeng}@calab.kaist.ac.kr

Abstract

In the existing Fault-Tolerant Software Distributed Shared
Memory (FT-SDSM) with the message logging, the logs
are used only to recover the failed nodes. In our previous
work, we have implemented a lightweight logging
protocol, called remote logging, on the SDSM for fault
tolerance, which incurs low logging overhead with a fast
network and a remote memory for back-up data. In this
paper, we propose two practical schemes for the logs,
which enhance our based remote logging protocol. In
these proposed schemes, the logs are applicable to reduce
the stalled times for updating the invalid pages,
minimizing the failure-free execution time.

Key Words

Distributed System, Software Distributed Shared Memory,
Fault-tolerance System, Message Logging

1. Introduction

Software Distributed Shared Memory (SDSM) [1]
provides a global memory abstraction on the top of the
physically distributed memories to the programmers and
simplifies the parallel programming tasks. The SDSM has
been attractive for the large clusters due to its high
performance and scalability. However, the probability of
failures increases as the system size grows. Thus, an
impressive amount of research has been conducted for
FT-SDSM without degrading the system performance
during the failure-free execution. †

The message logging with independent checkpointing
is an attractive approach on home-based SDSM with the
fault-tolerant capabilities [2,3,4,5,6]. It guarantees the
bounded recovery time and ensures no domino effect [5].
Each node logs the received messages into a proper
storage during the failure-free execution. If a node comes
to fail, it restarts from the last checkpoint and regenerates

† This research is supported by KISTEP under the National
Research Laboratory program.

the previous state of the system, using the logs, before the
crash happened.

The major concern of FT-SDSM is to minimize the
logging overhead because it might lead to increase the
failure-free execution time of an application. A few
logging schemes have been proposed for a lightweight
and scalable FT-SDSM [5,6].

In this paper, we propose two practical schemes for
the logs, called Page-home Log Exploitation Scheme
(PLES) and Log-home Log Exploitation Scheme (LLES),
which improve the performance of FT-SDSM by
exploiting the logs. They are implemented on our
previous work, remote logging [7], which is tightly
proposed for home-based SDSM [8]. It only logs the
coherence-related messages into the volatile memory of a
remote node and utilizes a high-speed network. The diff
logs are used to facilitate the fast updates of the invalid
pages, reducing total failure-free execution time.

To evaluate our schemes, we have conducted some
experiments on a cluster of eight PCs under the five
applications from SPLASH-2 benchmark suit [9]. The
results demonstrate that our proposed schemes reduce the
times for the synchronization operations as well as for the
waiting times to update the invalid pages, and hence
minimize total failure-free execution time of FT-SDSM
with a remote logging protocol.

The remainder of this paper is organized as follows:
Section 2 describes a home-based SDSM. In section 3, the
remote logging protocol is given as our base model.
Section 4 describes our proposed exploitation schemes for
the logs. The experimental results are present in Section 5.
Finally, Section 6 concludes the paper.

2. Home-based SDSM

Home-based SDSM is based Home-based Lazy
Release Consistency (HLRC) [8] which is a variant of
Lazy Release Consistency (LRC) [10]. The LRC is a
representative implementation of the release consistency
protocol [11]. It guarantees the memory consistency only
after the synchronization point because the update
propagation is delayed to the next lock acquire or the
barrier operation. For the memory consistency, it uses a

write-invalidation protocol that invalidates all copies of
the shared memory pages modified before the lock is
acquired. The write operations are grouped into intervals
delimited by the synchronization operations. The intervals
represent the order of the write operations on a shared
memory page. The invalidation is performed at a
synchronization point with the write-notices piggybacked
with the lock grant and barrier release messages. The
write-notices include all page numbers to be invalidated.
The LRC also uses a multiple-writer protocol that allows
each process to modify the non-overlapping parts of a
shared memory page concurrently, reducing the network
traffic overhead even though it consumes a significant
amount of memory and incurs an extra computation.

In the recent years, HLRC is a popular memory
consistency protocol. Each shared memory page has an
assigned home-node that maintains the most recent pages.
It gives some advantages to the SDSM as follows: (i) The
local write or read operation on a shared memory page in
a home-node does not cause any virtual memory trap. In
addition to that, the summary of modifications (i.e., diffs)
is not created. The diff is generated from comparing the
modified page with the previous copy of the same page
(i.e., twin). (ii) An up-to-date page is fetched from its
home-node by a single round-trip message, which
simplifies the consistency protocol. These benefits enable
the SDSM to be more efficient and scalable.

