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Abstract 
 

As software Distributed Shared Memory(DSM) systems 
become attractive on larger clusters, the focus of attention 
moves toward improving the reliability of systems. In this 
paper, we propose a lightweight logging scheme, called 
remote logging, and a recovery protocol for home-based 
DSM. Remote logging stores coherence-related data to the 
volatile memory of a remote node. The logging overhead 
can be moderated with high-speed system area network and 
user-level DMA operations supported by modern 
communication protocols. Remote logging tolerates 
multiple failures if the backup nodes of failed nodes are 
alive. It makes the reliability of DSM grow much higher. 
Experimental results show that our fault-tolerant DSM has 
low overhead compared to conventional stable logging and 
it can be effectively recovered from some concurrent 
failures. 
 
 

1. Introduction1

 
Clusters of workstations and PCs have been adopted as 

cost-effective platform for parallel computing. Software 
Distributed Shared Memory (DSM) simplifies parallel 
programming tasks by providing a shared memory 
abstraction on clusters. DSM continues to improve its 
performance and scalability with a relaxed memory 
consistency and various optimization techniques [1,2,3,4]. 
Recently, high availability and reliability of DSM also 
become critical as DSM becomes attractive for long-
running applications on larger clusters.  

A common approach for fault-tolerant systems is to take 
a checkpoint periodically so that the system can roll back to 
one of the checkpoints after a failure. In DSM systems, 
some dependency relations are established between 
processes accessing shared memory. Thus, even live nodes 
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should roll back together to keep shared memory consistent 
after recovery. Conventional solution to cope with the 
rollback propagation (i.e., domino effect [5]) is message 
logging : the messages affecting memory contents and 
states are logged during failure-free execution [6,7,8,9]. 
Only a failed node rolls back to the last checkpoint, then 
reproduces the same sequence of computations by applying 
logs. 

Logging guarantees bounded rollback after a failure, but 
it has a significant impact on the performance of fault-
tolerant DSM during failure-free execution. Especially, 
earlier logging schemes flush logs to disk before writes to 
shared data are performed to other processes [6,8,10]. Their 
frequent disk accesses degrade the performance of DSM. In 
sender-based volatile logging schemes [9,11], the message 
sender stores logs in its local memory and flushes them to 
the stable storage on a checkpoint. While the schemes have 
low overhead, they cannot be tolerant to the concurrent 
failures of multiple nodes since logs indispensable for the 
failed node are scattered in the others. As a new approach, 
a data replication scheme has been recently proposed [12]. 
It eliminates logging and memory checkpointing by 
replicating shared data on two distinct nodes. However, it 
requires an additional overhead for atomic updates between 
shared data and its replica. 

In this paper, we proposed a FT-KDSM (Fault-Tolerant 
KAIST-DSM), which aims at lightweight logging and 
recovery from some concurrent failures. Most previous 
approaches focus on lightweight logging schemes, but 
under the assumption of only single node failures. As 
cluster size grows, it has been important to deal with 
concurrent failures while preserving the system 
performance. 

In our remote logging, the logs for a failed node are 
saved to the memory of a single remote node, called a log 
home. Remote logging has some attractive properties as 
follows. First, like other volatile loggings, it does not 
require any disk accesses at every synchronization point. 
Secondly, the logging overhead due to additional message 
transfers is moderate on a high-speed System Area 
Network (SAN) and modern communication protocols. 
Simple logging by DMA operations, unlike the data 



replication scheme, does not make significant interference 
with the host process of a backup node. Finally, it increases 
the reliability of a system by tolerating some concurrent 
failures in multiple nodes under the situation where their 
log homes are alive. 

With our recovery protocol, the synchronization 
operations are independently replayed with logs of failed 
processes, whereas the page fetching operations are 
affected by the recovery progress of other failed processes. 
Our work is the first to measure the overhead of recovery 
from multiple failures. 

We implemented FT-KDSM over VIA (Virtual Interface 
Architecture) [13], one of the user-level communication 
protocols, and evaluated it on a cluster interconnected with 
Myrinet SAN [14]. Experimental results show that the 
remote logging leads to much lower failure-free overhead 
than traditional stable logging scheme. In ocean, remote 
logging imposes the logging overhead of 21% on a base 
DSM while stable logging degrades the performance of 
base DSM by 206%. In our experiments with other 
applications, remote logging incurs little overhead ranging 
from 1% to 11%. Additionally, our recovery protocol 
effectively recovers a system from concurrent failures in 
multiple nodes. 

