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Abstract 
 
In the existing Fault-Tolerant Software Distributed Shared 
Memory (FT-SDSM) with the message logging, the logs 
are used only to recover the failed nodes. In our previous 
work, we have implemented a lightweight logging 
protocol, called remote logging, on the SDSM for fault 
tolerance, which incurs low logging overhead with a fast 
network and a remote memory for back-up data. In this 
paper, we propose two practical schemes for the logs, 
which enhance our based remote logging protocol. In 
these proposed schemes, the logs are applicable to reduce 
the stalled times for updating the invalid pages, 
minimizing the failure-free execution time.  
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1. Introduction 
 

Software Distributed Shared Memory (SDSM) [1] 
provides a global memory abstraction on the top of the 
physically distributed memories to the programmers and 
simplifies the parallel programming tasks. The SDSM has 
been attractive for the large clusters due to its high 
performance and scalability. However, the probability of 
failures increases as the system size grows. Thus, an 
impressive amount of research has been conducted for 
FT-SDSM without degrading the system performance 
during the failure-free execution. † 

The message logging with independent checkpointing 
is an attractive approach on home-based SDSM with the 
fault-tolerant capabilities [2,3,4,5,6]. It guarantees the 
bounded recovery time and ensures no domino effect [5]. 
Each node logs the received messages into a proper 
storage during the failure-free execution. If a node comes 
to fail, it restarts from the last checkpoint and regenerates 
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the previous state of the system, using the logs, before the 
crash happened.  

The major concern of FT-SDSM is to minimize the 
logging overhead because it might lead to increase the 
failure-free execution time of an application. A few 
logging schemes have been proposed for a lightweight 
and scalable FT-SDSM [5,6].  

In this paper, we propose two practical schemes for 
the logs, called Page-home Log Exploitation Scheme 
(PLES) and Log-home Log Exploitation Scheme (LLES), 
which improve the performance of FT-SDSM by 
exploiting the logs. They are implemented on our 
previous work, remote logging [7], which is tightly 
proposed for home-based SDSM [8]. It only logs the 
coherence-related messages into the volatile memory of a 
remote node and utilizes a high-speed network. The diff 
logs are used to facilitate the fast updates of the invalid 
pages, reducing total failure-free execution time. 

To evaluate our schemes, we have conducted some 
experiments on a cluster of eight PCs under the five 
applications from SPLASH-2 benchmark suit [9]. The 
results demonstrate that our proposed schemes reduce the 
times for the synchronization operations as well as for the 
waiting times to update the invalid pages, and hence 
minimize total failure-free execution time of FT-SDSM 
with a remote logging protocol.  

The remainder of this paper is organized as follows: 
Section 2 describes a home-based SDSM. In section 3, the 
remote logging protocol is given as our base model. 
Section 4 describes our proposed exploitation schemes for 
the logs. The experimental results are present in Section 5. 
Finally, Section 6 concludes the paper. 
 
2. Home-based SDSM  
  

Home-based SDSM is based Home-based Lazy 
Release Consistency (HLRC) [8] which is a variant of 
Lazy Release Consistency (LRC) [10]. The LRC is a 
representative implementation of the release consistency 
protocol [11]. It guarantees the memory consistency only 
after the synchronization point because the update 
propagation is delayed to the next lock acquire or the 
barrier operation. For the memory consistency, it uses a 



write-invalidation protocol that invalidates all copies of 
the shared memory pages modified before the lock is 
acquired. The write operations are grouped into intervals 
delimited by the synchronization operations. The intervals 
represent the order of the write operations on a shared 
memory page. The invalidation is performed at a 
synchronization point with the write-notices piggybacked 
with the lock grant and barrier release messages. The 
write-notices include all page numbers to be invalidated. 
The LRC also uses a multiple-writer protocol that allows 
each process to modify the non-overlapping parts of a 
shared memory page concurrently, reducing the network 
traffic overhead even though it consumes a significant 
amount of memory and incurs an extra computation.  