3. Our Previous Work

3.1 Failure Model

The fail-stop model assumes that a failed node should
not affect any other running ones and the network is
considered to be failure-free. Thus, some communication
operation failure is handled as a remote node failure. We
use a low overhead communication layer, VIA (Virtual
Interface Architecture) [12], which tolerates the transient
network fabric errors by the packet retransmission and
guarantees the FIFO message delivery.

3.2 Remote Logging Protocol

Each shared page has both a home-node, called a
page-home, and a back-up node, called a log-home and
each node has a write-notice back-up node, called a
notice-node. In this paper, for each shared page belonging
to some node (or page-home), the log-home of a shared
memory page and the notice-node of a node (or page-
home) are supposed to be the same. The remote logging
protocol uses the volatile memory of a remote node rather
than local disk for back-up data as in the previous stable
logging protocol [5]. The elimination of this disk access
minimizes the logging overhead as shown in [7]. Also, the
high-speed network will reduce the network traffic
overhead. It tolerates a few multiple node failures except
when a page-home and its log-home or a node and its
notice-node come to fail simultaneously. The protocol
stores the write-notice messages received by a node into

its notice-node and the diff messages of some pages into
both their page-homes and their respective log-homes.
The remote copy pages are not logged because they can
be regenerated by their page-homes during the recovery.

Write-notice and Diff Logging

In HLRC, two major messages affecting the memory
consistency are the write-notice and diff messages.

When a lock releaser sends the write-notice messages
to the next lock requester for invalidating the old copies,
the latter logs them in the volatile memory of its notice-
node (or log-home). A failed node can extract the
corresponding write-notices from its log-home at every
synchronization point during the recovery. The write-
notice logging is also conducted during the barrier
operations similarly to the lock acquire operations.

Also, when a page writer creates some diffs at a
synchronization point, it sends them not only to their
page-homes but also to their corresponding log-homes.
The recent communication layer (e.g., VMMC and VIA)
provides a useful function, the direct data transfer
between the sender’s and the receiver’s virtual address
spaces, and hence the diff logging can be performed more
quickly and without the intervention of the host-processor.
Contrary to the write-notice logging, the diff logging has
to be performed in the log-homes as well as in the page-
homes. The diff logs in a log-home are used to recover its
peer page-home on a failure and those in a page-home are
used to regenerate the old pages requested by other failed
nodes during the recovery. Thus, even though a page-
home attempts to write on its self-home pages, it must
create the diffs and log them in its local memory, which is
different from the previous HLRC protocol.

Pi Pj Pk : Pj log-home

write notices

Acquire

write notices

Release

logging

Pi : X page-home Pj : Pi log-home Pk : page-writer

Release

Write(X) make twin

create diff

diff of X
logging logging

Acquire

(a) Write-notice Logging

(b) Diff Logging
Figure 1. A Snapshot of Remote Logging

Example

Figure 1 shows a snapshot of the remote logging
protocol. Figure 1(a) shows an example of the write-

notice logging at the lock acquire. A process Pi is a
previous lock owner. A process Pj is a next lock requester.
A process Pk is a notice-node (or log-home) of Pj. Pj
receives a lock grant message with some write-notices
including all information of the modified pages by Pi. Pj
forwards the received write-notice messages to Pk and
invalidates its local remote copy pages. The invalidation
and logging operations are performed in parallel.

Figure 1(b) shows an example of the diff logging. In
this example, a shared page X has a page-home Pi and a
log-home Pj. Pk is a page-writer on X. When a write miss
occurs at a page X, Pk creates the twin of X and modifies it.
At a lock release, Pk creates a diff message of X to send it
to its page-home Pi and directly logs the same one into Pj.
In Pi, the diff of X is applied to its home page of X and is
logged into its local memory.

4. Practical Schemes for the Logs

In our previous work (i.e., remote logging) and the
other traditional logging protocols, the logs were useless
during the failure-free execution and the process has to
fetch a whole page from its page-home whenever the
invalid page is accessed, incurring high cost. In this paper,
based on the remote logging protocol, we will introduce
two efficient exploitation schemes for the logs stored in
the page-home as well as in the log-home because the diff
logs in the memory can be sufficiently usable to reduce
the times for updating the invalid pages. The first scheme
is the Page-home Log Exploitation Scheme (PLES) that
uses the diff logs of page-homes and the second one is the
Log-home Log Exploitation Scheme (LLES) that uses the
diff logs of log-homes for better performance. To our
knowledge, this is the first work that uses those diff logs
to enhance the performance of FT-SDSM during the
failure-free execution.