The remainder of this paper is organized as follows. 
Section 2 presents related work. Section 3 describes system 
model and memory consistency model used by FT-KDSM. 
Our remote logging and recovery schemes are presented in 
Section 4 and Section 5, respectively. The performance of 
FT-KDSM is discussed in Section 6. Finally, Section 7 
concludes the paper. 
    
2. Related work 
 

An exhaustive research of rollback recovery schemes has 
been conducted for fault-tolerant DSMs. It is a popular 
approach that processes independently take a checkpoint 
and log the exchanged messages. A failed node can 
reproduce the globally consistent state of a system by 
replaying the messages. 

The first logging scheme [10] for sequentially consistent 
DSMs flushes logs to disk at every page transfer. In [6], 
based on Lazy Release Consistency (LRC) model [3], a 
receiver logs the messages in memory and flushes them to 
disk at every synchronization point. In these stable logging 
schemes, failed nodes can be independently recovered from 
multiple failures. However, they suffer from the long 
latency for disk accesses on the critical path. Coherence-
Centric Logging (CCL) [8] has proposed for Home-based 
LRC (HLRC) model [4] which has been widely used due to 
its scalability. To hide disk latency for log flushing, CCL 
overlaps disk accesses with coherence-induced 
communications already present in HLRC. However, a 
process should still confirm that logs are flushed before it 
continues the next computations.  

Costa et al. have extended Treadmarks [15], LRC-based 
DSM, to implement volatile logging and two-level recovery 
schemes [16]. The data dependencies are logged in the 
volatile memory of sender and receiver nodes, thus it 
tolerates only single node failures. For dealing with 
multiple failures, consistent checkpointing is required 
during garbage collection operations of LRC. Sultan et al. 
also used volatile logging with independent checkpointing 
for single node failures on HLRC-based DSMs [9]. They 
focused on log trimming and checkpoint garbage collection 
rather than supporting the high level of reliability.  

Recently, a data replication scheme has been proposed in 
[12]. As a new approach, each shared page has a primary 
and a secondary copy at two distinct nodes. The copies are 
atomically updated by a two-phase commit protocol. It does 
not require shared memory checkpointing. A failed node 
can get the consistent backup pages from the remote 
memory. It is similar with our remote logging in that the 
information for recovering a failed node is centralized in a 
specific remote memory. However, the data replication 
scheme requires some complicated protocols for 
maintaining consistency between two replicas. Moreover, it 
does not deal with concurrent failures.   
 
3. Overview of FT-KDSM 
 

In this section, we describe our FT-KDSM which is 
fault-tolerant home-based DSM. We briefly present the 
system model including failure models and system 
configuration, and memory consistency protocol. 
 
3.1. System model 
 

We assume fail-stop model, that is, nodes fail only by 
stopping and do not exhibit any incorrect behavior. FT-
KDSM deals with only transient failures. A failed node can 
be recovered from a failure and then resume normal 
computations with other nodes. We consider tradeoffs 
between the levels of reliability and overhead for it, and 
then, suggest a lightweight remote logging and a new 
recovery scheme for tolerating some concurrent failures in 
multiple nodes. A checkpointing policy is beyond the scope 
of this paper.  

FT-KDSM was implemented on a PC cluster of eight 
nodes running Linux and interconnected with high-
performance Myrinet SAN. It uses VIA [13], which is the 
industry standard of user-level communication. It provides 
user-level DMA operations which directly transfer data 
to/from the virtual address space of a remote node. It does 
not interfere with the host-processes of the receiver. It 
makes our remote logging more efficient. VIA also 
supports packet retransmission mechanism and FIFO 
message delivery, thus transient network errors can be 
covered on the reliable communication channel. Since the 
communication operations return an error when a receiver 
is unreachable, live nodes can detect the failure of a remote 



node. In this paper, we do not deal with permanent network 
failures. 
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3.2. Home-based Lazy Release Consistency 
 

Among several relaxed consistency models, HLRC is a 
popular model for efficient DSMs. It is a page-based 
multiple-writer protocol. Program executions are divided 
with intervals by synchronization operations (i.e., locks and 
barriers) and shared memory become consistent only at the 
end of an interval. Happened-before ordering [17] between 
intervals across nodes is maintained by vector timestamp in 
each processor. It keeps track of the recent intervals of all 
processes. 

Figure 1. Diff logging 

In HLRC, every shared page has its designated home 
node which keeps an up-to-date page. Writes to a page by 
non-home nodes are propagated to its home by diffs, a 
summary of modifications. For detecting the modified parts 
in a page, a process makes a copy of a page, called a twin, 
before writing it. At the end of an interval, the writer makes 
diffs by comparing the modified page to its twin and sends 
them to the page home.  