In the recent years, HLRC is a popular memory 
consistency protocol. Each shared memory page has an 
assigned home-node that maintains the most recent pages. 
It gives some advantages to the SDSM as follows: (i) The 
local write or read operation on a shared memory page in 
a home-node does not cause any virtual memory trap. In 
addition to that, the summary of modifications (i.e., diffs) 
is not created. The diff is generated from comparing the 
modified page with the previous copy of the same page 
(i.e., twin). (ii) An up-to-date page is fetched from its 
home-node by a single round-trip message, which 
simplifies the consistency protocol. These benefits enable 
the SDSM to be more efficient and scalable.  
 
3. Our Previous Work  
 
3.1 Failure Model 
 

The fail-stop model assumes that a failed node should 
not affect any other running ones and the network is 
considered to be failure-free. Thus, some communication 
operation failure is handled as a remote node failure. We 
use a low overhead communication layer, VIA (Virtual 
Interface Architecture) [12], which tolerates the transient 
network fabric errors by the packet retransmission and 
guarantees the FIFO message delivery.  
 
3.2 Remote Logging Protocol 
 

Each shared page has both a home-node, called a 
page-home, and a back-up node, called a log-home and 
each node has a write-notice back-up node, called a 
notice-node. In this paper, for each shared page belonging 
to some node (or page-home), the log-home of a shared 
memory page and the notice-node of a node (or page-
home) are supposed to be the same. The remote logging 
protocol uses the volatile memory of a remote node rather 
than local disk for back-up data as in the previous stable 
logging protocol [5]. The elimination of this disk access 
minimizes the logging overhead as shown in [7]. Also, the 
high-speed network will reduce the network traffic 
overhead. It tolerates a few multiple node failures except 
when a page-home and its log-home or a node and its 
notice-node come to fail simultaneously. The protocol 
stores the write-notice messages received by a node into 

its notice-node and the diff messages of some pages into 
both their page-homes and their respective log-homes. 
The remote copy pages are not logged because they can 
be regenerated by their page-homes during the recovery.  

 
Write-notice and Diff Logging 
  

In HLRC, two major messages affecting the memory 
consistency are the write-notice and diff messages.  

When a lock releaser sends the write-notice messages 
to the next lock requester for invalidating the old copies, 
the latter logs them in the volatile memory of its notice-
node (or log-home). A failed node can extract the 
corresponding write-notices from its log-home at every 
synchronization point during the recovery. The write-
notice logging is also conducted during the barrier 
operations similarly to the lock acquire operations.  

Also, when a page writer creates some diffs at a 
synchronization point, it sends them not only to their 
page-homes but also to their corresponding log-homes. 
The recent communication layer (e.g., VMMC and VIA) 
provides a useful function, the direct data transfer 
between the sender’s and the receiver’s virtual address 
spaces, and hence the diff logging can be performed more 
quickly and without the intervention of the host-processor. 
Contrary to the write-notice logging, the diff logging has 
to be performed in the log-homes as well as in the page-
homes. The diff logs in a log-home are used to recover its 
peer page-home on a failure and those in a page-home are 
used to regenerate the old pages requested by other failed 
nodes during the recovery. Thus, even though a page-
home attempts to write on its self-home pages, it must 
create the diffs and log them in its local memory, which is 
different from the previous HLRC protocol.  
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Figure 1. A Snapshot of Remote Logging 

Example 
 

Figure 1 shows a snapshot of the remote logging 
protocol. Figure 1(a) shows an example of the write-



notice logging at the lock acquire. A process Pi is a 
previous lock owner. A process Pj is a next lock requester. 
A process Pk is a notice-node (or log-home) of Pj. Pj 
receives a lock grant message with some write-notices 
including all information of the modified pages by Pi. Pj 
forwards the received write-notice messages to Pk and 
invalidates its local remote copy pages. The invalidation 
and logging operations are performed in parallel.  

