

Lightweight Logging and Recovery for Distributed Shared Memory
over Virtual Interface Architecture

Soyeon Park, Youngjae Kim, Seung Ryoul Maeng

Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology (KAIST)

{sypark, yjkim, maeng}@camars.kaist.ac.kr

Abstract

As software Distributed Shared Memory(DSM) systems
become attractive on larger clusters, the focus of attention
moves toward improving the reliability of systems. In this
paper, we propose a lightweight logging scheme, called
remote logging, and a recovery protocol for home-based
DSM. Remote logging stores coherence-related data to the
volatile memory of a remote node. The logging overhead
can be moderated with high-speed system area network and
user-level DMA operations supported by modern
communication protocols. Remote logging tolerates
multiple failures if the backup nodes of failed nodes are
alive. It makes the reliability of DSM grow much higher.
Experimental results show that our fault-tolerant DSM has
low overhead compared to conventional stable logging and
it can be effectively recovered from some concurrent
failures.

1. Introduction1

Clusters of workstations and PCs have been adopted as

cost-effective platform for parallel computing. Software
Distributed Shared Memory (DSM) simplifies parallel
programming tasks by providing a shared memory
abstraction on clusters. DSM continues to improve its
performance and scalability with a relaxed memory
consistency and various optimization techniques [1,2,3,4].
Recently, high availability and reliability of DSM also
become critical as DSM becomes attractive for long-
running applications on larger clusters.

A common approach for fault-tolerant systems is to take
a checkpoint periodically so that the system can roll back to
one of the checkpoints after a failure. In DSM systems,
some dependency relations are established between
processes accessing shared memory. Thus, even live nodes

1 This research is supported by KISTEP under the National Research
Laboratory program.

should roll back together to keep shared memory consistent
after recovery. Conventional solution to cope with the
rollback propagation (i.e., domino effect [5]) is message
logging : the messages affecting memory contents and
states are logged during failure-free execution [6,7,8,9].
Only a failed node rolls back to the last checkpoint, then
reproduces the same sequence of computations by applying
logs.

Logging guarantees bounded rollback after a failure, but
it has a significant impact on the performance of fault-
tolerant DSM during failure-free execution. Especially,
earlier logging schemes flush logs to disk before writes to
shared data are performed to other processes [6,8,10]. Their
frequent disk accesses degrade the performance of DSM. In
sender-based volatile logging schemes [9,11], the message
sender stores logs in its local memory and flushes them to
the stable storage on a checkpoint. While the schemes have
low overhead, they cannot be tolerant to the concurrent
failures of multiple nodes since logs indispensable for the
failed node are scattered in the others. As a new approach,
a data replication scheme has been recently proposed [12].
It eliminates logging and memory checkpointing by
replicating shared data on two distinct nodes. However, it
requires an additional overhead for atomic updates between
shared data and its replica.

In this paper, we proposed a FT-KDSM (Fault-Tolerant
KAIST-DSM), which aims at lightweight logging and
recovery from some concurrent failures. Most previous
approaches focus on lightweight logging schemes, but
under the assumption of only single node failures. As
cluster size grows, it has been important to deal with
concurrent failures while preserving the system
performance.

In our remote logging, the logs for a failed node are
saved to the memory of a single remote node, called a log
home. Remote logging has some attractive properties as
follows. First, like other volatile loggings, it does not
require any disk accesses at every synchronization point.
Secondly, the logging overhead due to additional message
transfers is moderate on a high-speed System Area
Network (SAN) and modern communication protocols.
Simple logging by DMA operations, unlike the data

replication scheme, does not make significant interference
with the host process of a backup node. Finally, it increases
the reliability of a system by tolerating some concurrent
failures in multiple nodes under the situation where their
log homes are alive.

With our recovery protocol, the synchronization
operations are independently replayed with logs of failed
processes, whereas the page fetching operations are
affected by the recovery progress of other failed processes.
Our work is the first to measure the overhead of recovery
from multiple failures.

We implemented FT-KDSM over VIA (Virtual Interface
Architecture) [13], one of the user-level communication
protocols, and evaluated it on a cluster interconnected with
Myrinet SAN [14]. Experimental results show that the
remote logging leads to much lower failure-free overhead
than traditional stable logging scheme. In ocean, remote
logging imposes the logging overhead of 21% on a base
DSM while stable logging degrades the performance of
base DSM by 206%. In our experiments with other
applications, remote logging incurs little overhead ranging
from 1% to 11%. Additionally, our recovery protocol
effectively recovers a system from concurrent failures in
multiple nodes.