The cached pages are invalidated at a lock acquire and a 
barrier. Each process records the list of dirty pages, called 
write-notices, at the end of an interval. A process acquiring 
a lock receives write-notices from the previous lock 
releaser and then invalidates the corresponding pages. At 
barrier time, the write-notices of all processes are also 
exchanged with each other. When a page fault occurs by an 
access to an invalid page, a process fetches an up-to-date 
page from its page home.  

We chose the HLRC as a base model of our FT-KDSM 
because it has some advantages in comparison with other 
memory consistency models. Network overhead due to 
coherence-related communications is lower in HLRC than 
home-less protocols. It takes only one round-trip message 
to fetch an up-to-date copy of a shared page from home 
node. Especially, HLRC can be efficiently implemented 
with modern communication protocols supporting user-
level DMA operations [1,2].  
 
4. Remote logging 
 
4.1. Overview 
 

FT-KDSM considers remote logging with independent 
checkpointing. In our remote logging, each process logs the 
write-notices and diffs received from other nodes in volatile 
memory of a specific remote node, called a log home. The 
messages may modify protocol states or shared data, thus 
they should be logged for a correct replay after a failure. 
Each node is used for both application processing and the 
log repository for another node. In remote logging, if a 
process concurrently fails with its log home, the system 
cannot be recovered. Otherwise, remote logging can 
tolerate concurrent failures in multiple nodes. 

Remote logging is lightweight and efficient by taking 
advantages of high-performance SAN and modern user-
level communication protocols. The user-level DMA 
operation allows the logs to be deposited in specified 
virtual addresses in the memory of a log home with low 
cost. It removes kernel intervention from the critical 
communication path and supports zero-copy data transfer. 
Especially, the host process of a log home can be excluded 
from logging process. 

After a failure, writes already performed to other nodes 
should be replayed for a correct recovery. The page updates 
are propagated at a synchronization point in the relaxed 
consistency. Therefore, in conventional schemes, a process 
should confirm at each synchronization point that its logs 
will be accessible even after a failure. In remote logging, 
however, a process can regard a successful sending log 
messages as the completion of logging without requiring 
acknowledgements from a log home. It makes sense with a 
modern communication protocol guaranteeing reliable 
message delivery. 

The logs in a log home, i.e., diffs and write-notices, can 
be simply discarded when its peer node takes a checkpoint. 
It is because the logs are only for the recovery of the peer 
node. On the other hand, a page home also saves received 
diffs in local memory for servicing old pages while the 
recovery of other nodes. Thus, a page home should flush 
such diff logs to a local disk on a checkpoint. 
 
4.2. Diffs 
 

If a failure occurs in a page home, the received diffs 
should be applied to home pages in the same order for a 
correct recovery. Thus, a page writer also sends the same 
diffs to the log home of its page home. The page writer can 
complete an interval only after the diffs are successfully 
sent to the page home and then to its log home. It 
guarantees that the pages performed to other nodes can be 
recovered with the diff logs.  

When a page home receives diff messages, it should also 
log the diffs in its local memory. The diff logs in a page 
home are used for regenerating a page. A failed process 
requires the old copy of a remote page while it replays the 
computations. When a page home receives such a request 
from the failed process, it can service the same page as 
before the failure by replaying the diff logs. The page home 
should save such diff logs to a local disk on its checkpoint.  



We show the correctness of diff logging in Figure 1. A 
process P1 writes a page x and, at release time, sends the 
diffs to a page home of P2 and the P2’s log home, P3. (i) If 
P2 fails after receiving diffs, it can be recovered with diff 
logs in P3. However, (ii) P1 can concurrently fail before 
sending the diffs to the log home P3. In this case, it is 
certain that other processes did not access the modified data 
from P2 because P1’s release was not performed before the 
failure. P1 can newly execute the interval and send the new 
diffs of a page x to P2 and P3 without consistency 
problems. 
 
4.3. Write-notices 
 

In remote logging, when a lock acquirer receives write-
notices, it forwards them to its log home. The acquirer 
sends them through a reliable communication channel and 
thus needs not wait explicit acknowledgements. 
Alternatively, a lock releaser can send write-notices to the 
log home. In this case, the acquirer should check whether 
the write-notices are successfully logged in its log home 
before it releases the lock.  