Figure 1(b) shows an example of the diff logging. In 
this example, a shared page X has a page-home Pi and a 
log-home Pj. Pk is a page-writer on X. When a write miss 
occurs at a page X, Pk creates the twin of X and modifies it. 
At a lock release, Pk creates a diff message of X to send it 
to its page-home Pi and directly logs the same one into Pj. 
In Pi, the diff of X is applied to its home page of X and is 
logged into its local memory.  
 
4. Practical Schemes for the Logs 
 

In our previous work (i.e., remote logging) and the 
other traditional logging protocols, the logs were useless 
during the failure-free execution and the process has to 
fetch a whole page from its page-home whenever the 
invalid page is accessed, incurring high cost. In this paper, 
based on the remote logging protocol, we will introduce 
two efficient exploitation schemes for the logs stored in 
the page-home as well as in the log-home because the diff 
logs in the memory can be sufficiently usable to reduce 
the times for updating the invalid pages. The first scheme 
is the Page-home Log Exploitation Scheme (PLES) that 
uses the diff logs of page-homes and the second one is the 
Log-home Log Exploitation Scheme (LLES) that uses the 
diff logs of log-homes for better performance. To our 
knowledge, this is the first work that uses those diff logs 
to enhance the performance of FT-SDSM during the 
failure-free execution.   
 
4.1 Page-home Log Exploitation Scheme (PLES) 

 
In HLRC, a process updates its invalid page by 

fetching a whole page from its page-home even though it 
needs only its small parts of the page for updates. We first 
have experimented on measuring the impact of the 
communication latency with the message length between 
two nodes.  Each node contains a Pentium III 850 MHz 
processor and a NIC holding LANai 9.1 processor. They 
are interconnected with 1.3 Gbps switched Myrinet. We 
used VI-GM [13], a kind of VIA implementations 
provided by Mricom [13]. The results showed that the 
data transmission latency scales linearly with the message 
length. For example, a half round-trip time for 2 Kbytes 
message is 118µs and for 4 Kbytes is 215µs. It means that 
the superfluous data transmission might lead to somewhat 
performance degradation.  

We suggest an adaptive strategy in which a page-
home can adaptively send a whole page or only its 
modified parts of the page with the diff logs. In a case of 
servicing with the logs, the computation overhead will 
increase while the communication overhead will decrease. 

The page-home wastes some CPU cycles in computing 
the modified ranges of the page and making them on a 
message. To reduce the non-negligible cost, we use some 
optimization techniques and try to estimate whether the 
CPU cost will exceed some threshold or not while 
searching for the appropriate logs.  
 
Adaptive strategy 

 
If a process attempts to access an invalid page, it must 

wait for update from its home. The update could be either 
a whole page (4 Kbytes) or the only modified parts since 
the last access. To make a choice, we define Tpage as a 
waiting time for a whole page and Tdiff as a waiting time 
for the only modified parts of the page. By estimating 
them, a page-home can decide whether to service for the 
request with the logs or not according to the minimum 
waiting time Tbest (i.e., Tbest = Min (Tpage,Tdiff)). Most of 
Tpage occupy the data transmission of 4 Kbytes whereas 
Tdiff includes three kinds of overheads as follows: (i) TXB 
is a transmission time for X bytes where X is the size of 
the modified parts of the page. (ii) Ccup is the overhead 
consumed in searching for the corresponding diff logs and 
computing its modified ranges in a page. (iii) Cmem is the 
memory copy overhead for creating a message with the 
modified parts of the page. If the most parts of a page 
have been modified, the service with the logs might not 
be desirable in performance. Even though the size of the 
modified parts can be very small, since Tdiff is the sum of 
TXB, Ccup and Cmem, the overhead of servicing with the diff 
logs can be dramatically higher than that of only sending 
a whole page.  

For the decision purpose, we define two thresholds as 
follows: (i) Ssize(H) is a size threshold to service the only 
modified ranges of the page and (ii) Sdepth(H) is an interval 
depth threshold to search for the corresponding set of the 
logs, where H represents a page-home. We can find the 
dependency between Ssize(H) and TXB, and between Sdepth(H) 
and Ccpu. In this strategy, when a page-home receives a 
page request, it first checks the version difference 
between the home page and the remote copy. If it is 
higher than Sdepth(H), the page-home simply sends a whole 
page. If a page-home learns that the size of the modified 
ranges in a page exceeds Ssize(H) in the middle of servicing 
with the logs, it also quits servicing with the logs and 
simply sends a whole page.  
 