The remainder of this paper is organized as follows.
Section 2 presents related work. Section 3 describes system
model and memory consistency model used by FT-KDSM.
Our remote logging and recovery schemes are presented in
Section 4 and Section 5, respectively. The performance of
FT-KDSM is discussed in Section 6. Finally, Section 7
concludes the paper.

2. Related work

An exhaustive research of rollback recovery schemes has
been conducted for fault-tolerant DSMs. It is a popular
approach that processes independently take a checkpoint
and log the exchanged messages. A failed node can
reproduce the globally consistent state of a system by
replaying the messages.

The first logging scheme [10] for sequentially consistent
DSMs flushes logs to disk at every page transfer. In [6],
based on Lazy Release Consistency (LRC) model [3], a
receiver logs the messages in memory and flushes them to
disk at every synchronization point. In these stable logging
schemes, failed nodes can be independently recovered from
multiple failures. However, they suffer from the long
latency for disk accesses on the critical path. Coherence-
Centric Logging (CCL) [8] has proposed for Home-based
LRC (HLRC) model [4] which has been widely used due to
its scalability. To hide disk latency for log flushing, CCL
overlaps disk accesses with coherence-induced
communications already present in HLRC. However, a
process should still confirm that logs are flushed before it
continues the next computations.

Costa et al. have extended Treadmarks [15], LRC-based
DSM, to implement volatile logging and two-level recovery
schemes [16]. The data dependencies are logged in the
volatile memory of sender and receiver nodes, thus it
tolerates only single node failures. For dealing with
multiple failures, consistent checkpointing is required
during garbage collection operations of LRC. Sultan et al.
also used volatile logging with independent checkpointing
for single node failures on HLRC-based DSMs [9]. They
focused on log trimming and checkpoint garbage collection
rather than supporting the high level of reliability.

Recently, a data replication scheme has been proposed in
[12]. As a new approach, each shared page has a primary
and a secondary copy at two distinct nodes. The copies are
atomically updated by a two-phase commit protocol. It does
not require shared memory checkpointing. A failed node
can get the consistent backup pages from the remote
memory. It is similar with our remote logging in that the
information for recovering a failed node is centralized in a
specific remote memory. However, the data replication
scheme requires some complicated protocols for
maintaining consistency between two replicas. Moreover, it
does not deal with concurrent failures.

3. Overview of FT-KDSM

In this section, we describe our FT-KDSM which is
fault-tolerant home-based DSM. We briefly present the
system model including failure models and system
configuration, and memory consistency protocol.

3.1. System model

We assume fail-stop model, that is, nodes fail only by
stopping and do not exhibit any incorrect behavior. FT-
KDSM deals with only transient failures. A failed node can
be recovered from a failure and then resume normal
computations with other nodes. We consider tradeoffs
between the levels of reliability and overhead for it, and
then, suggest a lightweight remote logging and a new
recovery scheme for tolerating some concurrent failures in
multiple nodes. A checkpointing policy is beyond the scope
of this paper.

FT-KDSM was implemented on a PC cluster of eight
nodes running Linux and interconnected with high-
performance Myrinet SAN. It uses VIA [13], which is the
industry standard of user-level communication. It provides
user-level DMA operations which directly transfer data
to/from the virtual address space of a remote node. It does
not interfere with the host-processes of the receiver. It
makes our remote logging more efficient. VIA also
supports packet retransmission mechanism and FIFO
message delivery, thus transient network errors can be
covered on the reliable communication channel. Since the
communication operations return an error when a receiver
is unreachable, live nodes can detect the failure of a remote

node. In this paper, we do not deal with permanent network
failures.

acq rel
P1

P2

P3

X

X

failure (i)

failure (ii)

(P2's log home)

diff(x)

diff(x)

w(x)

3.2. Home-based Lazy Release Consistency

Among several relaxed consistency models, HLRC is a
popular model for efficient DSMs. It is a page-based
multiple-writer protocol. Program executions are divided
with intervals by synchronization operations (i.e., locks and
barriers) and shared memory become consistent only at the
end of an interval. Happened-before ordering [17] between
intervals across nodes is maintained by vector timestamp in
each processor. It keeps track of the recent intervals of all
processes.