Figure 2 shows the write-notice logging during a lock 
acquire operation. A process P2 receives write-notices from 
the previous lock owner P1 and then immediately forwards 
them to its log home of P3. We consider the cases of 
failures at following points. (i) P2 may fail before sending 
write-notices to its log home and thus P2 cannot recover the 
lock acquire. It does not violate memory consistency 
because both the acquire and the following operations were 
not performed before the failure. P2 can acquire the lock 
again after recovery. (ii) P2 may fail after logging write-
notices to its log home but before releasing the lock. Such a 
case does not enforce the recovery of the lock acquire since 
any writes in the interval were not performed to other 
processes by HLRC protocol. If the logs are not available, 
P2 can finish recovery process and start the normal 
execution from the acquire operation. (iii) If P2 fails after 
releasing the lock, the interval must be recovered for 
memory consistency. Before the failure, P2 completed a 
release operation, which means that it successfully 
forwarded write-notices to its log home. Thus, P2 can 
recover the interval with write-notice logs in P3. 

During a barrier operation, write-notices are logged in a 
similar way. The barrier operation is divided to two phases. 
All processes send write-notices to a barrier manager and 

its log home in the first phase. After a barrier manager 
confirms that the write-notices are completely logged in its 
log home, it sends back up-to-date write-notices to each 
process and a receiver’s log home in the second phase. The 
number of messages increases during a barrier, but logging 
overhead can be minimized by sending log messages for 
the barrier wait time.  
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5. Recovery Figure 2. Write-notice logging 
 
5.1. Single node failures 
 

When a process fails, it rolls back to the last checkpoint 
and regenerates the same sequence of computational states 
with logs. Other processes detect the failure and service the 
requests from the failed process until recovery is finished. 
We first consider the recovery actions in single node 
failures.  
 

 At a lock acquire and a barrier : A failed process 
fetches the diff logs recorded before the synchronization 
point and write-notice logs from its log home. A pointer 
to the last diff log is recorded with write-notices at each 
lock acquire, thus the log home can easily send those 
logs. In case of a barrier, the log home sends diffs 
created in the intervals corresponding with an up-to-date 
vector timestamp of the failed process. The failed 
process applies the received diff logs to its home pages 
and invalidates the remote pages according to the write-
notices. The received diffs are also logged in its memory 
to support recovery from subsequent failures of other 
processes. The process in a recovery updates its local 
vector timestamp as during normal execution. 

 
 At page faults : A failed process can reproduce the 

same sequence of computations only if its all read 
accesses to remote pages can return the expected values. 
For correct recovery, a page home services a page 
request by regenerating an old copy of the page. A page 
home gets an initial copy from its checkpoint, which 
does not contain more advanced writes than the faulting 
access, and then evolves it by applying partially ordered 
diff logs. It may not service the exactly same pages as 
before a failure because HLRC is multiple-writer 
protocol. However, it is sufficient to service the minimal 
version of the page, which contains only writes 
happened before the faulting access. Specifically, a page 
home keeps the first copy of a page requested during 
recovery. When receiving a subsequent request, it can 
apply diff logs between the previously serviced version 
and the expected version to the copy and then send it. 
Alternatively, a page home can send partially ordered 
diff logs instead of the page itself and then a failed 
process can apply diff logs to its local copy. It reduces 
network traffic when the size of diff logs is smaller than 



page size. In our implementation, the latter scheme is 
applied.  

 
After the recovery is finished, the process whose log 

home is the failed process takes a checkpoint since its logs 
are discarded from volatile memory due to the failure. 
Other processes send again some pending requests to the 
failed process and resume normal execution. 
 
5.2. Concurrent failures in multiple nodes 
 

In FT-KDSM using remote logging, a process can be 
recovered even if other processes, except for its log home, 
are concurrently crashed. At each synchronization point, 
failed processes can separately execute the recovery 
process with logs as mentioned above. However, a failed 
process should interact with other failed processes for page 
fault handling. During recovery, when a failed process 
receives a page request from another process, it can 
immediately regenerate the expected page if required diff 
logs have been already flushed to disk before a failure. 
Otherwise, the page fault handling is stalled until the page 
home fetches the diffs from a log home for its own 
recovery. It does not make any deadlock conditions because 
the faulting accesses of different processes are partially 
ordered according to the happened-before relation. 