Optimization  
 

A straightforward method to reply for a page request 
with the logs is to extract the previously received diff 
messages from the log pool and to simply pack them up 
on a message. However, it incurs the non-negligible 
overhead of redundant data in a message. Thus, we devise 
two optimization techniques to reduce such an overhead 
of the memory copies (i.e., Cmem). In the diff range 
technique, a page-home finds the only modified ranges of 
a page in advance before the packing operation begins. It 
has some advantages of eliminating an unnecessary copy 



operation and reducing the size of a response message. 
However, there is still some problem of the frequent 
memory copies if the modified parts of the page are 
highly scattered in the whole range of a page. Thus we 
propose the page blocking technique. It divides a page 
into blocks and uses a write vector indicating which 
blocks are modified in a page. The size of a write-vector 
is the same as the number of blocks in a page. If a page-
home finds a modified block of the page during searching 
for the appropriate diff logs, it sets the corresponding bit 
of the write-vector. Then it makes all blocks set by 1 on a 
message and sends it to the page requester. The 
performance tradeoff is in between the frequency of the 
memory copies and the size of the superfluous data. We 
fix the unit size of a block with 32 bytes for efficiency. 
 
4.2 Log-home Log Exploitation Scheme (LLES) 
 

A log-home logs all diffs which its peer page-home 
receives. If a log-home accesses an invalid page of which 
page-home is its peer one, it can update the invalid page 
with its local diff logs instead of requesting a page to its 
page-home. However, the log-home cannot use its local 
diff logs if the page-home has ever written the page since 
the last time that its log-home has fetched it. In this case, 
the log-home simply requests a page to its page-home. 
The diffs created by the page-home are not logged in its 
log-home because they can be regenerated by the page-
home during the recovery.  

Typically, the cost of the memory copy operations is 
less than that of fetching a whole page from its remote 
node. However, the frequent memory copies might lead to 
higher overhead. Thus, to limit the frequency of the 
memory copies, we define an interval depth threshold 
Sdepth(LH) to search for its local diff logs in a log-home 
where LH represent a log-home. If an interval difference 
between the version of the expected page and that of the 
old page is beyond Sdepth(LH), the log-home stop searching 
for the diff logs and simply request a page to its page-
home.  
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Figure 2. A Snapshot of Practical Schemes for the Logs 

4.3 Example 
 

Figure 4.2 shows an example of our proposed 
schemes. In this example, X and Y are the shared pages 

and their page-homes are assigned to the processes Pk and 
Pi respectively. A process Pj attempts to read an invalid 
page X. This attempt causes a virtual memory trap and 
makes Pj request a page to Pk. Then Pk services adaptively 
for that with the diff range and the page blocking 
techniques as described above. Since Pj is the log-home of 
Pi, when a page fault of an invalid page Y occurs in Pj, Pj 
first compares the version of the invalid page Y with the 
expected version of that. If either the interval depth is 
beyond Sdepth(LH) or Pi has modified the page Y since the 
last time that Pj has fetched it, Pj will simply request a 
page to Pi. Otherwise, Pj updates the invalid page Y with 
its local diff logs for itself.  
 
5. Performance Evaluation 
 

Section 5 describes our experiment environments and 
presents the evaluation results of our proposed schemes. 
We first describe the adequate thresholds used in our 
implementation of different schemes for each application. 
Secondly, we show the usability ratio of diff logs for each 
scheme. We then evaluate the network overhead based on 
total number and size of messages transferred between all 
nodes. And finally we show the detailed breakdown of 
total execution time of each application.  
 