Figure 1. Diff logging

In HLRC, every shared page has its designated home
node which keeps an up-to-date page. Writes to a page by
non-home nodes are propagated to its home by diffs, a
summary of modifications. For detecting the modified parts
in a page, a process makes a copy of a page, called a twin,
before writing it. At the end of an interval, the writer makes
diffs by comparing the modified page to its twin and sends
them to the page home.

The cached pages are invalidated at a lock acquire and a
barrier. Each process records the list of dirty pages, called
write-notices, at the end of an interval. A process acquiring
a lock receives write-notices from the previous lock
releaser and then invalidates the corresponding pages. At
barrier time, the write-notices of all processes are also
exchanged with each other. When a page fault occurs by an
access to an invalid page, a process fetches an up-to-date
page from its page home.

We chose the HLRC as a base model of our FT-KDSM
because it has some advantages in comparison with other
memory consistency models. Network overhead due to
coherence-related communications is lower in HLRC than
home-less protocols. It takes only one round-trip message
to fetch an up-to-date copy of a shared page from home
node. Especially, HLRC can be efficiently implemented
with modern communication protocols supporting user-
level DMA operations [1,2].

4. Remote logging

4.1. Overview

FT-KDSM considers remote logging with independent
checkpointing. In our remote logging, each process logs the
write-notices and diffs received from other nodes in volatile
memory of a specific remote node, called a log home. The
messages may modify protocol states or shared data, thus
they should be logged for a correct replay after a failure.
Each node is used for both application processing and the
log repository for another node. In remote logging, if a
process concurrently fails with its log home, the system
cannot be recovered. Otherwise, remote logging can
tolerate concurrent failures in multiple nodes.

Remote logging is lightweight and efficient by taking
advantages of high-performance SAN and modern user-
level communication protocols. The user-level DMA
operation allows the logs to be deposited in specified
virtual addresses in the memory of a log home with low
cost. It removes kernel intervention from the critical
communication path and supports zero-copy data transfer.
Especially, the host process of a log home can be excluded
from logging process.

After a failure, writes already performed to other nodes
should be replayed for a correct recovery. The page updates
are propagated at a synchronization point in the relaxed
consistency. Therefore, in conventional schemes, a process
should confirm at each synchronization point that its logs
will be accessible even after a failure. In remote logging,
however, a process can regard a successful sending log
messages as the completion of logging without requiring
acknowledgements from a log home. It makes sense with a
modern communication protocol guaranteeing reliable
message delivery.

The logs in a log home, i.e., diffs and write-notices, can
be simply discarded when its peer node takes a checkpoint.
It is because the logs are only for the recovery of the peer
node. On the other hand, a page home also saves received
diffs in local memory for servicing old pages while the
recovery of other nodes. Thus, a page home should flush
such diff logs to a local disk on a checkpoint.

4.2. Diffs

If a failure occurs in a page home, the received diffs
should be applied to home pages in the same order for a
correct recovery. Thus, a page writer also sends the same
diffs to the log home of its page home. The page writer can
complete an interval only after the diffs are successfully
sent to the page home and then to its log home. It
guarantees that the pages performed to other nodes can be
recovered with the diff logs.

When a page home receives diff messages, it should also
log the diffs in its local memory. The diff logs in a page
home are used for regenerating a page. A failed process
requires the old copy of a remote page while it replays the
computations. When a page home receives such a request
from the failed process, it can service the same page as
before the failure by replaying the diff logs. The page home
should save such diff logs to a local disk on its checkpoint.

We show the correctness of diff logging in Figure 1. A
process P1 writes a page x and, at release time, sends the
diffs to a page home of P2 and the P2’s log home, P3. (i) If
P2 fails after receiving diffs, it can be recovered with diff
logs in P3. However, (ii) P1 can concurrently fail before
sending the diffs to the log home P3. In this case, it is
certain that other processes did not access the modified data
from P2 because P1’s release was not performed before the
failure. P1 can newly execute the interval and send the new
diffs of a page x to P2 and P3 without consistency
problems.

4.3. Write-notices

In remote logging, when a lock acquirer receives write-
notices, it forwards them to its log home. The acquirer
sends them through a reliable communication channel and
thus needs not wait explicit acknowledgements.
Alternatively, a lock releaser can send write-notices to the
log home. In this case, the acquirer should check whether
the write-notices are successfully logged in its log home
before it releases the lock.