4.1 Page-home Log Exploitation Scheme (PLES)

In HLRC, a process updates its invalid page by

fetching a whole page from its page-home even though it
needs only its small parts of the page for updates. We first
have experimented on measuring the impact of the
communication latency with the message length between
two nodes. Each node contains a Pentium III 850 MHz
processor and a NIC holding LANai 9.1 processor. They
are interconnected with 1.3 Gbps switched Myrinet. We
used VI-GM [13], a kind of VIA implementations
provided by Mricom [13]. The results showed that the
data transmission latency scales linearly with the message
length. For example, a half round-trip time for 2 Kbytes
message is 118µs and for 4 Kbytes is 215µs. It means that
the superfluous data transmission might lead to somewhat
performance degradation.

We suggest an adaptive strategy in which a page-
home can adaptively send a whole page or only its
modified parts of the page with the diff logs. In a case of
servicing with the logs, the computation overhead will
increase while the communication overhead will decrease.

The page-home wastes some CPU cycles in computing
the modified ranges of the page and making them on a
message. To reduce the non-negligible cost, we use some
optimization techniques and try to estimate whether the
CPU cost will exceed some threshold or not while
searching for the appropriate logs.

Adaptive strategy

If a process attempts to access an invalid page, it must

wait for update from its home. The update could be either
a whole page (4 Kbytes) or the only modified parts since
the last access. To make a choice, we define Tpage as a
waiting time for a whole page and Tdiff as a waiting time
for the only modified parts of the page. By estimating
them, a page-home can decide whether to service for the
request with the logs or not according to the minimum
waiting time Tbest (i.e., Tbest = Min (Tpage,Tdiff)). Most of
Tpage occupy the data transmission of 4 Kbytes whereas
Tdiff includes three kinds of overheads as follows: (i) TXB
is a transmission time for X bytes where X is the size of
the modified parts of the page. (ii) Ccup is the overhead
consumed in searching for the corresponding diff logs and
computing its modified ranges in a page. (iii) Cmem is the
memory copy overhead for creating a message with the
modified parts of the page. If the most parts of a page
have been modified, the service with the logs might not
be desirable in performance. Even though the size of the
modified parts can be very small, since Tdiff is the sum of
TXB, Ccup and Cmem, the overhead of servicing with the diff
logs can be dramatically higher than that of only sending
a whole page.

For the decision purpose, we define two thresholds as
follows: (i) Ssize(H) is a size threshold to service the only
modified ranges of the page and (ii) Sdepth(H) is an interval
depth threshold to search for the corresponding set of the
logs, where H represents a page-home. We can find the
dependency between Ssize(H) and TXB, and between Sdepth(H)
and Ccpu. In this strategy, when a page-home receives a
page request, it first checks the version difference
between the home page and the remote copy. If it is
higher than Sdepth(H), the page-home simply sends a whole
page. If a page-home learns that the size of the modified
ranges in a page exceeds Ssize(H) in the middle of servicing
with the logs, it also quits servicing with the logs and
simply sends a whole page.

Optimization

A straightforward method to reply for a page request
with the logs is to extract the previously received diff
messages from the log pool and to simply pack them up
on a message. However, it incurs the non-negligible
overhead of redundant data in a message. Thus, we devise
two optimization techniques to reduce such an overhead
of the memory copies (i.e., Cmem). In the diff range
technique, a page-home finds the only modified ranges of
a page in advance before the packing operation begins. It
has some advantages of eliminating an unnecessary copy

operation and reducing the size of a response message.
However, there is still some problem of the frequent
memory copies if the modified parts of the page are
highly scattered in the whole range of a page. Thus we
propose the page blocking technique. It divides a page
into blocks and uses a write vector indicating which
blocks are modified in a page. The size of a write-vector
is the same as the number of blocks in a page. If a page-
home finds a modified block of the page during searching
for the appropriate diff logs, it sets the corresponding bit
of the write-vector. Then it makes all blocks set by 1 on a
message and sends it to the page requester. The
performance tradeoff is in between the frequency of the
memory copies and the size of the superfluous data. We
fix the unit size of a block with 32 bytes for efficiency.