5.1 Experiment Setup 
 

Our experiments are performed on a cluster of eight 
PCs running LINUX version 2.2.15. Each node contains 
an 850 MHz Pentium III processor. All nodes are 
interconnected via a fast Myrinet of 1.3 Gbps switch. We 
evaluated our proposed schemes by incorporating them 
into the modified version of FT-SDSM with a remote 
logging protocol [7]. For measuring the failure-free 
execution time, the five parallel applications from 
SPLASH-2 benchmark suit [9] were used, including 
Ocean, Water-Spatial, Raytrace, 3D-FFT and Radix. 
Table 1 presents the characteristics of each application. 

Table 1. Applications' Characteristics 
Program Dta Set Size Synchronization

Ocean 515 X 512 grid Locks and barriers
Water-Spatial 1728 molecules Locks and barriers

Raytrace car.evn (256 X 256) Locks and barriers
3D-FFT 28 X 27 X 27 data Barriers
Radix 4M keys Locks and barriers

 
The performance evaluation is compared with the 

following five schemes based on home-based SDSM. 
 

 No Logging Scheme 
It is a home-based SDSM without any fault-tolerant 
capabilities.  
 

 Remote Logging Scheme  
It is a home-based SDSM supporting a lightweight 
logging protocol for the fault-tolerance [7]. 
 

 Page-home Log Exploitation Scheme (PLES) 



It uses the only diff logs of page-homes in FT-SDSM 
with a remote logging protocol.  
 

 Log-home Log Exploitation Scheme (LLES) 
It exploits the only diff logs of log-homes in FT-
SDSM with a remote logging protocol.  
 

 Hybrid Log-usable Scheme 
It uses all applicable diff logs of both page-homes 
and log-homes in FT-SDSM with a remote logging 
protocol.  

 
5.2 Service Thresholds 
 

In Section 4, we explain some service thresholds (i.e., 
Ssize(H), Sdepth(H) and Sdepth(LH)) described in Section 4. To 
analyze the effect of the service thresholds in performance 
and to find the set of the optimal values, we have 
performed some experiments with the various values of 
thresholds for each application. 
 
Optimal Threshold of Ssize(H) : We considered only 
PLES for adjusting Ssize(H). We fixed Sdepth(H) with the 
highest value in such a way it will not affect Ssize(H). In 
Ocean, 3D-FFT and Radix, we adjusted Ssize(H) to 3072 
bytes to make the maximal use of diff logs. In addition, 
the value of Ssize(H) higher than 3072 bytes is not helpful in 
performance. In Water-Spatial and Raytrace, we adjusted 
Ssize(H) as 1024 bytes.  
  
Optimal Thresholds of Sdepth(H) and Sdepth(LH) : We first 
began by adjusting Sdeptg(H) for PLES. We fixed Ssize(H) 
with the corresponding values above. We then, adjusted 
Sdepth(H) to use the diff logs as many as possible without 
degrading the performance in searching for the diff logs. 
The results showed that 200 is appropriate for Sdepth(H) in 
Ocean and Radix, and 100 is appropriate for Sdepth(H) in 
Water-Spatial, Raytrace and 3D-FFT. Secondly, we 
adjusted Sdepth(LH) for LLES. We have obtained the results 
from our experiment that most of all version differences 
to be searched are within 100 for all applications. 
 
5.3 Ratio of Usable Diff Logs  

Table 2. Usability Ratio of Diff Logs 
Scheme PLES LLES Hybrid scheme

Ocean 1103/5619 
(19.68%) 

384/5613 
(6.84%) 

1388/5607
(24.76%)

Water-Sp 21868/21882 
(99.93%) 

2608/21883 
(11.92%) 

21869/21884
(99.93%)

Raytrace 8496/12928 
(65.72%) 

687/12931 
(5.51%) 

8211/12586
(65.24%)

3D-FFT 5/13223 
(0.04%) 

960/13223 
(7.26%) 

965/13223
(7.30%)

Radix 186/4313 
(4.31%) 

204/4308 
(4.72%) 

377/4314
(8.73%)

(Usability Ratio : the number of pages serviced with diff logs over 
total number of page faults in a node) 

Table 2 provides the usability ratio that a node can 
update its invalid pages with the diff logs. Three schemes 
are compared for the impact of diff logs. For LLES, the 
usability ratio between five applications is not highly 
different. For PLES, Water-Spatial and Raytrace have 
achieved the high usability ratio compared to the other 
applications. In a hybrid log-usable scheme, we can see 
from Table 2 that each log-usable ratio of five application 
is higher than about 7%.  
 