(a) Failure-free execution 
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(b) Recovery from concurrent failures 

Figure 3. An example of logging and recovery 
Figure 3 shows an example of remote logging and our 

recovery process. In this example, page homes of page x 
and page y are processes P2 and P4, respectively. We 
assume that P2’s log home is P3 and P4’s log home is P5. 
In Figure 3(a), P1 acquires a lock for writing page x and 
page y during failure-free execution. At the time of lock 
release, P1 sends the diffs of x to the page home of P2 and 
its log home of P3. Similarly, the diffs of y is also sent P4 
and P5. The next acquirer P2 receives write-notices from 
P1 and logs them to P3. At the lock release time, P2 creates 
the diffs of x and logs it in local memory though page x is 
homed page. It is for regenerating page x when subsequent 
failures occur in other processes. P2 also sends the diffs of 
y to P4 and P5 and releases the lock. 

Figure 3(b) assumes that P2 crashes at a certain time 
after releasing the lock and P4 also concurrently fails. P2 
and P4 independently roll back to the last checkpoint and 
replay the logged data. At the lock acquire, P2 get the diffs 
which have been logged before the lock acquire and write-
notice logs from P3. It applies the partially ordered diffs to 
page x and invalidates page y according to the write-notice 
logs.  

When P2 accesses on page y, it should fetch the page 
from P4. If P4 has the local diff logs of page y at receiving 
the request, it can regenerate the page by applying them to 
an initial copy obtained from a checkpoint. Otherwise, it 
can service the page request when fetching the diff logs 
from P5 for its recovery. In Figure 3(b), P4 fetches the diff 
logs of page y, which was created by P1, at the lock acquire 
operation. Though there was happened-before relation 

between the intervals of P2 and P4 during failure-free 
execution, the intervals can be independently recovered 
using their logs without any ordering constraints. P4 
services the pending request for the page y and also logs the 
diffs in the local memory for subsequent page requests 
from other failed processes.  
 
6. Performance evaluation 
 

In this section, we describe the hardware and software 
platform of FT-KDSM and show the evaluation results of 
remote logging and our recovery protocol. We first 
compare the performance of remote logging with that of 
traditional stable logging. Subsequently, we show the 
recovery speeds of FT-KDSM, which varies according to 
the number of concurrent failures.  

 
6.1. Experimental setup 
 

Our experiments are performed on a cluster of eight PCs 
running Linux 2.2.15. Each node contains an 850MHz 
Pentium III processor. The nodes are interconnected by 
Myrinet network, which has 1.28Gbps bandwidth and low 
bit error rates. NIC in each node has a 66MHz Lanai 9.1 
processor and 4MB SRAM. We use a GM-VIA [14] 
provided by Myricom, which is a kind of VIA 
implementations. FT-KDSM uses DMA write operations of 
VIA for logging as well as the transfer of pages and 
coherence-related messages. The memory regions directly 
accessed by remote nodes should be pinned through VIA 
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busy lock barrier page faultregistration. For efficient experiments, we allocated 1GB of 
physical memory on each node. In FT-KDSM, no 
checkpoint is taken and all logs remain in memory since we 
focus on the overhead of only logging and recovery. 

In this study, we employ five parallel applications. Table 
1 shows the applications and their characteristics. Water, 
Barnes, FFT and Ocean are from SPLASH-2 benchmark 
suite [18] and TSP is from Rice University. All of the 
applications except for Ocean are from CVM distribution 
[19]. 
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Table 1. Application and their characteristics

0

Water Barnes TSP FFT Ocean

.2. Performance of remote logging 

Figure 4 shows the failure-free overhead of our remote 
gging and traditional stable logging. The execution times 
e normalized by base DSM performance with no logging. 
rom left to right, the bars for each application are the 
erformance of base DSM, remote logging and stable 
gging, respectively. Stable logging keeps the messages 
ceived during the previous interval in its memory and 
ushes them to stable storage at a release and a barrier. 
imilarly to remote logging, it logs the coherence-related 
ata such as diffs and write-notices. 
The results show that the remote logging has lower 

verhead than stable logging in all applications. Remote 
gging adds little overhead to the execution time of base 
SM, ranging from 1% to 11%, over several applications 
cept for Ocean. In FFT and Ocean, while stable logging 

egrades the performance by 125% and 206%, our remote 
gging does by only 11% and 21% respectively. Stable 
gging requires disk accesses for flushing logs at 
nchronization points, and hence frequent synchronization 

perations and extensive logs lead to a significant 
egradation in performance. Specifically, FFT includes a 
igh disk overhead due to the extensive amount of diff 
gs. Ocean requires not only a large number of 
nchronization operations but also an extensive logging 

verhead of write-notices and diffs. The long latency of 
isk accesses increases the barrier stall time by incurring 
e difference in execution time between processes. A 

rocess also stalls remote page requests during disk 
perations, thus increasing page fault time. On the other 
and, even with extensive amount of logs, remote logging 
oes not significantly increase total execution time because 
 uses the remote memory over high-speed network instead 
f disk.  