4.2 Log-home Log Exploitation Scheme (LLES)

A log-home logs all diffs which its peer page-home
receives. If a log-home accesses an invalid page of which
page-home is its peer one, it can update the invalid page
with its local diff logs instead of requesting a page to its
page-home. However, the log-home cannot use its local
diff logs if the page-home has ever written the page since
the last time that its log-home has fetched it. In this case,
the log-home simply requests a page to its page-home.
The diffs created by the page-home are not logged in its
log-home because they can be regenerated by the page-
home during the recovery.

Typically, the cost of the memory copy operations is
less than that of fetching a whole page from its remote
node. However, the frequent memory copies might lead to
higher overhead. Thus, to limit the frequency of the
memory copies, we define an interval depth threshold
Sdepth(LH) to search for its local diff logs in a log-home
where LH represent a log-home. If an interval difference
between the version of the expected page and that of the
old page is beyond Sdepth(LH), the log-home stop searching
for the diff logs and simply request a page to its page-
home.

Acquire(L)

Read(X)

Release(L)

Pj : Pi log-home

Logging
X diff

Pk : X page-home

Diff Range &
Page Blocking

Read(Y)

Pi : Y page-home

Reuse
Y diff logs

Logging
Y diff

Logging
Y diff

Figure 2. A Snapshot of Practical Schemes for the Logs

4.3 Example

Figure 4.2 shows an example of our proposed
schemes. In this example, X and Y are the shared pages

and their page-homes are assigned to the processes Pk and
Pi respectively. A process Pj attempts to read an invalid
page X. This attempt causes a virtual memory trap and
makes Pj request a page to Pk. Then Pk services adaptively
for that with the diff range and the page blocking
techniques as described above. Since Pj is the log-home of
Pi, when a page fault of an invalid page Y occurs in Pj, Pj
first compares the version of the invalid page Y with the
expected version of that. If either the interval depth is
beyond Sdepth(LH) or Pi has modified the page Y since the
last time that Pj has fetched it, Pj will simply request a
page to Pi. Otherwise, Pj updates the invalid page Y with
its local diff logs for itself.

5. Performance Evaluation

Section 5 describes our experiment environments and
presents the evaluation results of our proposed schemes.
We first describe the adequate thresholds used in our
implementation of different schemes for each application.
Secondly, we show the usability ratio of diff logs for each
scheme. We then evaluate the network overhead based on
total number and size of messages transferred between all
nodes. And finally we show the detailed breakdown of
total execution time of each application.

5.1 Experiment Setup

Our experiments are performed on a cluster of eight
PCs running LINUX version 2.2.15. Each node contains
an 850 MHz Pentium III processor. All nodes are
interconnected via a fast Myrinet of 1.3 Gbps switch. We
evaluated our proposed schemes by incorporating them
into the modified version of FT-SDSM with a remote
logging protocol [7]. For measuring the failure-free
execution time, the five parallel applications from
SPLASH-2 benchmark suit [9] were used, including
Ocean, Water-Spatial, Raytrace, 3D-FFT and Radix.
Table 1 presents the characteristics of each application.

Table 1. Applications' Characteristics
Program Dta Set Size Synchronization

Ocean 515 X 512 grid Locks and barriers
Water-Spatial 1728 molecules Locks and barriers

Raytrace car.evn (256 X 256) Locks and barriers
3D-FFT 28 X 27 X 27 data Barriers
Radix 4M keys Locks and barriers

The performance evaluation is compared with the

following five schemes based on home-based SDSM.

 No Logging Scheme
It is a home-based SDSM without any fault-tolerant
capabilities.

 Remote Logging Scheme
It is a home-based SDSM supporting a lightweight
logging protocol for the fault-tolerance [7].

 Page-home Log Exploitation Scheme (PLES)

It uses the only diff logs of page-homes in FT-SDSM
with a remote logging protocol.

 Log-home Log Exploitation Scheme (LLES)
It exploits the only diff logs of log-homes in FT-
SDSM with a remote logging protocol.

 Hybrid Log-usable Scheme
It uses all applicable diff logs of both page-homes
and log-homes in FT-SDSM with a remote logging
protocol.

5.2 Service Thresholds

In Section 4, we explain some service thresholds (i.e.,
Ssize(H), Sdepth(H) and Sdepth(LH)) described in Section 4. To
analyze the effect of the service thresholds in performance
and to find the set of the optimal values, we have
performed some experiments with the various values of
thresholds for each application.