5.2 Message Overhead 
 

The message overhead represents the network traffic 
while the page faults contribute to the memory miss idle 
time, SDSM overhead and time spent in OS kernel. In 
general, the network overhead is categorized into two 
factors, total amount and number of messages over the 
network. 

Table 3. Message Overhead over the Network 

Scheme Remote 
Logging PLES LLES Hybrid 

Scheme 
Ocean 44952 44977 41802 41789 

Water-Sp 175075 175069 154208 154207 
Raytrace 103223 103012 97393 96727 
3D-FFT 105785 105785 98105 98108 
Radix 34478 34506 32843 32945 

 (a) Number of Messages 
 

 

Scheme Remote 
logging PLES LLES Hybrid 

scheme 
Ocean 184 160 171 149 

Water-Sp 717 186 631 163 
Raytrace 423 307 399 304 
3D-FFT 433 433 401 401 
Radix 147 137 134 131 

 (b) Amount of Messages (MB)  
 
Table 3 describes the message overhead over the 

network under five different schemes. When a remote 
logging scheme serves as a baseline for comparison, the 
number of messages is reduced by 4-12% and the amount 
of messages is minimized by 11-78% for the hybrid log-
usable scheme in all applications. This reduction mainly 
comes from the high usability of diff logs. The 
experiment shows that our proposed schemes have very 
large positive impact in performance.  
 
5.3 Total Execution Time 
 

Figure 4 describes a detailed breakdown of each 
normalized execution time for five applications. For the 
comparison purpose, we used total execution time of FT-
SDSM with a remote logging protocol as a performance 
baseline. Each experiment is broken down into four 
categories, from top to bottom as follows: (i) time spent in 
computation and OS kernel, (ii) time spent in waiting for 
(ii) lock or (iii) barrier and (iv) time spent in waiting for 
updating the invalid pages. The five different schemes 
used for each application are as follows. (i) no logging 
scheme, (ii) remote logging scheme, (iii) PLES, (iv) 
LLES and (v) hybrid log-usable scheme.  
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Figure 3. Impacts of Practical Schemes for Logs

Over all, our proposed schemes show good 
performance improvement compared to the remote 
logging scheme. For the hybrid log-usable scheme, we 
can see that total execution time is reduced by 4-5% in 
Ocean, 6-7% in Water-Spatial and 13-14% in Raytrace 
whereas no improvement is achieved for FFT and Radix. 
This performance degradation in FFT and Radix is due to 
the low usability ratio of the diff logs. In these 
applications, only to apply LLES rather PLES is more 
desirable for the higher performance. Especially, in 
Water-Spatial and Raytrace, the hybrid log-usable scheme 
shows a higher performance than no logging scheme. This 
is so much promising for our FT-SDSM with a remote 
logging protocol to challenge the previous home-based 
SDSMs even if they don’t support the fault-tolerant 
capabilities. This figure shows that the high reduction of 
total execution time is due to the reduction of page fault 
and lock synchronization times. Especially, in Raytrace, 
the reduction of the lock synchronization time is mainly 
due to the reduction of the page fault time.  
 
6. Conclusions 
 

This paper proposes two new schemes based on a 
remote logging protocol. To our knowledge, it is the first 
study to use the logged data for higher performance 
during the failure-free execution. Our experiment results 
show that our proposed schemes substantially reduce the 
communication overhead. The desirable results are due to 
the reduction of the times stalled for updating the invalid 
pages and the times spent for the synchronization 
operations. Thus we conclude that our practical schemes 
for the logs are quite effective on FT-SDSM with a 
remote logging protocol and they are sufficiently 
applicable to reduce the memory miss idle time in some 
fault-tolerant SDSM with a volatile logging.  
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