The stable logging can be used to tolerate multiple 
failures since the logs for recovery are always accessible 
from the local disks of failed processes. However, the 
system with stable logging should endure a substantial loss 
of performance during failure-free execution. Our remote 
logging imposes a little overhead during failure-free 
execution and tolerates to concurrent failures in some cases.  

 
6.3. Performance of crash recovery 
 

In a system without a crash recovery protocol, all 
processes have to re-execute the program from the initial 
state without any logs. Thus, the system consumes the same 
amount of time for replaying its computation as before a 
failure. In contrast, with a crash recovery protocol, a failed 
process can restart the program from only the last 
checkpoint and replay the execution with logs. Since the 
starting point of replay varies according to the point of a 
failure, however, we evaluated recovery time by restarting 
the failed process from its initial state and only applying 
logs. Our system does not take a checkpoint. 

We evaluated the recovery time increasing the number of 
failed nodes. In Figure 5, from left to right, the bars for 
each application represent the recovery times from the 
failures in a single node, two nodes and three nodes, 
respectively. They are normalized by re-execution time 
under no recovery protocol. The results show that the 
recovery process reduces the cost of synchronization 
operations compared to the re-execution because the replay 
of them can be performed with only write-notice and diff 
logs without real interactions with other processes for 
synchronization. During recovery, the page fault time 
includes the overhead of searching and applying diff logs, 
which is generally small as well. However, it slows down 
as the number of concurrent failures increases. Page fetch 
operations from any other recovering nodes are sometimes 
stalled until the relevant diff logs are applied to the home 
pages. Due to such interference between concurrently failed 
processes, the recovery of entire system spends more time 
than individual recovery process.  

Applications Problem size Characteristics
Water 1728 mols, 5steps locks, barriers 
Barnes 64K bodies barriers 
TSP 20 cities locks 
FFT 128*128*64 points barriers 
Ocean 258*258 ocean locks, barriers 

Figure 4. Logging overhead during failure-
free execution



In TSP, the synchronization time and page fault time 
occupy only the small portion of application execution. 
Thus, replaying the logs is unable to save much time in the 
execution compared to other applications. On the other 
side, the page fetching time increases considerably as the 
number of concurrent failures does. Ocean also shows the 
similar results. In our experiments, the recovery times were 
measured by assuming the worst case that failed processes 
roll back to the starting point of the application. In real 
rollback-recovery systems, they can replay the executions 
only from the last checkpoint, thus the recovery time may 
be always smaller than re-execution time even if log replay 
imposes somewhat high overhead in some cases. 
 
7. Conclusion 
 

We have proposed a lightweight remote logging and a 
recovery protocol for home-based SDSM in this paper. In 
contrast with the previous work, our remote logging is 
lightweight and simple because it fully utilizes the 
properties of a modern high-speed SAN. Especially, remote 
logging can tolerate some concurrent failures in multiple 
nodes since the logs indispensable for recovery of a process 
are kept in memory of only one remote node.  

Evaluation with several well-known benchmarks reveals 
the tradeoffs between logging overhead during failure-free 
execution and the degree of reliability. Systems with 
traditional stable logging can be completely recovered from 
multiple failures but its logging overhead can significantly 
degrade the performance of failure-free execution. The 
logging overhead can offset a benefit of high reliability in 
some cases. In FFT and Ocean, stable logging leaded to 
performance degradation by 125% and 206%, respectively. 
While remote logging imposed relatively low overhead on 
the base DSM, e.g., by 11% for FFT and 21% for Ocean, it 
can tolerate some failures in multiple nodes except for 
concurrent failures with their log homes. 

We implemented our recovery protocol and evaluated 
recovery speed by varying the number of concurrent 
failures. No prior work has ever focused on recovery from 
multiple failures. We observed that the synchronization 
cost tends to be lower during recovery than normal 

execution and is not affected by the number of processes 
concurrently failed. However, the page fault time increased 
due to waiting for the regeneration of home pages, and 
hence the recovery of a system spent much time when 
relatively many processes were concurrently failed.    

Currently, we are evaluating some practical schemes 
using logs for enhancing the performance of FT-KDSM. 
The diff logs can be used to reduce the page fault time 
during failure-free execution. 
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