Figure 2 shows the write-notice logging during a lock
acquire operation. A process P2 receives write-notices from
the previous lock owner P1 and then immediately forwards
them to its log home of P3. We consider the cases of
failures at following points. (i) P2 may fail before sending
write-notices to its log home and thus P2 cannot recover the
lock acquire. It does not violate memory consistency
because both the acquire and the following operations were
not performed before the failure. P2 can acquire the lock
again after recovery. (ii) P2 may fail after logging write-
notices to its log home but before releasing the lock. Such a
case does not enforce the recovery of the lock acquire since
any writes in the interval were not performed to other
processes by HLRC protocol. If the logs are not available,
P2 can finish recovery process and start the normal
execution from the acquire operation. (iii) If P2 fails after
releasing the lock, the interval must be recovered for
memory consistency. Before the failure, P2 completed a
release operation, which means that it successfully
forwarded write-notices to its log home. Thus, P2 can
recover the interval with write-notice logs in P3.

During a barrier operation, write-notices are logged in a
similar way. The barrier operation is divided to two phases.
All processes send write-notices to a barrier manager and

its log home in the first phase. After a barrier manager
confirms that the write-notices are completely logged in its
log home, it sends back up-to-date write-notices to each
process and a receiver’s log home in the second phase. The
number of messages increases during a barrier, but logging
overhead can be minimized by sending log messages for
the barrier wait time.

acq rel

P1

P2

P3

XX
failure (i)

(P2's log home)

X
failure (ii) failure (iii)

write-notice

write-notice

5. Recovery Figure 2. Write-notice logging

5.1. Single node failures

When a process fails, it rolls back to the last checkpoint
and regenerates the same sequence of computational states
with logs. Other processes detect the failure and service the
requests from the failed process until recovery is finished.
We first consider the recovery actions in single node
failures.

 At a lock acquire and a barrier : A failed process
fetches the diff logs recorded before the synchronization
point and write-notice logs from its log home. A pointer
to the last diff log is recorded with write-notices at each
lock acquire, thus the log home can easily send those
logs. In case of a barrier, the log home sends diffs
created in the intervals corresponding with an up-to-date
vector timestamp of the failed process. The failed
process applies the received diff logs to its home pages
and invalidates the remote pages according to the write-
notices. The received diffs are also logged in its memory
to support recovery from subsequent failures of other
processes. The process in a recovery updates its local
vector timestamp as during normal execution.

 At page faults : A failed process can reproduce the

same sequence of computations only if its all read
accesses to remote pages can return the expected values.
For correct recovery, a page home services a page
request by regenerating an old copy of the page. A page
home gets an initial copy from its checkpoint, which
does not contain more advanced writes than the faulting
access, and then evolves it by applying partially ordered
diff logs. It may not service the exactly same pages as
before a failure because HLRC is multiple-writer
protocol. However, it is sufficient to service the minimal
version of the page, which contains only writes
happened before the faulting access. Specifically, a page
home keeps the first copy of a page requested during
recovery. When receiving a subsequent request, it can
apply diff logs between the previously serviced version
and the expected version to the copy and then send it.
Alternatively, a page home can send partially ordered
diff logs instead of the page itself and then a failed
process can apply diff logs to its local copy. It reduces
network traffic when the size of diff logs is smaller than

page size. In our implementation, the latter scheme is
applied.

After the recovery is finished, the process whose log

home is the failed process takes a checkpoint since its logs
are discarded from volatile memory due to the failure.
Other processes send again some pending requests to the
failed process and resume normal execution.

5.2. Concurrent failures in multiple nodes

In FT-KDSM using remote logging, a process can be
recovered even if other processes, except for its log home,
are concurrently crashed. At each synchronization point,
failed processes can separately execute the recovery
process with logs as mentioned above. However, a failed
process should interact with other failed processes for page
fault handling. During recovery, when a failed process
receives a page request from another process, it can
immediately regenerate the expected page if required diff
logs have been already flushed to disk before a failure.
Otherwise, the page fault handling is stalled until the page
home fetches the diffs from a log home for its own
recovery. It does not make any deadlock conditions because
the faulting accesses of different processes are partially
ordered according to the happened-before relation.