Optimal Threshold of Ssize(H) : We considered only
PLES for adjusting Ssize(H). We fixed Sdepth(H) with the
highest value in such a way it will not affect Ssize(H). In
Ocean, 3D-FFT and Radix, we adjusted Ssize(H) to 3072
bytes to make the maximal use of diff logs. In addition,
the value of Ssize(H) higher than 3072 bytes is not helpful in
performance. In Water-Spatial and Raytrace, we adjusted
Ssize(H) as 1024 bytes.

Optimal Thresholds of Sdepth(H) and Sdepth(LH) : We first
began by adjusting Sdeptg(H) for PLES. We fixed Ssize(H)
with the corresponding values above. We then, adjusted
Sdepth(H) to use the diff logs as many as possible without
degrading the performance in searching for the diff logs.
The results showed that 200 is appropriate for Sdepth(H) in
Ocean and Radix, and 100 is appropriate for Sdepth(H) in
Water-Spatial, Raytrace and 3D-FFT. Secondly, we
adjusted Sdepth(LH) for LLES. We have obtained the results
from our experiment that most of all version differences
to be searched are within 100 for all applications.

5.3 Ratio of Usable Diff Logs

Table 2. Usability Ratio of Diff Logs
Scheme PLES LLES Hybrid scheme

Ocean 1103/5619
(19.68%)

384/5613
(6.84%)

1388/5607
(24.76%)

Water-Sp 21868/21882
(99.93%)

2608/21883
(11.92%)

21869/21884
(99.93%)

Raytrace 8496/12928
(65.72%)

687/12931
(5.51%)

8211/12586
(65.24%)

3D-FFT 5/13223
(0.04%)

960/13223
(7.26%)

965/13223
(7.30%)

Radix 186/4313
(4.31%)

204/4308
(4.72%)

377/4314
(8.73%)

(Usability Ratio : the number of pages serviced with diff logs over
total number of page faults in a node)

Table 2 provides the usability ratio that a node can
update its invalid pages with the diff logs. Three schemes
are compared for the impact of diff logs. For LLES, the
usability ratio between five applications is not highly
different. For PLES, Water-Spatial and Raytrace have
achieved the high usability ratio compared to the other
applications. In a hybrid log-usable scheme, we can see
from Table 2 that each log-usable ratio of five application
is higher than about 7%.

5.2 Message Overhead

The message overhead represents the network traffic
while the page faults contribute to the memory miss idle
time, SDSM overhead and time spent in OS kernel. In
general, the network overhead is categorized into two
factors, total amount and number of messages over the
network.

Table 3. Message Overhead over the Network

Scheme Remote
Logging PLES LLES Hybrid

Scheme
Ocean 44952 44977 41802 41789

Water-Sp 175075 175069 154208 154207
Raytrace 103223 103012 97393 96727
3D-FFT 105785 105785 98105 98108
Radix 34478 34506 32843 32945

 (a) Number of Messages

Scheme Remote
logging PLES LLES Hybrid

scheme
Ocean 184 160 171 149

Water-Sp 717 186 631 163
Raytrace 423 307 399 304
3D-FFT 433 433 401 401
Radix 147 137 134 131

 (b) Amount of Messages (MB)

Table 3 describes the message overhead over the

network under five different schemes. When a remote
logging scheme serves as a baseline for comparison, the
number of messages is reduced by 4-12% and the amount
of messages is minimized by 11-78% for the hybrid log-
usable scheme in all applications. This reduction mainly
comes from the high usability of diff logs. The
experiment shows that our proposed schemes have very
large positive impact in performance.

5.3 Total Execution Time

Figure 4 describes a detailed breakdown of each
normalized execution time for five applications. For the
comparison purpose, we used total execution time of FT-
SDSM with a remote logging protocol as a performance
baseline. Each experiment is broken down into four
categories, from top to bottom as follows: (i) time spent in
computation and OS kernel, (ii) time spent in waiting for
(ii) lock or (iii) barrier and (iv) time spent in waiting for
updating the invalid pages. The five different schemes
used for each application are as follows. (i) no logging
scheme, (ii) remote logging scheme, (iii) PLES, (iv)
LLES and (v) hybrid log-usable scheme.

0

20

40

60

80

100

120

No
rm

al
iz

ed
 E

xe
cu

ti
on

 T
im

e
(%

)

 .