(a) Failure-free execution

P1

P2

P3

P4

P5

acq rel

(P2's log home)

(P4's log home)

w(x) w(y)
acq rel

acqdiff(y)

diff(y)

diff(x)

diff(x)
write-notice

write-notice

diff(y)

diff(y)

diff(x)w(x) w(y)

P1

P2

P3

P4

P5

(P2's log home)

(P4's log home)

w(x) w(y)

acq rel

acq
diff(x),

write-notice rel

diff(y),
write-notice

page(y)

stall

(b) Recovery from concurrent failures

Figure 3. An example of logging and recovery
Figure 3 shows an example of remote logging and our

recovery process. In this example, page homes of page x
and page y are processes P2 and P4, respectively. We
assume that P2’s log home is P3 and P4’s log home is P5.
In Figure 3(a), P1 acquires a lock for writing page x and
page y during failure-free execution. At the time of lock
release, P1 sends the diffs of x to the page home of P2 and
its log home of P3. Similarly, the diffs of y is also sent P4
and P5. The next acquirer P2 receives write-notices from
P1 and logs them to P3. At the lock release time, P2 creates
the diffs of x and logs it in local memory though page x is
homed page. It is for regenerating page x when subsequent
failures occur in other processes. P2 also sends the diffs of
y to P4 and P5 and releases the lock.

Figure 3(b) assumes that P2 crashes at a certain time
after releasing the lock and P4 also concurrently fails. P2
and P4 independently roll back to the last checkpoint and
replay the logged data. At the lock acquire, P2 get the diffs
which have been logged before the lock acquire and write-
notice logs from P3. It applies the partially ordered diffs to
page x and invalidates page y according to the write-notice
logs.

When P2 accesses on page y, it should fetch the page
from P4. If P4 has the local diff logs of page y at receiving
the request, it can regenerate the page by applying them to
an initial copy obtained from a checkpoint. Otherwise, it
can service the page request when fetching the diff logs
from P5 for its recovery. In Figure 3(b), P4 fetches the diff
logs of page y, which was created by P1, at the lock acquire
operation. Though there was happened-before relation

between the intervals of P2 and P4 during failure-free
execution, the intervals can be independently recovered
using their logs without any ordering constraints. P4
services the pending request for the page y and also logs the
diffs in the local memory for subsequent page requests
from other failed processes.

6. Performance evaluation

In this section, we describe the hardware and software
platform of FT-KDSM and show the evaluation results of
remote logging and our recovery protocol. We first
compare the performance of remote logging with that of
traditional stable logging. Subsequently, we show the
recovery speeds of FT-KDSM, which varies according to
the number of concurrent failures.

6.1. Experimental setup

Our experiments are performed on a cluster of eight PCs
running Linux 2.2.15. Each node contains an 850MHz
Pentium III processor. The nodes are interconnected by
Myrinet network, which has 1.28Gbps bandwidth and low
bit error rates. NIC in each node has a 66MHz Lanai 9.1
processor and 4MB SRAM. We use a GM-VIA [14]
provided by Myricom, which is a kind of VIA
implementations. FT-KDSM uses DMA write operations of
VIA for logging as well as the transfer of pages and
coherence-related messages. The memory regions directly
accessed by remote nodes should be pinned through VIA

50

100

150

200

250

300

350

no
rm

al
iz

ed
 e

xe
. t

im
e

busy lock barrier page faultregistration. For efficient experiments, we allocated 1GB of
physical memory on each node. In FT-KDSM, no
checkpoint is taken and all logs remain in memory since we
focus on the overhead of only logging and recovery.

In this study, we employ five parallel applications. Table
1 shows the applications and their characteristics. Water,
Barnes, FFT and Ocean are from SPLASH-2 benchmark
suite [18] and TSP is from Rice University. All of the
applications except for Ocean are from CVM distribution
[19].

6

lo
ar
F
p
lo
re
fl
S
d

o
lo
D
ex
d
lo
lo
sy
o
d
h
lo
sy
o
d
th
p
o
h
d
it
o

Table 1. Application and their characteristics

0

Water Barnes TSP FFT Ocean

.2. Performance of remote logging

Figure 4 shows the failure-free overhead of our remote
gging and traditional stable logging. The execution times
e normalized by base DSM performance with no logging.
rom left to right, the bars for each application are the
erformance of base DSM, remote logging and stable
gging, respectively. Stable logging keeps the messages
ceived during the previous interval in its memory and
ushes them to stable storage at a release and a barrier.
imilarly to remote logging, it logs the coherence-related
ata such as diffs and write-notices.
The results show that the remote logging has lower

verhead than stable logging in all applications. Remote
gging adds little overhead to the execution time of base
SM, ranging from 1% to 11%, over several applications
cept for Ocean. In FFT and Ocean, while stable logging

egrades the performance by 125% and 206%, our remote
gging does by only 11% and 21% respectively. Stable
gging requires disk accesses for flushing logs at
nchronization points, and hence frequent synchronization

perations and extensive logs lead to a significant
egradation in performance. Specifically, FFT includes a
igh disk overhead due to the extensive amount of diff
gs. Ocean requires not only a large number of
nchronization operations but also an extensive logging

verhead of write-notices and diffs. The long latency of
isk accesses increases the barrier stall time by incurring
e difference in execution time between processes. A

rocess also stalls remote page requests during disk
perations, thus increasing page fault time. On the other
and, even with extensive amount of logs, remote logging
oes not significantly increase total execution time because
 uses the remote memory over high-speed network instead
f disk.

The stable logging can be used to tolerate multiple
failures since the logs for recovery are always accessible
from the local disks of failed processes. However, the
system with stable logging should endure a substantial loss
of performance during failure-free execution. Our remote
logging imposes a little overhead during failure-free
execution and tolerates to concurrent failures in some cases.

6.3. Performance of crash recovery

In a system without a crash recovery protocol, all
processes have to re-execute the program from the initial
state without any logs. Thus, the system consumes the same
amount of time for replaying its computation as before a
failure. In contrast, with a crash recovery protocol, a failed
process can restart the program from only the last
checkpoint and replay the execution with logs. Since the
starting point of replay varies according to the point of a
failure, however, we evaluated recovery time by restarting
the failed process from its initial state and only applying
logs. Our system does not take a checkpoint.

We evaluated the recovery time increasing the number of
failed nodes. In Figure 5, from left to right, the bars for
each application represent the recovery times from the
failures in a single node, two nodes and three nodes,
respectively. They are normalized by re-execution time
under no recovery protocol. The results show that the
recovery process reduces the cost of synchronization
operations compared to the re-execution because the replay
of them can be performed with only write-notice and diff
logs without real interactions with other processes for
synchronization. During recovery, the page fault time
includes the overhead of searching and applying diff logs,
which is generally small as well. However, it slows down
as the number of concurrent failures increases. Page fetch
operations from any other recovering nodes are sometimes
stalled until the relevant diff logs are applied to the home
pages. Due to such interference between concurrently failed
processes, the recovery of entire system spends more time
than individual recovery process.

Applications Problem size Characteristics
Water 1728 mols, 5steps locks, barriers
Barnes 64K bodies barriers
TSP 20 cities locks
FFT 128*128*64 points barriers
Ocean 258*258 ocean locks, barriers

Figure 4. Logging overhead during failure-
free execution

In TSP, the synchronization time and page fault time
occupy only the small portion of application execution.
Thus, replaying the logs is unable to save much time in the
execution compared to other applications. On the other
side, the page fetching time increases considerably as the
number of concurrent failures does. Ocean also shows the
similar results. In our experiments, the recovery times were
measured by assuming the worst case that failed processes
roll back to the starting point of the application. In real
rollback-recovery systems, they can replay the executions
only from the last checkpoint, thus the recovery time may
be always smaller than re-execution time even if log replay
imposes somewhat high overhead in some cases.

7. Conclusion

We have proposed a lightweight remote logging and a
recovery protocol for home-based SDSM in this paper. In
contrast with the previous work, our remote logging is
lightweight and simple because it fully utilizes the
properties of a modern high-speed SAN. Especially, remote
logging can tolerate some concurrent failures in multiple
nodes since the logs indispensable for recovery of a process
are kept in memory of only one remote node.

Evaluation with several well-known benchmarks reveals
the tradeoffs between logging overhead during failure-free
execution and the degree of reliability. Systems with
traditional stable logging can be completely recovered from
multiple failures but its logging overhead can significantly
degrade the performance of failure-free execution. The
logging overhead can offset a benefit of high reliability in
some cases. In FFT and Ocean, stable logging leaded to
performance degradation by 125% and 206%, respectively.
While remote logging imposed relatively low overhead on
the base DSM, e.g., by 11% for FFT and 21% for Ocean, it
can tolerate some failures in multiple nodes except for
concurrent failures with their log homes.