Busy

Lock Idle

Barrier Idle
Memory Miss Idle

Ocean Water-Sp Raytrace FFT Radix

95.64 94.65 86.78 100.14
104.17

Figure 3. Impacts of Practical Schemes for Logs

Over all, our proposed schemes show good
performance improvement compared to the remote
logging scheme. For the hybrid log-usable scheme, we
can see that total execution time is reduced by 4-5% in
Ocean, 6-7% in Water-Spatial and 13-14% in Raytrace
whereas no improvement is achieved for FFT and Radix.
This performance degradation in FFT and Radix is due to
the low usability ratio of the diff logs. In these
applications, only to apply LLES rather PLES is more
desirable for the higher performance. Especially, in
Water-Spatial and Raytrace, the hybrid log-usable scheme
shows a higher performance than no logging scheme. This
is so much promising for our FT-SDSM with a remote
logging protocol to challenge the previous home-based
SDSMs even if they don’t support the fault-tolerant
capabilities. This figure shows that the high reduction of
total execution time is due to the reduction of page fault
and lock synchronization times. Especially, in Raytrace,
the reduction of the lock synchronization time is mainly
due to the reduction of the page fault time.

6. Conclusions

This paper proposes two new schemes based on a
remote logging protocol. To our knowledge, it is the first
study to use the logged data for higher performance
during the failure-free execution. Our experiment results
show that our proposed schemes substantially reduce the
communication overhead. The desirable results are due to
the reduction of the times stalled for updating the invalid
pages and the times spent for the synchronization
operations. Thus we conclude that our practical schemes
for the logs are quite effective on FT-SDSM with a
remote logging protocol and they are sufficiently
applicable to reduce the memory miss idle time in some
fault-tolerant SDSM with a volatile logging.

References

[1] K.Li and P.Hudak, Memory Coherence in Shared Virtual
Memory Systems, ACM Transactions on Computer Systems,
7(4), 1989, 321-359.
[2] G.G.Richard III and M.Singhal, Using Logging and
Asynchronous Checkpointing to Implement Recoverable
Distributed Shared Memory, Proc. of 12th IEEE Symp. on
Reliable Distributed Systems (SRDS-12), 1993, 58-67.
[3] G.Suri, B.Janssens, and W.K.Fuchs, Reduced Overhead
Logging for Rollback Recovery in Distributed Shared Memory,
Proc. of 25th Int’l Fault-Tolerant Computing Symp. (FTCS-25),
1995, 279-288.
[4] M.Costa, P.Guedes, M.Sequeira, N.Neves, and M.Castro,
Lightweight Logging for Lazy Release Consistent Distributed
Shared Memory, Proc. of 2nd USENIX Symp. Operating
Systems Design and Implementation (OSDI-2), 1996, 59-74.
[5] A.Kongmunvattana and N.-F.Tzeng, Coherence-Centric
Logging and Recovery for Home-Based Software Distributed
Shared Memory, Proc. of 1999 Int’l Conf. Parallel Processing
(ICPP ’99) , 1999, 274-281.
[6] F.Sultan, T.D.Nguyen and L.Iftode, Lazy Garbage
Collection of Recovery State for Fault-Tolerant Distributed
Shared memory, IEEE Transactions on Parallel and Distributed
Systems, 3(10), 2002, 1085-1098.
[7] S.Y.Park, Y.J.Kim, and S.Y.Maeng, Remote Logging for
Fault Tolerant Software Distributed Shared Memory, Proc. of
30th Korea Information Science Society Conf. (KISS-30), 2003,
70-72.
[8] Y.Zhou, L.Iftode, and K.Li, Performance Evaluation of Two
Home-Based Lazy Release Consistency Protocols for Shared
Virtual Memory Systems, Proc. of 2nd USNIX Symp. Operating
Systems Design and Implementation (OSDI-2), 1996, 75-88.
[9] S.C.Woo, M. Ohara, E. Torrie, J.P.Singh, and A.Gupta, The
SPLASH-2 Programs: Characterization and Methodological
Considerations, Proc. of 22nd Int’l Symp. Computer
Architecture (ISCA-22), 1995, 22-36.
[10] P.Keleher, A.L.Cox, and W.Zwaenepoel, Lazy Consistency
for Software Distributed Shared Memory, Proc. of 19th Int’l
Symp. Computer Architecture (ISCA-19), 1992, 13-21.
[11] K.Gharachorloo, D.Lenoski, J.Laudon, P. Gibbons, A.
Gupta, and J. Hennessy, Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors, Proc. of
17th Int’l Symp. Computer Architecture (ISCA-17), May. 1990.
[12] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.
Shubert, F. Berry, A. M. Merrit, E. Gronke, and C. Dodd, The
Virtual Interface Architecture, IEEE Micro, 18(2), 1998, 66-75.
[13] http://www.myrinet.com