We implemented our recovery protocol and evaluated
recovery speed by varying the number of concurrent
failures. No prior work has ever focused on recovery from
multiple failures. We observed that the synchronization
cost tends to be lower during recovery than normal

execution and is not affected by the number of processes
concurrently failed. However, the page fault time increased
due to waiting for the regeneration of home pages, and
hence the recovery of a system spent much time when
relatively many processes were concurrently failed.

Currently, we are evaluating some practical schemes
using logs for enhancing the performance of FT-KDSM.
The diff logs can be used to reduce the page fault time
during failure-free execution.

References

Figure 5. Impacts of the number of failures on
recovery time

0

20

40

60

80

100

120

140

160

no
rm

al
iz

ed
 ex

e.
tim

e

busy lock barrier page fault

Water Barnes TSP FFT Ocean

[1] A.Bilas, C.Liao, and J.P.Singh, “Accelerating shared virtual
memory using commodity NI support to avoid asynchronous
message handling”, In Proceedings of the 26th International
Symposium on Computer Architecture, May 1999.

[2] M.Rangarajan and L.Iftode, “Software distributed shared
memory over virtual interface architecture: implementation and
performance”, In Proceedings of the 4th Annual Linux
Conference, pages 341-352, Oct. 2000.

[3] P.Keleher, A.L.Cox, and W.Zwaenepoel, “Lazy release
consistency for software distributed shared memory”, In
Proceedings of the 19th Annual Symposium on Computer
Architecture, pages 13-21, May 1992.

[4] Y.Zhou, L.Iftode, and K.Li, “Performance evaluation of two
home-based lazy release consistency protocols for shared virtual
memory systems”, In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation,
pages 75-88, Oct. 1996.

[5] B.Randell, P.A.Lee, and P.C.Treleaven, “Reliability issues in
computing system design”, ACM Computing Surveys, 10(2),
pages 123-166, June 1978.

[6] G.Suri, B.Janssens, and W.K.Fuchs, “Reduced overhead
logging for rollback recovery in distributed shared memory”, In
Proceedings of the 25th Annual International Symposium on
Fault-Tolerant Computing, June 1995.

[7] T.Park, S.B.Cho, and H.Y.Yeom, “An efficient logging
scheme for recoverable distributed shared memory systems”, In
Proceedings of the 17th International Conference of Distributed
Computing Systems, pages 305-313, May 1997.

[8] A.Kongmunvattana and N.F.Tzeng, “Coherence-centric
logging and recovery for home-based software distributed shared
memory”, In Proceedings of the International Conference of
Parallel Processing, pages 274-281, Sept. 1999.

[9] F.Sultan, T.D.Nguyen, and L.Iftode, “Scalable fault-tolerant
distributed shared memory”, In Proceedings of Supercomputing,
2000.

[10] G.G.Richard III and M.Singhal, “Using logging and
asynchronous checkpointing to implement recoverable distributed
shared memory”, In Proceedings of the 12th Symposium on
Reliable Distributed Systems, pages 58-67, Oct. 1993.

[11] D.B.johnson and W.Zwaenepoel, “Sender-based message
logging”, In Proceedings of 17th International Symposium on
Fault-Tolerant Computing Systems, pages 14-19, July 1987.

[12] R.Christodoulopoulou, R.Azimi, and A.Bilas, “Dynamic data
replication : an approach to providing fault-tolerant shared
memory clusters”, In Proceedings of the 9th International
Symposium on High-Performance Computer Architecture, Feb.
2003.

[13] D. Dunning et al., “The Virtual Interface Architecture”, IEEE
Micro, 18(2), pages 66-75, 1998.

[14] http://www.myrinet.com

[15] P.Keleher et al., “Treadmarks: distributed shared memory on
standard workstations and operating systems”, In Proceedings of
the Winter 1994 USENIX Conference, pages 115-131, 1994.

[16] M.Costa et al., “Lightweight logging for lazy release
consistent distributed shared memory”, In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and
Implementation, pages 59-73, Oct. 1996.

[17] L.Lamport, “Time, clocks, and the ordering of events in a
distributed system”, Communications of the ACM, 21(7), pages
558-565, 1978.

[18] S.C.Woo et al., “The SPLASH-2 programs: characterization
and methodological considerations”, In Proceedings of 22nd
International Symposium on Computer Architecture, pages 24-36,
June 1995.

[19] P.Keleher, “CVM: The Coherent Virtual Machine”,
Technical Report, University of Maryland, Nov. 1996.

http://www.myrinet.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

